AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Online First

Integrating single Ni site and PtNi alloy on two-dimensional porous carbon nanosheet for efficient catalysis in fuel cell

Fangyao Zhou1,§Yaner Ruan1,§Feng Li1Lin Tian1Mengzhao Zhu1Wenan Tie2Xiaoyan Tian2Bo Wang2Peigen Liu1Jie Xu3Xiaoping Gao1Peng Li1Huang Zhou1( )Yuen Wu1( )
Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, China
Shanxi Yanchang Petroleum (Group) Co. Ltd., Xian 710065, China
College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China

§ Fangyao Zhou and Yaner Ruan contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

The performance of catalyst depends on the intrinsic activity of active sites and the structural characteristics of the support. Here, we simultaneously integrate single nickel (Ni) sites and platinum-nickel (PtNi) alloy nanoparticles (NPs) on a two-dimensional (2D) porous carbon nanosheet, demonstrating remarkable catalytic performance in the oxygen reduction reaction (ORR). The single Ni sites can activate the oxygen molecules into key oxygen-containing intermediate that is further efficiently transferred to the adjacent PtNi alloy NPs and rapidly reduced to H2O, which establishes a relay catalysis between active sites. The porous structure on the carbon nanosheet support promotes the transfer of active intermediates between these active sites, which assists the relay catalysis by improving mass diffusion. Remarkably, the obtained catalyst demonstrates a half-wave potential of up to 0.942 V, a high mass activity of 0.54 A·mgPt−1, and negligible decay of activity after 30,000 cycles, which are all superior to the commercial Pt/C catalysts with comparable loading of Pt. The theoretical calculation results reveal that the obtained catalyst with defect structure of carbon support presents enhanced relay catalytic effect of PtNi alloy NPs and single Ni sites, ultimately realizing improved catalytic performance. This work provides valuable inspiration for developing low platinum loading catalyst, integrating single atoms and alloy with outstanding performance in fuel cell.

Electronic Supplementary Material

Download File(s)
6692_ESM.pdf (1.5 MB)

References

[1]

Wang, Y. J.; Long, W. Y.; Wang, L. L.; Yuan, R.; Ignaszak, A.; Fang, B. Z.; Wilkinson, D. P. Unlocking the door to highly active ORR catalysts for PEMFC applications: Polyhedron-engineered Pt-based nanocrystals. Energy Environ. Sci. 2018, 11, 258–275.

[2]

Zhao, Y. S.; Wan, J. W.; Yao, H. Y.; Zhang, L. J.; Lin, K. F.; Wang, L.; Yang, N. L.; Liu, D. B.; Song, L.; Zhu, J. et al. Few-layer graphdiyne doped with sp-hybridized nitrogen atoms at acetylenic sites for oxygen reduction electrocatalysis. Nat. Chem. 2018, 10, 924–931.

[3]

Wang, J.; Huang, Z. Q.; Liu, W.; Chang, C. R.; Tang, H. L.; Li, Z. J.; Chen, W. X.; Jia, C. J.; Yao, T.; Wei, S. Q. et al. Design of N-coordinated dual-metal sites: A stable and active Pt-free catalyst for acidic oxygen reduction reaction. J. Am. Chem. Soc. 2017, 139, 17281–17284.

[4]

Ali, A.; Laaksonen, A.; Huang, G.; Hussain, S.; Luo, S. P.; Chen, W.; Shen, P. K.; Zhu, J. L.; Ji, X. Y. Emerging strategies and developments in oxygen reduction reaction using high-performance platinum-based electrocatalysts. Nano Res. 2024, 17, 3516–3532.

[5]

Qiao, Z.; Wang, C. Y.; Li, C. Z.; Zeng, Y. C.; Hwang, S.; Li, B. Y.; Karakalos, S.; Park, J.; Kropf, A. J.; Wegener, E. C. et al. Atomically dispersed single iron sites for promoting Pt and Pt3Co fuel cell catalysts: Performance and durability improvements. Energy Environ. Sci. 2021, 14, 4948–4960.

[6]

Huang, J.; Sementa, L.; Liu, Z. Y.; Barcaro, G.; Feng, M.; Liu, E. S.; Jiao, L.; Xu, M. J.; Leshchev, D.; Lee, S. J. et al. Experimental Sabatier plot for predictive design of active and stable Pt-alloy oxygen reduction reaction catalysts. Nat. Catal. 2022, 5, 513–523.

[7]
Lv, Y. P.; Lin, L. L.; Xue, R. X.; Zhang, P. F.; Ma, F. Y.; Gan, T.; Zhang, J. W.; Gao, D. W.; Zheng, X. B.; Wang, L. G. et al. Electronegativity induced d-band center offset for Pt-Rh dual sites in high-entropy alloy boosts liquid fuels electrooxidation. Adv. Energy Mater., in press, https://doi.org/10.1002/aenm.202304515.
[8]

Sun, Y. Y.; Han, L.; Strasser, P. A comparative perspective of electrochemical and photochemical approaches for catalytic H2O2 production. Chem. Soc. Rev. 2020, 49, 6605–6631.

[9]

Chen, S. Y.; Luo, T.; Li, X. Q.; Chen, K. J.; Fu, J. W.; Liu, K.; Cai, C.; Wang, Q. Y.; Li, H. M.; Chen, Y. et al. Identification of the highly active Co-N4 coordination motif for selective oxygen reduction to hydrogen peroxide. J. Am. Chem. Soc. 2022, 144, 14505–14516.

[10]

Shao, Y. Y.; Dodelet, J. P.; Wu, G.; Zelenay, P. PGM-free cathode catalysts for PEM fuel cells: A mini-review on stability challenges. Adv. Mater. 2019, 31, 1807615.

[11]

Wang, X. X.; Wang, B.; Zhong, J.; Zhao, F. P.; Han, N.; Huang, W. J.; Zeng, M.; Fan, J.; Li, Y. G. Iron polyphthalocyanine sheathed multiwalled carbon nanotubes: A high-performance electrocatalyst for oxygen reduction reaction. Nano Res. 2016, 9, 1497–1506.

[12]

Gan, L.; Rudi, S.; Cui, C. H.; Heggen, M.; Strasser, P. Size-controlled synthesis of sub-10 nm PtNi3 alloy nanoparticles and their unusual volcano-shaped size effect on ORR electrocatalysis. Small 2016, 12, 3189–3196.

[13]

Kaiser, S. K.; Fako, E.; Manzocchi, G.; Krumeich, F.; Hauert, R.; Clark, A. H.; Safonova, O. V.; López, N.; Pérez-Ramírez, J. Nanostructuring unlocks high performance of platinum single-atom catalysts for stable vinyl chloride production. Nat. Catal. 2020, 3, 376–385.

[14]

Chong, L. N.; Wen, J. G.; Kubal, J.; Sen, F. G.; Zou, J. X.; Greeley, J.; Chan, M.; Barkholtz, H.; Ding, W. J.; Liu, D. J. Ultralow-loading platinum-cobalt fuel cell catalysts derived from imidazolate frameworks. Science 2018, 362, 1276–1281.

[15]

Guo, W. X.; Gao, X. P.; Zhu, M. Z.; Xu, C. X.; Zhu, X. R.; Zhao, X. Y.; Sun, R. B.; Xue, Z. G.; Song, J.; Tian, L. et al. A closely packed Pt1.5Ni1− x /Ni-N-C hybrid for relay catalysis towards oxygen reduction. Energy Environ. Sci. 2023, 16, 148–156.

[16]

Jiang, F.; Li, Y. C.; Pan, Y. Design principles of single-atom catalysts for oxygen evolution reaction: From targeted structures to active sites. Adv. Mater. 2024, 36, 2306309.

