AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Optimizing electronic structure of Mo2TiC2Tx MXene through Nb doping for enhanced electrochemical performance

Jingyuan Zhao1Wenzheng Yan1Zhaoxi Liu1Xiaobin Liu2Yapeng Tian1( )Xinwei Cui1
Henan Institute of Advanced Technology, College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450003, China
College of Physics and Electronic Information Engineering, Guilin University of Technology, Guilin 514004, China
Show Author Information

Graphical Abstract

The charge storage capacity of the Mo2TiC2Tx MXene is regulated by fine-tuning the content of Nb atoms. The results show that the electron cloud density of surface –O termination and the spin polarization of the Mo atoms could be regulated by fine-tuning the molar ratio of Nb atoms, leading to the boost of electric double-layer capacitor (EDLC) and improvement of pseudocapacitance.

Abstract

MXene is a promising electrode material for both high volumetric capacitance and high-rate performance in supercapacitors. However, the current study has mainly focused on the monometallic element Ti3C2Tx MXene until now, while the bimetallic and multimetallic MXene have received comparatively less attention. In this work, we demonstrate that the electronic structure of the Mo2TiC2Tx MXene could be regulated by fine-tuning the content of doped Nb atoms. The enhanced electron cloud density of surface –O termination and the electron spin of the Mo atoms in the Mo2TiC2Tx MXene, leads to the boost of electric double-layer capacitor (EDLC) and improvement of pseudocapacitance. As a consequence, the electrochemical performance of Nb-doped Mo2TiC2Tx MXene (Nb-0.3-MXene) demonstrates a capacitance of 398 F·cm−3, roughly doubling that of the pristine Mo2TiC2Tx MXene electrode at 197 F·cm−3 in the 3 M H2SO4 electrolyte. At the same time, the Nb-0.3-MXene could even maintain a capacitance of 82.75% at 200 mV·s−1, with high cyclic stability for 19,000 cycles at 10 A·g−1. Additionally, Nb-0.3-MXene-based hybrid supercapacitors deliver a remarkable volumetric energy density of 48.1 W·h·L−1 at 230.7 W·L−1, and 34.4 W·h·L−1 at a high power density of 82.6 kW·L−1. There exists a balance between the volumetric capacitance and rate performance with different ratios of Nb atoms in the Nb-doped MXene due to the strong interaction between the Nb-doped MXene and the intercalated protons. Therefore, optimizing the electronic structure of MXene through heteroatom doping is of great potential for enhanced supercapacitor performance.

Electronic Supplementary Material

Download File(s)
6704_ESM.pdf (4.7 MB)

References

[1]

Wang, G.; Lu, Z. L.; Li, Y.; Li, L. H.; Ji, H. F.; Feteira, A.; Zhou, D.; Wang, D. W.; Zhang, S. J.; Reaney, I. M. Electroceramics for high-energy density capacitors: Current status and future perspectives. Chem. Rev. 2021, 121, 6124–6172.

[2]

Tian, Z. N.; Tong, X. L.; Sheng, G.; Shao, Y. L.; Yu, L. H.; Tung, V.; Sun, J. Y.; Kaner, R. B.; Liu, Z. F. Printable magnesium ion quasi-solid-state asymmetric supercapacitors for flexible solar-charging integrated units. Nat. Commun. 2019, 10, 4913.

[3]

He, Z. Q.; Yao, L.; Guo, W.; Sun, N. N.; Wang, F. D.; Wang, Y. H.; Wang, R. M.; Wang, F. P. Pseudocapacitance of bimetallic solid-solution MXene for supercapacitors with enhanced electrochemical energy storage. Adv. Funct. Mater. 2023, 33, 2305251.

[4]

T.; Qian, G. J.; Sang, Z.; Yang, Y. W.; Que, W. X. Compacting electric double layer enables carbon electrode with ultrahigh Zn ion storage capability. Adv. Funct. Mater. 2024, 34, 2308897.

[5]

Lukatskaya, M. R.; Mashtalir, O.; Ren, C. E.; Dall’Agnese, Y.; Rozier, P.; Taberna, P. L.; Naguib, M.; Simon, P.; Barsoum, M. W.; Gogotsi, Y. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science. 2013, 341, 1502–1505.

[6]

Liu, Z. X.; Tian, Y. P.; Li, S. Q.; Wang, L.; Han, B. X.; Cui, X. W.; Xu, Q. Revealing high-rate and high volumetric pseudo-intercalation charge storage from boron-vacancy doped MXenes. Adv. Funct. Mater. 2023, 33, 2301994.

[7]

Fleischmann, S.; Mitchell, J. B.; Wang, R. C.; Zhan, C.; Jiang, D. E.; Presser, V.; Augustyn, V. Pseudocapacitance: From fundamental understanding to high power energy storage materials. Chem. Rev. 2020, 120, 6738–6782.

