Journal Home > Online First

When nano-fillers are used to enhance the thermal conductivity of organic phase change materials (PCMs), the naturally formed interface is considered to hinder thermal transport of the composite PCMs. However, the effect of the interface on the thermal properties of surrounding PCM has not been fully studied. In this paper, three composite PCMs (Ery@SiC, Ery@SiO2 and Ery@Si3N4) were prepared by melt-blending method. The local thermal conductivity and reduced Young’s modulus (E*) of the erythritol at the interface and far away from the interface in the composite PCMs were simultaneously measured by scanning thermal microscopy (SThM). The results revealed significant enhancement in local thermal conductivity of erythritol at the interface and its obvious positive correlation with E*. For different composite PCMs, molecular dynamics (MD) simulations suggested that the increase in intrinsic thermal conductivity and E* of erythritol is attributed to the increase in interaction energy between erythritol and nanoparticles, as more erythritol phonon vibrations transform from localized mode to delocalized mode and erythritol has a higher density at the interface. These findings will provide new ideas for the design of PCM for energy storage.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Significant enhancement in local thermal conductivity of erythritol at interface with nanoparticles due to their interaction

Show Author's information Ning Cao1Yanhui Feng1( )Kening Yan1Zihan Liu1Jiawei Wan2( )Lin Qiu1( )
School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China

Abstract

When nano-fillers are used to enhance the thermal conductivity of organic phase change materials (PCMs), the naturally formed interface is considered to hinder thermal transport of the composite PCMs. However, the effect of the interface on the thermal properties of surrounding PCM has not been fully studied. In this paper, three composite PCMs (Ery@SiC, Ery@SiO2 and Ery@Si3N4) were prepared by melt-blending method. The local thermal conductivity and reduced Young’s modulus (E*) of the erythritol at the interface and far away from the interface in the composite PCMs were simultaneously measured by scanning thermal microscopy (SThM). The results revealed significant enhancement in local thermal conductivity of erythritol at the interface and its obvious positive correlation with E*. For different composite PCMs, molecular dynamics (MD) simulations suggested that the increase in intrinsic thermal conductivity and E* of erythritol is attributed to the increase in interaction energy between erythritol and nanoparticles, as more erythritol phonon vibrations transform from localized mode to delocalized mode and erythritol has a higher density at the interface. These findings will provide new ideas for the design of PCM for energy storage.

Keywords: phase change materials, thermal conductivity, interaction energy, scanning thermal microscopy, reduced Young’s modulus, phonon participation ratio

References(56)

[1]

Wang, L. G.; Liu, H.; Zhuang, J. H.; Wang, D. S. Small-scale big science: From nano-to atomically dispersed catalytic materials. Small Sci. 2022, 2, 2200036.

[2]

Su, R. Y.; Chen, J. Y.; Zhang, X. Q.; Wang, W. Q.; Li, Y.; He, R. J.; Fang, D. N. 3D-printed micro/nano-scaled mechanical metamaterials: Fundamentals, technologies, progress, applications, and challenges. Small 2023, 19, 2206391.

[3]

Lien, D. H.; Retamal, J. R. D.; Ke, J. J.; Kang, C. F.; He, J. H. Surface effects in metal oxide-based nanodevices. Nanoscale 2015, 7, 19874–19884.

[4]

Shen, J.; Wang, D. S. How to select heterogeneous CO2 reduction electrocatalyst. Nano Res. Energy 2024, 3, e9120096.

[5]

Neudeck, S.; Mazilkin, A.; Reitz, C.; Hartmann, P.; Janek, J.; Brezesinski, T. Effect of low-temperature Al2O3 ALD coating on Ni-rich layered oxide composite cathode on the long-term cycling performance of lithium-ion batteries. Sci. Rep. 2019, 9, 5328.

[6]

Reji Kumar, R.; Samykano, M.; Pandey, A. K.; Kadirgama, K.; Tyagi, V. V. Phase change materials and nano-enhanced phase change materials for thermal energy storage in photovoltaic thermal systems: A futuristic approach and its technical challenges. Renewable Sustainable Energy Rev. 2020, 133, 110341.

[7]

Li, T. X.; Wu, M. Q.; Wu, S.; Xiang, S. Z.; Xu, J. X.; Chao, J. W.; Yan, T. S.; Deng, T.; Wang, R. Z. Highly conductive phase change composites enabled by vertically-aligned reticulated graphite nanoplatelets for high-temperature solar photo/electro-thermal energy conversion, harvesting and storage. Nano Energy 2021, 89, 106338.

[8]

Gan, T.; Wang, D. S. Atomically dispersed materials: Ideal catalysts in atomic era. Nano Res. 2023, 17, 18–38.