[17]

Mu, X. Q.; Liu, S. L.; Zhang, M. Y.; Zhuang, Z. C.; Chen, D.; Liao, Y. R.; Zhao, H. Y.; Mu, S. C.; Wang, D. S.; Dai, Z. H. Symmetry-broken Ru nanoparticles with parasitic Ru-Co dual-single atoms overcome the volmer step of alkaline hydrogen oxidation. Angew. Chem., Int. Ed. 2024, 63, e202319618.

[18]

Han, A. L.; Sun, W. M.; Wan, X.; Cai, D. D.; Wang, X. J.; Li, F.; Shui, J. L.; Wang, D. S. Construction of Co4 atomic clusters to enable Fe-N4 motifs with highly active and durable oxygen reduction performance. Angew. Chem., Int. Ed. 2023, 62, e202303185.

[19]

Chen, R. Z.; Chen, S. H.; Wang, L. Q.; Wang, D. S. Nanoscale metal particle modified single-atom catalyst: Synthesis, characterization, and application. Adv. Mater. 2024, 36, 2304713.

[20]

Qi, J. L.; Wang, W. B.; Li, Y. H.; Sun, Y. M.; Wu, Z. X.; Bao, K.; Wang, L. Z.; Ye, R. Q.; Ding, M. N.; He, Q. Y. On-chip investigation of electrocatalytic oxygen reduction reaction of 2D materials. Small 2022, 18, 2204010.

[21]

Shehzad, K.; Xu, Y.; Gao, C.; Duan, X. F. Three-dimensional macro-structures of two-dimensional nanomaterials. Chem. Soc. Rev. 2016, 45, 5541–5588.

[22]

Kibsgaard, J.; Chen, Z. B.; Reinecke, B. N.; Jaramillo, T. F. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat. Mater. 2012, 11, 963–969.

[23]

Zhu, C. X.; Yang, J. R.; Zhang, J. W.; Wang, X. Q.; Gao, Y.; Wang, D. S.; Pan, H. G. Single-atom materials: The application in energy conversion. Interdisciplinary Materials 2024, 3, 74–86.

[24]

Wang, Y.; Wu, J.; Tang, S. H.; Yang, J. R.; Ye, C. L.; Chen, J.; Lei, Y. P.; Wang, D. S. Synergistic Fe-Se atom pairs as bifunctional oxygen electrocatalysts boost low-temperature rechargeable Zn-air battery. Angew. Chem., Int. Ed. 2023, 62, e202219191.

[25]

Li, R. Z.; Zhao, J.; Liu, B. Z.; Wang, D. S. Atomic distance engineering in metal catalysts to regulate catalytic performance. Adv. Mater. 2024, 36, 2308653.

[26]

Peng, Y.; Zhu, L. J.; Li, C. Y.; Hu, J. Y.; Lu, Y.; Fu, J. T.; Cui, F. F.; Wang, X. Z.; Cao, A. Y.; Ji, Q. Q. et al. Highly stable vertically oriented 2H-NbS2 nanosheets on carbon nanotube films toward superior electrocatalytic activity. Adv. Energy Mater. 2024, 14, 2302510.

[27]

Lin, Y. F.; Wan, H.; Wu, D.; Chen, G.; Zhang, N.; Liu, X. H.; Li, J. H.; Cao, Y. J.; Qiu, G. Z.; Ma, R. Z. Metal-organic framework hexagonal nanoplates: Bottom-up synthesis, topotactic transformation, and efficient oxygen evolution reaction. J. Am. Chem. Soc. 2020, 142, 7317–7321.

[28]

Mezzavilla, S.; Baldizzone, C.; Swertz, A. C.; Hodnik, N.; Pizzutilo, E.; Polymeros, G.; Keeley, G. P.; Knossalla, J.; Heggen, M.; Mayrhofer, K. J. J. et al. Structure–activity–stability relationships for space-confined Pt x Ni y nanoparticles in the oxygen reduction reaction. ACS Catal. 2016, 6, 8058–8068.

[29]

Jiang, K.; Siahrostami, S.; Zheng, T. T.; Hu, Y. F.; Hwang, S.; Stavitski, E.; Peng, Y. D.; Dynes, J.; Gangisetty, M.; Su, D. et al. Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction. Energy Environ. Sci. 2018, 11, 893–903.

[30]

Xu, J. S.; Li, R.; Yan, X. Y.; Zhao, Q. K.; Zeng, R. G.; Ba, J. W.; Pan, Q. F.; Xiang, X.; Meng, D. Q. Platinum single atom catalysts for hydrogen isotope separation during hydrogen evolution reaction. Nano Res. 2022, 15, 3952–3958.

[31]

Peng, X.; Zhao, S.; Omasta, T. J.; Roller, J. M.; Mustain, W. E. Activity and durability of Pt-Ni nanocage electocatalysts in proton exchange membrane fuel cells. Appl. Catal. B: Environ. 2017, 203, 927–935.

[32]

Lee, S.; Jang, J. H.; Jang, I.; Choi, D.; Lee, K. S.; Ahn, D.; Kang, Y. S.; Park, H. Y.; Yoo, S. J. Development of robust Pt shell through organic hydride donor in PtCo@Pt core–shell electrocatalysts for highly stable proton exchange membrane fuel cells. J. Catal. 2019, 379, 112–120.

[33]

Liang, J. S.; Li, N.; Zhao, Z. L.; Ma, L.; Wang, X. M.; Li, S. Z.; Liu, X.; Wang, T. Y.; Du, Y. P.; Lu, G. et al. Tungsten-doped L10-PtCo ultrasmall nanoparticles as a high-performance fuel cell cathode. Angew. Chem., Int. Ed. 2019, 58, 15471–15477.

[34]

Cheng, H.; Liu, S.; Hao, Z. K.; Wang, J. Y.; Liu, B. J.; Liu, G. Y.; Wu, X. J.; Chu, W. S.; Wu, C. Z.; Xie, Y. Optimal coordination-site exposure engineering in porous platinum for outstanding oxygen reduction performance. Chem. Sci. 2019, 10, 5589–5595.

[35]

Hu, Y. M.; Zhu, M. Z.; Luo, X.; Wu, G.; Chao, T. T.; Qu, Y. T.; Zhou, F. Y.; Sun, R. B.; Han, X.; Li, H. et al. Coplanar Pt/C nanomeshes with ultrastable oxygen reduction performance in fuel cells. Angew. Chem., Int. Ed. 2021, 60, 6533–6538.

[36]

Zhu, Y. M.; Peng, J. H.; Zhu, X. R.; Bu, L. Z.; Shao, Q.; Pao, C. W.; Hu, Z. W.; Li, Y. F.; Wu, J. B.; Huang, X. Q. A large-scalable, surfactant-free, and ultrastable Ru-doped Pt3Co oxygen reduction catalyst. Nano Lett. 2021, 21, 6625–6632.

[37]

Cheng, H.; Gui, R. J.; Yu, H.; Wang, C.; Liu, S.; Liu, H. F.; Zhou, T. P.; Zhang, N.; Zheng, X. S.; Chu, W. S. et al. Subsize Pt-based intermetallic compound enables long-term cyclic mass activity for fuel-cell oxygen reduction. Proc. Natl. Acad. Sci. USA 2021, 118, e2104026118.

Nano Research
Cite this article:
Zhou F, Ruan Y, Li F, et al. Integrating single Ni site and PtNi alloy on two-dimensional porous carbon nanosheet for efficient catalysis in fuel cell. Nano Research, 2024, https://doi.org/10.1007/s12274-024-6692-4
Topics:

274

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 28 February 2024
Revised: 06 April 2024
Accepted: 08 April 2024
Published: 17 May 2024
© Tsinghua University Press 2024
Return