AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Carbon nanotube films with ultrahigh thermal-shock and thermal-shock-fatigue resistance characterized by ultra-fast ascending shock testing

Mingquan Zhu1,2,§Shijun Wang1,§Yunxiang Bai1,2( )Feng Gao1Zhenxing Zhu3Congying Wang1,2Peng Zhang1,2Hao Jin1Hui Zhang1( )Luqi Liu1,2Zhiping Xu4Xinghong Zhang5Fei Wei3Zhong Zhang1,6( )
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China
University of Chinese Academy of Sciences, Beijing 100049, China
Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150001, China
CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China

§ Mingquan Zhu and Shijun Wang contributed equally to this work.

Show Author Information

Graphical Abstract

We developed a multi-scale ultra-fast ascending shock test platform, which can generate heat shocks at a rate over 105 °C/s. The carbon nanotube (CNT) films can have excellent thermal-shock and thermal-shock-fatigue resistance.

Abstract

The exploration of material failure behavior not only involves defining its limits and underlying mechanisms but also entails devising strategies for improvement and protection in extreme conditions. We've pioneered an advanced multi-scale, high-speed ascending thermal shock testing platform capable of inducing unprecedented heat shocks at rates surpassing 105 °C/s. Through meticulous examination of the thermal shock responses of carbon nanotube (CNT) films, we've achieved remarkable breakthroughs. By employing an innovative macro-scale synchronous tightening and relaxing approach, we've attained a critical temperature differential in CNT films that exceeds an exceptional 2500 °C—surpassing any previously reported metric for high-performance, thermal-shock-resistant materials. Notably, these samples have demonstrated exceptional resilience, retaining virtually unchanged strength even after enduring 10,000 thermal shock cycles at temperatures exceeding 1000 °C. Furthermore, our research has revealed a novel thermal shock/fatigue failure mechanism that fundamentally diverges from conventional theories centered on thermal stress.

Electronic Supplementary Material

Download File(s)
6684_ESM.pdf (1.2 MB)

References

[1]

Zhu, M. Q.; Bai, Y. X.; Gao, R. Y.; Liu, Y. J.; Zhang, P.; Zhang, H.; Liu, L. Q.; Zhang, Z. Failure-analysis of carbon nanotubes and their extreme applications. Nano Res. 2023, 16, 12364–12383.

[2]

Patil, J. J.; Chae, W. H.; Trebach, A.; Carter, K. J.; Lee, E.; Sannicolo, T.; Grossman, J. C. Failing forward: Stability of transparent electrodes based on metal nanowire networks. Adv. Mater. 2021, 33, 2004356.

[3]
Anderson, T. L. Fracture Mechanics: Fundamentals and Applications; CRC Press: Boca Raton, 2017.
[4]

Yu, M. F.; Lourie, O.; Dyer, M. J.; Moloni, K.; Kelly, T. F.; Ruoff, R. S. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 2000, 287, 637–640.

[5]

Huang, J. Y.; Chen, S.; Wang, Z. Q.; Kempa, K.; Wang, Y. M.; Jo, S. H.; Chen, G.; Dresselhaus, M. S.; Ren, Z. F. Superplastic carbon nanotubes. Nature 2006, 439, 281.

[6]

Takakura, A.; Beppu, K.; Nishihara, T.; Fukui, A.; Kozeki, T.; Namazu, T.; Miyauchi, Y.; Itami, K. Strength of carbon nanotubes depends on their chemical structures. Nat. Commun. 2019, 10, 3040.

[7]

Gupta, N.; Penev, E. S.; Yakobson, B. I. Fatigue in assemblies of indefatigable carbon nanotubes. Sci. Adv. 2021, 7, eabj6996.

[8]

Collins, P. G.; Hersam, M.; Arnold, M.; Martel, R.; Avouris, P. Current saturation and electrical breakdown in multiwalled carbon nanotubes. Phys. Rev. Lett. 2001, 86, 3128–3131.

[9]

Collins, P. G.; Arnold, M. S.; Avouris, P. Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science 2001, 292, 706–709.

[10]

Bulmer, J. S.; Kaniyoor, A.; Elliott, J. A. A meta-analysis of conductive and strong carbon nanotube materials. Adv. Mater. 2021, 33, 2008432.

[11]

Wei, Y.; Jiang, K. L.; Liu, L.; Chen, Z.; Fan, S. S. Vacuum-breakdown-induced needle-shaped ends of multiwalled carbon nanotube yarns and their field emission applications. Nano Lett. 2007, 7, 3792–3797.