[9]

Gao, Y.; Liu, B. Z.; Wang, D. S. Microenvironment engineering of single/dual-atom catalysts for electrocatalytic application. Adv. Mater. 2023, 35, 2209654.

[10]

Han, A. L.; Sun, W. M.; Wan, X.; Cai, D. D.; Wang, X. J.; Li, F.; Shui, J. L.; Wang, D. S. Construction of Co4 atomic clusters to enable Fe-N4 motifs with highly active and durable oxygen reduction performance. Angew. Chem., Int. Ed. 2023, 62, e202303185.

[11]

Chen, Z. P.; Xu, C.; Ma, C. Q.; Ren, W. C.; Cheng, H. M. Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater. 2013, 25, 1296–1300.

[12]

Zhao, Y. W.; Zhang, Y. J.; Liu, A. R.; Wei, Z. Z.; Liu, S. Q. Construction of three-dimensional hemin-functionalized graphene hydrogel with high mechanical stability and adsorption capacity for enhancing photodegradation of methylene blue. ACS Appl. Mater. Interfaces 2017, 9, 4006–4014.

[13]

Liu, F.; Chung, S.; Oh, G.; Seo, T. S. Three-dimensional graphene oxide nanostructure for fast and efficient water-soluble dye removal. ACS Appl. Mater. Interfaces 2012, 4, 922–927.

[14]

Feng, X. R.; Zhang, Y. Y.; Yang, Z. L.; Zhao, Z. H.; Zhu, F.; Wei, X. Y.; Chen, L. X.; Liu, J. L.; Feng, Y. H.; Li, C. M. et al. Polyethylene glycol with dual three-dimensional porous carbon nanotube/diamond: A high thermal conductivity of composite PCM. Nanotechnology 2024, 35, 095702.

[15]

Yan, K. N.; Qiu, L.; Feng, Y. H. Erythritol/expanded graphite form-stable phase change materials with excellent thermophysical properties. J. Energy Storage 2023, 68, 107667.

[16]

Qiu, L.; Yan, K. N.; Feng, Y. H.; Liu, X. L. Nano additives-enhanced PEG/AlN composites with high cycle stability to improve thermal and heat storage properties. Energy 2023, 278, 127794.

[17]

Feng, D. L.; Zhao, Z. H.; Zhang, X. X.; Feng, Y. H. Carbon-based nanoadditives induced enhancement of phase change thermal properties of sugar alcohol and interfacial heat transport mechanisms. Compos. Sci. Technol. 2023, 243, 110258.

[18]

Zheng, X. B.; Yang, J. R.; Li, P.; Jiang, Z. L.; Zhu, P.; Wang, Q. S.; Wu, J. B.; Zhang, E. H.; Sun, W. P.; Dou, S. X. et al. Dual-atom support boosts nickel-catalyzed urea electrooxidation. Angew. Chem., Int. Ed. 2023, 62, e202217449.

[19]

Lyu, H.; Feng, D. L.; Feng, Y. H.; Zhang, X. X. Enhanced thermal energy storage of sodium nitrate by graphene nanosheets: Experimental study and mechanisms. J. Energy Storage 2022, 54, 105294.

[20]

Wang, Q. S.; Zheng, X. B.; Wu, J. B.; Wang, Y.; Wang, D. S.; Li, Y. D. Recent progress in thermal conversion of CO2 via single-atom site catalysis. Small Struct. 2022, 3, 2200059.

[21]

Li, R. Z.; Zhao, J.; Liu, B. Z.; Wang, D. S. Atomic distance engineering in metal catalysts to regulate catalytic performance. Adv. Mater. 2024, 36, 2308653.

[22]

Qiu, L.; Wang, X. T.; Su, G. P.; Tang, D. W.; Zheng, X. H.; Zhu, J.; Wang, Z. G.; Norris, P. M.; Bradford, P. D.; Zhu, Y. T. Remarkably enhanced thermal transport based on a flexible horizontally-aligned carbon nanotube array film. Sci. Rep. 2016, 6, 21014.

[23]

Qiu, L.; Wang, X. T.; Tang, D. W.; Zheng, X. H.; Norris, P. M.; Wen, D. S.; Zhao, J. N.; Zhang, X. H.; Li, Q. W. Functionalization and densification of inter-bundle interfaces for improvement in electrical and thermal transport of carbon nanotube fibers. Carbon 2016, 105, 248–259.