[8]

Ghidiu, M.; Lukatskaya, M. R.; Zhao, M. Q.; Gogotsi, Y.; Barsoum, M. W. Conductive two-dimensional titanium carbide “clay” with high volumetric capacitance. Nature. 2014, 516, 78–81.

[9]

Li, Z. J.; Dai, J.; Li, Y. R.; Sun, C. L.; Meng, A. L.; Cheng, R. F.; Zhao, J.; Hu, M. M.; Wang, X. H. Intercalation-deintercalation design in MXenes for high-performance supercapacitors. Nano Res. 2022, 15, 3213–3221.

[10]

An, N.; Guo, Z.; Guo, C.; Wei, M. Q.; Sun, D. M.; He, Y. Y.; Li, W. L.; Zhou, L.; Hu, Z.; Dong, X. Y. A novel COF/MXene film electrode with fast redox kinetics for high-performance flexible supercapacitor. Chem. Eng. J. 2023, 458, 141434.

[11]

Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J. J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two-Dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253.

[12]

Tian, Y. P.; Que, B. W.; Luo, Y. Y.; Ju, M. M.; Tang, Y.; Lou, X. J.; Chen, Z.; Que, W. X. Amino-rich surface-modified MXene as anode for hybrid aqueous proton supercapacitors with superior volumetric capacity. J. Power Sources 2021, 495, 229790.

[13]

Zhao, W. T.; Yang, Y.; Deng, Q. H.; Dai, Q. Y.; Fang, Z.; Fu, X. L.; Yan, W. W.; Wu, L. Z.; Zhou, Y. Z. Toward an understanding of bimetallic MXene solid-solution in binder-free electrocatalyst cathode for advanced Li-CO2 batteries. Adv. Funct. Mater. 2023, 33, 2210037.

[14]

Tian, Y. P.; Ju, M. M.; Luo, Y. J.; Bin, X.; Lou, X. J.; Que, W. X. In situ oxygen doped Ti3C2T x MXene flexible film as supercapacitor electrode. Chem. Eng. J. 2022, 446, 137451.

[15]

Anasori, B.; Xie, Y.; Beidaghi, M.; Lu, J.; Hosler, B. C.; Hultman, L.; Kent, P. R. C.; Gogotsi, Y.; Barsoum, M. W. Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano. 2015, 9, 9507–9516.

[16]

Wang, H. R.; Xue, Y. Q.; Song, X.; Lei, S. L.; Yu, H.; Du, C. F.; Ren, Z. W.; Guo, R. S.; Zhou, F. Solid solution reinforced V3CrC3T x MXene cathodes for Zn-ion micro-supercapacitors with high areal energy density and superior flexibility. J. Mater. Chem. A 2022, 10, 20953–20963.

[17]

Pinto, D.; Anasori, B.; Avireddy, H.; Shuck, C. E.; Hantanasirisakul, K.; Deysher, G.; Morante, J. R.; Porzio, W.; Alshareef, H. N.; Gogotsi, Y. Synthesis and electrochemical properties of 2D molybdenum vanadium carbides-solid solution MXenes. J. Mater. Chem. A 2020, 8, 8957–8968.

[18]

Wang, Y. G.; Song, Y. F.; Xia, Y. Y. Electrochemical capacitors: Mechanism, materials, systems, characterization and applications. Chem. Soc. Rev. 2016, 45, 5925–5950.

[19]

Saraf, M.; Chacon, B.; Ippolito, S.; Lord, R. W.; Anayee, M.; Wang, R. C.; Inman, A.; Shuck, C. E.; Gogotsi, Y. Enhancing charge storage of Mo2Ti2C3 MXene by partial oxidation. Adv. Funct. Mater. 2024, 34, 2306815.

[20]

Lu, W.; Shen, J. L.; Zhang, P.; Zhong, Y. J.; Hu, Y.; Lou, X. W. Construction of CoO/Co-Cu-S hierarchical tubular heterostructures for hybrid supercapacitors. Angew. Chem., Int. Ed. 2019, 58, 15441–15447.

[21]

Li, W.; Liu, C.; Gu, C. K.; Choi, J. H.; Wang, S.; Jiang, J. Interlayer charge transfer regulates single-atom catalytic activity on electride/graphene 2D heterojunctions. J. Am. Chem. Soc. 2023, 145, 4774–4783.

[22]

Wei, S.; Wan, C. C.; Zhang, L. Y.; Liu, X. Y.; Tian, W. Y.; Su, J. H.; Cheng, W. J.; Wu, Y. Q. N-doped and oxygen vacancy-rich NiCo2O4 nanograss for supercapacitor electrode. Chem. Eng. J. 2022, 429, 132242.

[23]

Meng, T.; Kou, Z. K.; Amiinu, I. S.; Hong, X. F.; Li, Q. W.; Tang, Y. F.; Zhao, Y. F.; Liu, S. J.; Mai, L.; Mu, S. C. Electronic structure control of tungsten oxide activated by Ni for ultrahigh-performance supercapacitors. Small. 2018, 14, 1800381.

[24]

Lin, C. C.; Liu, T. R.; Lin, S. R.; Boopathi, K. M.; Chiang, C. H.; Tzeng, W. Y.; Chien, W. H. C.; Hsu, H. S.; Luo, C. W.; Tsai, H. Y. et al. Spin-polarized photocatalytic CO2 reduction of Mn-doped perovskite nanoplates. J. Am. Chem. Soc. 2022, 144, 15718–15726.

[25]

Li, H.; Chuai, M.; Xiao, X.; Jia, Y. Y.; Chen, B.; Li, C.; Piao, Z.; Lao, Z. J.; Zhang, M. T.; Gao, R. H. et al. Regulating the spin state configuration in bimetallic phosphorus trisulfides for promoting sulfur redox kinetics. J. Am. Chem. Soc. 2023, 145, 22516–22526.

[26]

Liang, Z. J.; Shen, D.; Wang, L.; Fu, H. G. Recent progress of cobalt-based electrocatalysts for water splitting: Electron modulation, surface reconstitution, and applications. Nano Res. 2024, 17, 2234–2269.

[27]

Shi, X.; Xie, J. H.; Yang, F.; Wang, F. X.; Zheng, D. Z.; Cao, X. S.; Yu, Y. X.; Liu, Q.; Lu, X. H. Compacting electric double layer enables carbon electrode with ultrahigh Zn Ion storage capability. Angew. Chem., Int. Ed. 2022, 61, e202214773.

[28]

She, Z. M.; Ghosh, D.; Pope, M. A. Decorating graphene oxide with ionic liquid nanodroplets: An approach leading to energy-dense, high-voltage supercapacitors. ACS Nano 2017, 11, 10077–10087.

[29]

Li, Z. N.; Gadipelli, S.; Yang, Y. C.; He, G. J.; Guo, J.; Li, J. T.; Lu, Y.; Howard, C. A.; Brett, D. J. L.; Parkin, I. P. et al. Exceptional supercapacitor performance from optimized oxidation of graphene-oxide. Energy Storage Mater. 2019, 17, 12–21.

[30]

Li, Z. N.; Gadipelli, S.; Li, H. C.; Howard, C. A.; Brett, D. J. L.; Shearing, P. R.; Guo, Z. X.; Parkin, I. P.; Li, F. Tuning the interlayer spacing of graphene laminate films for efficient pore utilization towards compact capacitive energy storage. Nat. Energy. 2020, 5, 160–168.

[31]

Zhong, J.; Sun, W.; Wei, Q. W.; Qian, X. T.; Cheng, H. M.; Ren, W. C. Efficient and scalable synthesis of highly aligned and compact two-dimensional nanosheet films with record performances. Nat. Commun. 2018, 9, 3484.

[32]

Bu, Y. F.; Sun, T.; Cai, Y. J.; Du, L. Y.; Zhuo, O.; Yang, L. J.; Wu, Q.; Wang, X. Z.; Hu, Z. Compressing carbon nanocages by capillarity for optimizing porous structures toward ultrahigh-volumetric-performance supercapacitors. Adv. Mater. 2017, 29, 1700470.

[33]

Li, C. M.; Li, X. M.; Liu, G. Q.; Yu, W.; Yang, Z. J.; Wang, L.; Wang, C.; Yang, Q. Z.; Xiao, R. L.; Huang, F. et al. Microcrack arrays in dense graphene films for fast-ion-diffusion supercapacitors. Small 2023, 19, 2301533.

[34]

Strauss, V.; Marsh, K.; Kowal, M. D.; El-Kady, M.; Kaner, R. B. A simple route to porous graphene from carbon nanodots for supercapacitor applications. Adv. Mater. 2018, 30, 1704449.

Nano Research
Pages 7174-7181
Cite this article:
Zhao J, Yan W, Liu Z, et al. Optimizing electronic structure of Mo2TiC2Tx MXene through Nb doping for enhanced electrochemical performance. Nano Research, 2024, 17(8): 7174-7181. https://doi.org/10.1007/s12274-024-6704-4
Topics:

853

Views

1

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 17 February 2024
Revised: 04 April 2024
Accepted: 14 April 2024
Published: 28 May 2024
© Tsinghua University Press 2024
Return