[12]

Bai, Y. X.; Zhang, R. F.; Ye, X.; Zhu, Z. X.; Xie, H. H.; Shen, B. Y.; Cai, D. L.; Liu, B. F.; Zhang, C. X.; Jia, Z. et al. Carbon nanotube bundles with tensile strength over 80 GPa. Nat. Nanotechnol. 2018, 13, 589–595.

[13]

Bai, Y. X.; Yue, H. J.; Wang, J.; Shen, B. Y.; Sun, S. L.; Wang, S. J.; Wang, H. D.; Li, X. D.; Xu, Z. P.; Zhang, R. et al. Super-durable ultralong carbon nanotubes. Science 2020, 369, 1104–1106.

[14]

Bai, Y. X.; Yue, H. J.; Zhang, R. F.; Qian, W. Z.; Zhang, Z.; Wei, F. Mechanical behavior of single and bundled defect-free carbon nanotubes. Acc. Mater. Res. 2021, 2, 998–1009.

[15]

Bai, Y. X.; Shen, B. Y.; Zhang, S. L.; Zhu, Z. X.; Sun, S. L.; Gao, J.; Li, B. H.; Wang, Y.; Zhang, R. F.; Wei, F. Storage of mechanical energy based on carbon nanotubes with high energy density and power density. Adv. Mater. 2019, 31, 1800680.

[16]

Subramaniam, C.; Yamada, T.; Kobashi, K.; Sekiguchi, A.; Futaba, D. N.; Yumura, M.; Hata, K. One hundred fold increase in current carrying capacity in a carbon nanotube-copper composite. Nat. Commun. 2013, 4, 2202.

[17]

Yao, Y. G.; Huang, Z. N.; Xie, P. F.; Lacey, S. D.; Jacob, R. J.; Xie, H.; Chen, F. J.; Nie, A. M.; Pu, T. C.; Rehwoldt, M. et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science 2018, 359, 1489–1494.

[18]

Yao, Y. G.; Huang, Z. N.; Xie, P. F.; Wu, L. P.; Ma, L.; Li, T. Y.; Pang, Z. Q.; Jiao, M. L.; Liang, Z. Q.; Gao, J. L. et al. High temperature shockwave stabilized single atoms. Nat. Nanotechnol. 2019, 14, 851–857.

[19]

Li, C. Y.; Wang, Z. J.; Liu, M. D.; Wang, E. Z.; Wang, B. L.; Xu, L. L.; Jiang, K. L.; Fan, S. S.; Sun, Y. H.; Li, J. et al. Ultrafast self-heating synthesis of robust heterogeneous nanocarbides for high current density hydrogen evolution reaction. Nat. Commun. 2022, 13, 3338.

[20]

Li, T.; Pickel, A. D.; Yao, Y. G.; Chen, Y. N.; Zeng, Y. Q.; Lacey, S. D.; Li, Y. J.; Wang, Y. L.; Dai, J. Q.; Wang, Y. B. et al. Thermoelectric properties and performance of flexible reduced graphene oxide films up to 3000 K. Nat. Energy 2018, 3, 148–156.

[21]

Wu, X. F.; Jiang, C. P.; Song, F.; Li, J.; Shao, Y. F.; Xu, X. H.; Yan, P. Size effect of thermal shock crack patterns in ceramics and numerical predictions. J. Eur. Ceram. Soc. 2015, 35, 1263–1271.

[22]

Bai, Y. L.; Kong, F. Y.; He, X. D.; Li, N.; Qi, X. X.; Zheng, Y. T.; Zhu, C. C.; Wang, R. G.; Duff, A. I. Thermal shock behavior of Ti2AlC from 200°C to 1400°C. J. Am. Ceram. Soc. 2017, 100, 4190–4198.

[23]

Liao, N.; Jia, D. C.; Yang, Z. H.; Zhou, Y.; Li, Y. W. Enhanced thermal shock and oxidation resistance of Si2BC3N ceramics through MWCNTs incorporation. J. Adv. Ceram. 2018, 7, 276–288.

[24]

Liao, N.; Jia, D. C.; Yang, Z. H.; Zhou, Y. Enhanced mechanical properties and thermal shock resistance of Si2BC3N ceramics with SiC coated MWCNTs. J. Adv. Ceram. 2019, 8, 121–132.

[25]

He, R. J.; Qu, Z. L.; Liang, D. Rapid heating thermal shock study of ultra high temperature ceramics using an in situ testing method. J. Adv. Ceram. 2017, 6, 279–287.

[26]

Zhang, X. H.; Hu, P.; Han, J. C.; Meng, S. H. Ablation behavior of ZrB2-SiC ultra high temperature ceramics under simulated atmospheric re-entry conditions. Compos. Sci. Technol. 2008, 68, 1718–1726.

[27]

Monteverde, F.; Savino, R.; De Stefano Fumo, M.; Di Maso, A. Plasma wind tunnel testing of ultra-high temperature ZrB2-SiC composites under hypersonic re-entry conditions. J. Eur. Ceram. Soc. 2010, 30, 2313–2321.

[28]

Zhang, X. H.; Han, J. C.; He, X. D.; Yan, C.; Wang, B. L.; Xu, Q. Ablation-resistance of combustion synthesized TiB2-Cu cermet. J. Am. Ceram. Soc. 2005, 88, 89–94.

[29]

Schneider, G. A.; Petzow, G. Thermal shock testing of ceramics-a new testing method. J. Am. Ceram. Soc. 1991, 74, 98–102.

[30]

Neuman, E. W.; Hilmas, G. E.; Fahrenholtz, W. G. Mechanical behavior of zirconium diboride-silicon carbide-boron carbide ceramics up to 2200 °C. J. Eur. Ceram. Soc. 2015, 35, 463–476.

[31]

Li, Z. H.; Wang, Y. J.; Ma, M. D.; Ma, H. C.; Hu, W. T.; Zhang, X.; Zhuge, Z. W.; Zhang, S. S.; Luo, K.; Gao, Y. F. et al. Ultrastrong conductive in situ composite composed of nanodiamond incoherently embedded in disordered multilayer graphene. Nat. Mater. 2023, 22, 42–49.

[32]

Feng, C.; Liu, K.; Wu, J. S.; Liu, L.; Cheng, J. S.; Zhang, Y. Y.; Sun, Y. H.; Li, Q. Q.; Fan, S. S.; Jiang, K. L. Flexible, stretchable, transparent conducting films made from superaligned carbon nanotubes. Adv. Funct. Mater. 2010, 20, 885–891.

[33]

Zhang, L.; Zhang, G.; Liu, C. H.; Fan, S. S. High-density carbon nanotube buckypapers with superior transport and mechanical properties. Nano Lett. 2012, 12, 4848–4852.

[34]

Hasselman, D. P. H. Unified theory of thermal shock fracture initiation and crack propagation in brittle ceramics. J. Am. Ceram. Soc. 1969, 52, 600–604.

[35]

Schneider, G. A. Thermal shock criteria for ceramics. Ceram. Int. 1991, 17, 325–333.

[36]

Liu, C. B.; Cai, C. Y.; Xie, J. W.; Guo, W. M.; Qin, H.; Gao, P. Z.; Xiao, H. N. Effect of surface brittle-to-ductile transition on high-temperature thermal shock resistance of Al2O3 ceramics. Ceram. Int. 2022, 48, 20627–20638.

[37]

Kingery, W. D. Factors affecting thermal stress resistance of ceramic materials. J. Am. Ceram. Soc. 1955, 38, 3–15.

[38]

Rao, A. M.; Jorio, A.; Pimenta, M. A.; Dantas, M. S. S.; Saito, R.; Dresselhaus, G.; Dresselhaus, M. S. Polarized Raman study of aligned multiwalled carbon nanotubes. Phys. Rev. Lett. 2000, 84, 1820–1823.

[39]

Xu, W.; Chen, Y.; Zhan, H.; Wang, J. N. High-strength carbon nanotube film from improving alignment and densification. Nano Lett. 2016, 16, 946–952.

[40]

Zhang, X. H.; Wang, Z.; Hu, P.; Han, W. B.; Hong, C. Q. Mechanical properties and thermal shock resistance of ZrB2-SiC ceramic toughened with graphite flake and SiC whiskers. Scr. Mater. 2009, 61, 809–812.

[41]

Peng, X.; Qin, Y.; Zhang, X. A constitutive model for the metals subjected to thermomechanical loading with fast heating during heating-assisted forming. J. Mater. Process. Technol. 2005, 167, 244–250.

[42]

Yue, X.; Peng, X. H.; Wei, Z.; Chen, X. S.; Fu, T. Effect of heating rate on the strength of ZrB2-SiC composite subjected to cyclic thermal shock. Ceram. Int. 2019, 45, 15400–15405.

[43]

Kinloch, I. A.; Suhr, J.; Lou, J.; Young, R. J.; Ajayan, P. M. Composites with carbon nanotubes and graphene: An outlook. Science 2018, 362, 547–553.

[44]

Tong, Y. G.; Zhu, W. T.; Bai, S. X.; Hu, Y. L.; Xie, X. Q.; Li, Y. Thermal shock resistance of continuous carbon fiber reinforced ZrC based ultra-high temperature ceramic composites prepared via Zr-Si alloyed melt infiltration. Mater. Sci. Eng.: A 2018, 735, 166–172.

[45]

Gutiérrez, H. R.; Kim, U. J.; Kim, J. P.; Eklund, P. C. Thermal conversion of bundled carbon nanotubes into graphitic ribbons. Nano Lett. 2005, 5, 2195–2201.

[46]

Bai, Y. X.; Zhu, M. Q.; Wang, S. J.; Liu, L. Q.; Zhang, Z. Dynamic electrical failure of carbon nanotube ribbons. Carbon 2023, 202, 425–431.

[47]

Kuznetsov, V. L.; Elumeeva, K. V.; Ishchenko, A. V.; Beylina, N. Y.; Stepashkin, A. A.; Moseenkov, S. I.; Plyasova, L. M.; Molina, I. Y.; Romanenko, A. I.; Anikeeva, O. B. et al. Multi-walled carbon nanotubes with ppm level of impurities. Phys. Status Solidi (B) 2010, 247, 2695–2699.

[48]
Pierson, H. O. Handbook of Carbon, Graphite, Diamonds and Fullerenes: Processing, Properties and Applications; William Andrew: Amsterdam, 2012.
[49]

Li, J. L.; Wang, L. J.; He, T.; Jiang, W. Surface graphitization and mechanical properties of hot-pressed bulk carbon nanotubes compacted by spark plasma sintering. Carbon 2007, 45, 2636–2642.

[50]

Chen, P.; Wu, X.; Sun, X.; Lin, J.; Ji, W.; Tan, K. L. Electronic structure and optical limiting behavior of carbon nanotubes. Phys. Rev. Lett. 1999, 82, 2548–2551.

[51]

Palaci, I.; Fedrigo, S.; Brune, H.; Klinke, C.; Chen, M.; Riedo, E. Radial elasticity of multiwalled carbon nanotubes. Phys. Rev. Lett. 2005, 94, 175502.

[52]

Carlsson, L. A.; Lindstrom, T. A shear-lag approach to the tensile strength of paper. Compos. Sci. Technol. 2005, 65, 183–189.

[53]

Guo, J. R.; Fu, S. B.; Deng, Y. P.; Xu, X.; Laima, S. J.; Liu, D. Z.; Zhang, P. Y.; Zhou, J.; Zhao, H.; Yu, H. X. et al. Hypocrystalline ceramic aerogels for thermal insulation at extreme conditions. Nature 2022, 606, 909–916.

[54]

Fu, Q. G.; Wang, L.; Tian, X. F.; Shen, Q. L. Effects of thermal shock on the microstructures, mechanical and thermophysical properties of SiCnws-C/C composites. Compos. Part B: Eng. 2019, 164, 620–628.

[55]

Yan, N. N.; Fu, Q. G.; Zhang, S.; Zhang, J. P.; Sun, J.; Shen, Q. L. Effects of thermal shock on the microstructure, mechanical and thermophysical properties of ZrC-C composites. Compos. Part A: Appl. Sci. Manuf. 2021, 151, 106642.

[56]

Yin, X. W.; Cheng, L. F.; Zhang, L. T.; Xu, Y. D. Thermal shock behavior of 3-dimensional C/SiC composite. Carbon 2002, 40, 905–910.

Nano Research
Pages 6777-6784
Cite this article:
Zhu M, Wang S, Bai Y, et al. Carbon nanotube films with ultrahigh thermal-shock and thermal-shock-fatigue resistance characterized by ultra-fast ascending shock testing. Nano Research, 2024, 17(8): 6777-6784. https://doi.org/10.1007/s12274-024-6684-4
Topics:

552

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 23 January 2024
Revised: 26 March 2024
Accepted: 04 April 2024
Published: 16 May 2024
© Tsinghua University Press 2024
Return