[24]

Shen, Y. F.; Zhang, X. R.; Su, J. P.; Lin, L.; Jiang, Z. Y.; Qiu, L.; Wang, S. D.; Wu, B. J.; Pu, C. Y.; Cai, X. Z. et al. Significantly enhancing mechanical and thermal properties of cellulose-based composites by adding small amounts of lysozyme-modified graphene nanoplatelets via forming strong double-cross-linked interface interactions. ACS Appl. Mater. Interfaces 2023, 15, 43159–43168.

[25]

Zou, H. Y.; Feng, Y. H.; Zhang, X. X.; Ohara, T.; Qiu, L. Enhancing mechanism of CNT-CNT interface by metal nanoparticle and nanowire effect on the inside and outside of CNT. Int. J. Therm. Sci. 2023, 185, 108094.

[26]

Yan, X. X.; Zhao, H. B.; Feng, Y. H.; Qiu, L.; Lin, L.; Zhang, X. X.; Ohara, T. Excellent heat transfer and phase transformation performance of erythritol/graphene composite phase change materials. Compos. B Eng. 2022, 228, 109435.

[27]

Qiu, L.; Zhu, N.; Feng, Y. H.; Zhang, X. X.; Wang, X. T. Interfacial thermal transport properties of polyurethane/carbon nanotube hybrid composites. Int. J. Heat Mass Transfer 2020, 152, 119565.

[28]

Oya, T.; Nomura, T.; Tsubota, M.; Okinaka, N.; Akiyama, T. Thermal conductivity enhancement of erythritol as PCM by using graphite and nickel particles. Appl. Therm. Eng. 2013, 61, 825–828.

[29]

Vivekananthan, M.; Amirtham, V. A. Characterisation and thermophysical properties of graphene nanoparticles dispersed erythritol PCM for medium temperature thermal energy storage applications. Thermochim. Acta 2019, 676, 94–103.

[30]

Zhang, Q.; Luo, Z. L.; Guo, Q. L.; Wu, G. H. Preparation and thermal properties of short carbon fibers/erythritol phase change materials. Energy Convers. Manage. 2017, 136, 220–228.

[31]

Shao, X. F.; Lin, J. C.; Teng, H. R.; Yang, S.; Fan, L. W.; Chiu, J. N.; Yu, Z. T.; Martin, V. Hydroxyl group functionalized graphene oxide nanosheets as additive for improved erythritol latent heat storage performance: A comprehensive evaluation on the benefits and challenges. Sol. Energy Mater. Sol. Cells 2020, 215, 110658.

[32]

Guo, S. P.; Liu, Q. B.; Zhao, J.; Jin, G.; Wang, X. T.; Lang, Z. M.; He, W. X.; Gong, Z. J. Evaluation and comparison of erythritol-based composites with addition of expanded graphite and carbon nanotubes. Appl. Energy 2017, 205, 703–709.

[33]

Shen, S. L.; Tan, S. J.; Wu, S.; Guo, C.; Liang, J.; Yang, Q.; Xu, G. Y.; Deng, J. The effects of modified carbon nanotubes on the thermal properties of erythritol as phase change materials. Energy Convers. Manage. 2018, 157, 41–48.

[34]

Williams, C. C.; Wickramasinghe, H. K. Scanning thermal profiler. Appl. Phys. Lett. 1986, 49, 1587–1589.

[35]

Soudi, A.; Dawson, R. D.; Gu, Y. Quantitative heat dissipation characteristics in current-carrying GaN nanowires probed by combining scanning thermal microscopy and spatially resolved Raman spectroscopy. ACS Nano 2011, 5, 255–262.

[36]

Chen, W. C.; Feng, Y. H.; Qiu, L.; Zhang, X. X. Scanning thermal microscopy method for thermal conductivity measurement of a single SiO2 nanoparticle. Int. J. Heat Mass Transfer 2020, 154, 119750.

[37]

Menges, F.; Riel, H.; Stemmer, A.; Gotsmann, B. Nanoscale thermometry by scanning thermal microscopy. Rev. Sci. Instrum. 2016, 87, 074902.

[38]

Liu, Z. H.; Feng, Y. H.; Qiu, L. Near-field radiation analysis and thermal contact radius determination in the thermal conductivity measurement based on SThM open-loop system. Appl. Phys. Lett. 2022, 120, 113506.

[39]

Pfreundschuh, M.; Martinez-Martin, D.; Mulvihill, E.; Wegmann, S.; Muller, D. J. Multiparametric high-resolution imaging of native proteins by force-distance curve-based AFM. Nat. Protoc. 2014, 9, 1113–1130.

[40]

Dokukin, M. E.; Sokolov, I. Quantitative mapping of the elastic modulus of soft materials with HarmoniX and PeakForce QNM AFM modes. Langmuir 2012, 28, 16060–16071.

[41]

Şahan, N.; Fois, M.; Paksoy, H. Improving thermal conductivity phase change materials—A study of paraffin nanomagnetite composites. Sol. Energy Mater. Sol. Cells 2015, 137, 61–67.

[42]

Ho, C. J.; Gao, J. Y. Preparation and thermophysical properties of nanoparticle-in-paraffin emulsion as phase change material. Int. Commun. Heat Mass Transfer 2009, 36, 467–470.

[43]

Yang, Y. Y.; Luo, J.; Song, G. L.; Liu, Y.; Tang, G. Y. The experimental exploration of nano-Si3N4/paraffin on thermal behavior of phase change materials. Thermochim. Acta 2014, 597, 101–106.

[44]

Li, Q. Y.; Katakami, K.; Ikuta, T.; Kohno, M.; Zhang, X.; Takahashi, K. Measurement of thermal contact resistance between individual carbon fibers using a laser-flash Raman mapping method. Carbon 2019, 141, 92–98.

[45]

Li, Q. Y.; Zhang, X. T-type Raman spectroscopy method for determining laser absorption, thermal conductivity and air heat transfer coefficient of micro/nano fibers. Thermochim. Acta 2014, 581, 26–31.

[46]

Wu, S.; Li, Q.; Ikuta, T.; Morishita, K.; Takahashi, K.; Wang, R. Z.; Li, T. X. Thermal conductivity measurement of an individual millimeter-long expanded graphite ribbon using a variable-length T-type method. Int. J. Heat Mass Transfer 2021, 171, 121115.

[47]

Li, D. W.; Li, Q. Y.; Takahashi, K. Thermal resistance mapping along a single cup-stacked carbon nanotube with focused electron beam heating. Int. J. Heat Mass Transfer 2022, 198, 123418.

[48]

Zhang, Y.; Zhu, W. K.; Hui, F.; Lanza, M.; Borca-Tasciuc, T.; Rojo, M. M. A review on principles and applications of scanning thermal microscopy (SThM). Adv. Funct. Mater. 2020, 30, 1900892.

[49]

Wang, X. J.; Ho, V.; Segalman, R. A.; Cahill, D. G. Thermal conductivity of high-modulus polymer fibers. Macromolecules 2013, 46, 4937–4943.

[50]

Li, Y. F.; Mehra, N.; Ji, T.; Yang, X. T.; Mu, L. W.; Gu, J. W.; Zhu, J. H. The stiffness-thermal conduction relationship at the composite interface: The effect of particle alignment on the long-range confinement of polymer chains monitored by scanning thermal microscopy. Nanoscale 2018, 10, 1695–1703.

[51]

Yang, J. R.; Li, W. H.; Xu, K. N.; Tan, S. D.; Wang, D. S.; Li, Y. D. Regulating the tip effect on single-atom and cluster catalysts: Forming reversible oxygen species with high efficiency in chlorine evolution reaction. Angew. Chem., Int. Ed. 2022, 61, e202200366.

[52]

Li, W. H.; Yang, J. R.; Wang, D. S. Long-range interactions in diatomic catalysts boosting electrocatalysis. Angew. Chem., Int. Ed. 2022, 61, e202213318.

[53]

Chen, J.; Zhang, G.; Li, B. W. Remarkable reduction of thermal conductivity in silicon nanotubes. Nano Lett. 2010, 10, 3978–3983.

[54]

Zhang, Z. W.; Hu, S. Q.; Xi, Q.; Nakayama, T.; Volz, S.; Chen, J.; Li, B. W. Tunable phonon nanocapacitor built by carbon schwarzite based host-guest system. Phys. Rev. B 2020, 101, 081402.

[55]

Liang, T.; Zhou, M.; Zhang, P.; Yuan, P.; Yang, D. G. Multilayer in-plane graphene/hexagonal boron nitride heterostructures: Insights into the interfacial thermal transport properties. Int. J. Heat Mass Transfer 2020, 151, 119395.

[56]

Yang, L. N.; Yang, N.; Li, B. W. Extreme low thermal conductivity in nanoscale 3D Si phononic crystal with spherical pores. Nano Lett. 2014, 14, 1734–1738.

File
6690_ESM.pdf (2.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 26 March 2024
Revised: 07 April 2024
Accepted: 07 April 2024
Published: 16 May 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2023YFF0612804), the National Natural Science Foundation of China (Nos. 52222602, 52236006, and 22293043), Beijing Nova Program (No. 20220484170), the Fundamental Research Funds for the Central Universities (Nos. FRF-TP-22-001C1 and FRF-EYIT-23-05), Foundation of the Youth Innovation Promotion Association of CAS (No. 2020048), and IPE Project for Frontier Basic Research (No. QYJC-2023-08).

Return