Journal Home > Just Accepted

The boundary slip condition is pivotal for nanoscale fluid motion. Recent research has primarily focused on simulating the interaction mechanism between the electronic structure of two-dimensional materials and slip of water at the nanoscale, raising the possibility for ultralow friction flow of water at the nanoscale. However, experimentally elucidating electronic interactions at the dynamic solid-liquid interface to control boundary slip poses a significant challenge. In this study, the crucial role of electron structures at the dynamic solid-liquid interface in regulating slip length was revealed. Notably, the slip length of water on the molybdenum disulfide/graphene (MoS2/G) heterostructure (100.9 ± 3.6 nm) significantly exceeded that of either graphene (27.7 ± 2.2 nm) or MoS2 (5.7 ± 3.1 nm) alone. It was also analyzed how electron transfer significantly affected interface interactions. Excess electrons played a crucial role in determining the type and proportion of excitons at both MoS2-water and MoS2/G-water interfaces. Additionally, by applying voltage, distinct photoluminescence (PL) responses at static and dynamic interfaces were discovered, achieving a 5-fold modulation in PL intensity and a 2-fold modulation in the trion to exciton intensity ratio. More electrons transfer from the top graphene to the bottom MoS2 at the MoS2/G-water interface, reducing surface charge density. Thus, the reduction of electrostatic interactions between the solid and water leads to an increased slip length of water on the MoS2/G heterostructure. The process aids in comprehending the origin of frictional resistance at the subatomic scale. This work establishes a foundation for actively controlling and designing of fluid transport at the nanoscale.

Publication history
Copyright
Rights and permissions

Publication history

Received: 11 February 2024
Revised: 06 April 2024
Accepted: 09 April 2024
Available online: 11 April 2024

Copyright

© Tsinghua University Press 2024

Rights and permissions

Reprints and Permission requests may be sought directly from editorial office.
Email: nanores@tup.tsinghua.edu.cn

Return