Journal Home > Online First

Lithium-sulfur (Li-S) batteries mainly rely on the reversible electrochemical reaction of between lithium ions (Li+) and sulfur species to achieve energy storage and conversion, therefore, increasing the number of free Li+ and improving the Li+ diffusion kinetics will effectively enhance the cell performance. Here, Mo-based MXene heterostructure (MoS2@Mo2C) was developed by partial vulcanization of Mo2C MXene, in which the introduction of similar valence S into Mo-based MXene (Mo2C) can create an electron delocalization effect. Through theoretical simulations and electrochemical characterisation, it is demonstrated that the MoS2@Mo2C heterojunction can effectively promote ion desolvation, increase the amount of free Li+, and accelerate Li+ transport for more efficient polysulfide conversion. In addition, the MoS2@Mo2C material is also capable of accelerating the oxidation and reduction of polysulfides through its sufficient defects and vacancies to further enhance the catalytic efficiency. Consequently, the Li-S battery with the designed MoS2@Mo2C electrocatalyst performed for 500 cycles at 1 C and still maintained the ideal capacity (664.7 mAh·g−1), and excellent rate performance (567.6 mAh·g−1 at 5 C). Under the extreme conditions of high loading, the cell maintained an excellent capacity of 775.6 mAh·g−1 after 100 cycles. It also retained 838.4 mAh·g−1 for 70 cycles at a low temperature of 0 °C, and demonstrated a low decay rate (0.063%). These results indicate that the delocalized electrons effectively accelerate the catalytic conversion of lithium polysulfide, which is more practical for enhancing the behaviour of Li-S batteries.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Electron delocalization-enhanced sulfur reduction kinetics on an MXene-derived heterostructured electrocatalyst

Show Author's information Yunmeng Li1Yinze Zuo2Xiang Li1Yongzheng Zhang1( )Cheng Ma3Xiaomin Cheng4Jian Wang4,5Jitong Wang1( )Hongzhen Lin4Licheng Ling1( )
State Key Laboratory of Chemical Engineering, Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education), East China University of Science and Technology, Shanghai 200237, China
Institute of New Energy Materials and Engineering, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education), School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
i-Lab & CAS Key Laboratory of Nanophotonic Materials and Device Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
Helmholtz Institute Ulm (HIU), D89081 Ulm, Germany

Abstract

Lithium-sulfur (Li-S) batteries mainly rely on the reversible electrochemical reaction of between lithium ions (Li+) and sulfur species to achieve energy storage and conversion, therefore, increasing the number of free Li+ and improving the Li+ diffusion kinetics will effectively enhance the cell performance. Here, Mo-based MXene heterostructure (MoS2@Mo2C) was developed by partial vulcanization of Mo2C MXene, in which the introduction of similar valence S into Mo-based MXene (Mo2C) can create an electron delocalization effect. Through theoretical simulations and electrochemical characterisation, it is demonstrated that the MoS2@Mo2C heterojunction can effectively promote ion desolvation, increase the amount of free Li+, and accelerate Li+ transport for more efficient polysulfide conversion. In addition, the MoS2@Mo2C material is also capable of accelerating the oxidation and reduction of polysulfides through its sufficient defects and vacancies to further enhance the catalytic efficiency. Consequently, the Li-S battery with the designed MoS2@Mo2C electrocatalyst performed for 500 cycles at 1 C and still maintained the ideal capacity (664.7 mAh·g−1), and excellent rate performance (567.6 mAh·g−1 at 5 C). Under the extreme conditions of high loading, the cell maintained an excellent capacity of 775.6 mAh·g−1 after 100 cycles. It also retained 838.4 mAh·g−1 for 70 cycles at a low temperature of 0 °C, and demonstrated a low decay rate (0.063%). These results indicate that the delocalized electrons effectively accelerate the catalytic conversion of lithium polysulfide, which is more practical for enhancing the behaviour of Li-S batteries.

Keywords: lithium sulfur batteries, delocalized electron, MXene-based heterostructures, catalytic desolvation, multi-catalytic sites

References(64)

[1]

Wang, J. N.; Wang, H. L.; Jia, S. Y.; Zhao, Q.; Zheng, Q.; Ma, Y. L.; Ma, T. Y.; Li, X. Recent advances in inhibiting shuttle effect of polysulfide in lithium-sulfur batteries. J. Energy Storage 2023, 72, 108372.

[2]

Gu, H. F.; Yue, W. C.; Hu, J. Q.; Niu, X. F.; Tang, H.; Qin, F. J.; Li, Y.; Yan, Q.; Liu, X. M.; Xu, W. J. et al. Asymmetrically coordinated Cu-N1C2 single-atom catalyst immobilized on Ti3C2T x MXene as separator coating for lithium-sulfur batteries. Adv. Energy Mater. 2023, 13, 2204014.

[3]

Cai, W. L.; Song, Y. Z.; Fang, Y. T.; Wang, W. W.; Yu, S. L.; Ao, H. S.; Zhu, Y. C.; Qian, Y. T. Defect engineering on carbon black for accelerated Li-S chemistry. Nano Res. 2020, 13, 3315–3320.

[4]

Yao, W. Q.; Xu, J.; Ma, L. B.; Lu, X. M.; Luo, D.; Qian, J.; Zhan, L.; Manke, I.; Yang, C.; Adelhelm, P. et al. Recent progress for concurrent realization of shuttle-inhibition and dendrite-free lithium-sulfur batteries. Adv. Mater. 2023, 35, 2212116.

[5]

Hu, B.; Xu, J.; Fan, Z. J.; Xu, C.; Han, S. C.; Zhang, J. X.; Ma, L. B.; Ding, B.; Zhuang, Z. C.; Kang, Q. et al. Covalent organic framework based lithium-sulfur batteries: Materials, interfaces, and solid-state eelectrolytes. Adv. Energy Mater. 2023, 13, 2203540.

[6]

Xiao, J. J.; Lin, S. X.; Cai, Z. H.; Muhmood, T.; Hu, X. B. Ultra-high conductive 3D aluminum photonic crystal as sulfur immobilizer for high-performance lithium-sulfur batteries. Nano Res. 2021, 14, 4776–4782.

[7]

Ruan, J. F.; Sun, H.; Song, Y.; Pang, Y. P.; Yang, J. H.; Sun, D. L.; Zheng, S. Y. Constructing 1D/2D interwoven carbonous matrix to enable high-efficiency sulfur immobilization in Li-S battery. Energy Mater. 2021, 1, 100018.

[8]

Dong, F.; Peng, C. X.; Xu, H. Y.; Zheng, Y. X.; Yao, H. F.; Yang, J. H.; Zheng, S. Y. Lithiated sulfur-incorporated, polymeric cathode for durable lithium-sulfur batteries with promoted redox kinetics. ACS Nano 2021, 15, 20287–20299.

[9]

Zhang, J. H.; Zheng, S. N.; Sun, D. L.; Li, J. D.; Liu, G. H. Graphene-wrapped microspheres decorated with nanoparticles as efficient cathode material for lithium-sulfur battery. J. Electroanal. Chem. 2021, 902, 115810.

[10]

Liu, G.; Sun, Q. J.; Li, Q.; Zhang, J. L.; Ming, J. