AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Transforming nanoscale VO2(B) into a scalable sodium-ion electrode

Yunkai Luo1Swetha Chandrasekaran2Bintao Hu1Randy Chen1Marcus Worsley2Bruce Dunn1( )
Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095, USA
Lawrence Livermore National Laboratory, CA 94550, USA
Show Author Information

Graphical Abstract

This study concerns the electrodeposition of VO2 nanomaterials on three-dimensional (3D) printed scaffolds of graphene aerogels for use in sodium-ion batteries. These electrodes exhibited scalability in terms of mass loading (up to 110 mg·cm−2) and electrode thickness (4 mm) without obvious decay in electrochemical performance.

Abstract

The intermittent nature of renewable energies requires highly reliable grid-level energy storage approaches. A critical consideration in developing this technology is the areal capacity which determines battery performance and influences the cost of battery technology. Of related importance is finding new ways of developing scalable electrodes. In recent years, three-dimensional (3D) printing of conductive scaffolds has emerged as an alternative to overcome the scalability limitations of commercial tape cast electrodes. The research carried out in the current study demonstrates a successful scalability pathway for nanoscale VO2(B), a desirable cathode for sodium-ion batteries which has a nano-flower morphology with a crystallite size < 20 nm. By electrodepositing VO2(B) onto a graphene aerogel scaffold, we were able to achieve mass loading of over 100 mg·cm−2 and still possess an areal capacity of 10 mAh·cm−2 at a current density of 5 mA·cm−2. Moreover, after 1000 cycles, these electrodes retained 75% to 80% of their initial capacity. Even at high loading levels, the electrodeposited VO2(B) exhibits pseudocapacitive material signatures such as a box-like voltammetry response, linear galvanostatic response, and no phase change upon lithiation. The scalability of the VO2(B) electrode is demonstrated in a series of experiments which show the areal capacity to scale upon increase in both mass loading and electrode thickness, with only small changes in specific capacity. This study establishes that nanoscale materials can be scaled up to achieve thick electrodes without compromising their electrochemical properties.

Electronic Supplementary Material

Download File(s)
6688_ESM.pdf (3.2 MB)

References

[1]

Jaiswal, K. K.; Chowdhury, C. R.; Yadav, D.; Verma, R.; Dutta, S.; Jaiswal, K. S.; SangmeshB; Karuppasamy, K. S. K. Renewable and sustainable clean energy development and impact on social, economic, and environmental health. Energy Nexus 2022, 7, 100118.

[2]

Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.

[3]

Gallagher, K. G.; Trask, S. E.; Bauer, C.; Woehrle, T.; Lux, S. F.; Tschech, M.; Lamp, P.; Polzin, B. J.; Ha, S.; Long, B. et al. Optimizing areal capacities through understanding the limitations of lithium-ion electrodes. J. Electrochem. Soc. 2016, 163, A138–A149.

[4]

Boyce, A. M.; Cumming, D. J.; Huang, C.; Zankowski, S. P.; Grant, P. S.; Brett, D. J. L.; Shearing, P. R. Design of scalable, next-generation thick electrodes: Opportunities and challenges. ACS Nano 2021, 15, 18624–18632.

[5]

Park, S. H.; King, P. J.; Tian, R. Y.; Boland, C. S.; Coelho, J.; Zhang, C. F.; McBean, P.; McEvoy, N.; Kremer, M. P.; Daly, D. et al. High areal capacity battery electrodes enabled by segregated nanotube networks. Nat. Energy 2019, 4, 560–567.

[6]

Cheng, H. M.; Li, F. Charge delivery goes the distance. Science 2017, 356, 582–583.

[7]

Kuang, Y. D.; Chen, C. J.; Kirsch, D.; Hu, L. B. Thick electrode batteries: Principles, opportunities, and challenges. Adv. Energy Mater. 2019, 9, 1901457.

[8]

Fan, H. J. Pseudocapacitor electrodes: Regular pores matter. Joule 2019, 3, 317–319.

[9]

Zhang, M. G.; Mei, H.; Chang, P.; Cheng, L. F. 3D printing of structured electrodes for rechargeable batteries. J. Mater. Chem. A 2020, 8, 10670–10694.

[10]

Yao, B.; Chandrasekaran, S.; Zhang, J.; Xiao, W.; Qian, F.; Zhu, C.; Duoss, E. B.; Spadaccini, C. M.; Worsley, M. A.; Li, Y. Efficient 3D printed pseudocapacitive electrodes with ultrahigh MnO2 loading. Joule 2019, 3, 459–470.

[11]

Augustyn, V.; Simon, P.; Dunn, B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 2014, 7, 1597–1614.

[12]

Chen, Z.; Augustyn, V.; Wen, J.; Zhang, Y. W.; Shen, M. Q.; Dunn, B.; Lu, Y. F. High-performance supercapacitors based on intertwined CNT/V2O5 nanowire nanocomposites. Adv. Mater. 2011, 23, 791–795

[13]

Wang, Q.; Pan, J.; Li, M.; Luo, Y. Y.; Wu, H.; Zhong, L.; Li, G. H. VO2 (B) Nanosheets as a cathode material for Li-ion battery. J. Mater. Sci. Technol 2015, 31, 630–633.

[14]

Mahadi, N. B.; Park, J. S.; Park, J. H.; Chung, K. Y.; Yi, S. Y.; Sun, Y. K.; Myung, S. T. Vanadium dioxide-reduced graphene oxide composite as cathode materials for rechargeable Li and Na batteries. J. Power Sources 2016, 326, 522–532.

[15]

Hirsh, H. S.; Li, Y. X.; Tan, D. H. S.; Zhang, M. H.; Zhao, E. Y.; Meng, Y. S. Sodium-ion batteries paving the way for grid energy storage. Adv. Energy Mater. 2020, 10, 2001274.

[16]

Wei, Q. L.; DeBlock, R. H.; Butts, D. M.; Choi, C.; Dunn, B. Pseudocapacitive vanadium-based materials toward high-rate sodium-ion storage. Energy Environ. Mater. 2020, 3, 221–234.

[17]

Khan, Z.; Singh, P.; Ansari, S. A.; Manippady, S. R.; Jaiswal, A.; Saxena, M. VO2 nanostructures for batteries and supercapacitors: A review. Small 2021, 17, 2006651

[18]

Wang, W.; Jiang, B.; Hu, L. W.; Lin, Z. S.; Hou, J. G.; Jiao, S. Q. Single crystalline VO2 nanosheets: A cathode material for sodium-ion batteries with high rate cycling performance. J. Power Sources 2014, 250, 181–187.

[19]

Chao, D. L.; DeBlock, R.; Lai, C. H.; Wei, Q. L.; Dunn, B.; Fan, H. J. Amorphous VO2: A pseudocapacitive platform for high-rate symmetric batteries. Adv. Mater. 2021, 33, 2103736.

[20]

Wang, H. K.; Li, W. Z.; Fei, H. F.; Guo, L. P.; Feng, J. K.; Ci, L. J.; Xiong, S. L. Facile hydrothermal growth of VO2 nanowire, nanorod and nanosheet arrays as binder free cathode materials for sodium batteries. RSC Adv. 2016, 6, 14314–14320.

[21]

Wu, F.; Jiang, Y.; Ye, Z. Q.; Huang, Y. X.; Wang, Z. H.; Li, S. J.; Mei, Y.; Xie, M.; Li, L.; Chen, R. J. A 3D flower-like VO2/MXene hybrid architecture with superior anode performance for sodium ion batteries. J. Mater. Chem. A 2019, 7, 1315–1322.

[22]

Li, M.; Magdassi, S.; Gao, Y. F.; Long, Y. Hydrothermal synthesis of VO2 polymorphs: Advantages, challenges and prospects for the application of energy efficient smart windows. Small 2017, 13, 1701147.

[23]

Choi, C.; Ashby, D. S.; Butts, D. M.; DeBlock, R. H.; Wei, Q. L.; Lau, J.; Dunn, B. Achieving high energy density and high power density with pseudocapacitive materials. Nat. Rev. Mater. 2019, 5, 5–19.

[24]

Biesinger, M. C.; Lau, L. W. M.; Gerson, A. R.; Smart, R. S. C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl. Surf. Sci. 2010, 257, 887–898.

[25]

Wei, Q. L.; Chang, X. Q.; Butts, D.; DeBlock, R.; Lan, K.; Li, J. B.; Chao, D. L.; Peng, D. L.; Dunn, B. Surface-redox sodium-ion storage in anatase titanium oxide. Nat. Commun. 2023, 14, 7.

[26]

Mellan, T. A.; Grau-Crespo, R. Density functional theory study of rutile VO2 surfaces. J. Chem. Phys. 2012, 137, 154706.

[27]

Geim, A. K. Graphene: Status and prospects. Science 2009, 324, 1530–1534.

[28]

Ni, J.; Jiang, W. T.; Yu, K.; Sun, F.; Zhu, Z. Q. Electrochemical performance of B and M phases VO2 nanoflowers. Cryst. Res. Technol. 2011, 46, 507–510.

[29]

Augustyn, V.; Come, J.; Lowe, M. A.; Kim, J. W.; Taberna, P. L.; Tolbert, S. H.; Abruña, H. D.; Simon, P.; Dunn, B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 2013, 12, 518–522.

[30]

Vincent, R. C.; Luo, Y. K.; Andrews, J. L.; Zohar, A.; Zhou, Y. C.; Yan, Q. Z.; Mozur, E. M.; Preefer, M. B.; Weker, J. N.; Cheetham, A. K. et al. High-rate lithium cycling and structure evolution in Mo4O11. Chem. Mater. 2022, 34, 4122–4133.

[31]

Preefer, M. B.; Saber, M.; Wei, Q. L.; Bashian, N. H.; Bocarsly, J. D.; Zhang, W.; Lee, G.; Milam-Guerrero, J.; Howard, E. S.; Vincent, R. C. et al. Multielectron redox and insulator-to-metal transition upon lithium insertion in the fast-charging, wadsley-roth phase PNb9O25. Chem. Mater. 2020, 32, 4553–4563.

[32]

Ardizzone, S.; Fregonara, G.; Trasatti, S. “Inner” and “outer” active surface of RuO2 electrodes. Electrochim. Acta 1990, 35, 263–267

[33]

Luo, Y. K.; Le Calvez, E.; Zhou, Y. C.; Gautron, É.; Quarez, É.; Preefer, M.; Crosnier, O.; Weker, J. N.; Pilon, L.; Brousse, T. et al. Structure and electrochemical properties of bronze phase materials containing two transition metals. Chem. Mater. 2023, 35, 8675–8685.

[34]

Liang, X. Q.; Chen, M. H.; Zhu, H. K.; Zhu, H.; Cui, X. H.; Yan, J. X.; Chen, Q. G.; Xia, X. H.; Liu, Q. Unveiling the solid-solution charge storage mechanism in 1T vanadium disulfide nanoarray cathodes. J. Mater. Chem. A 2020, 8, 9068–9076.

Nano Research
Pages 8809-8818
Cite this article:
Luo Y, Chandrasekaran S, Hu B, et al. Transforming nanoscale VO2(B) into a scalable sodium-ion electrode. Nano Research, 2024, 17(10): 8809-8818. https://doi.org/10.1007/s12274-024-6688-0
Topics:
Part of a topical collection:

490

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 15 February 2024
Revised: 05 April 2024
Accepted: 06 April 2024
Published: 30 May 2024
© Tsinghua University Press 2024
Return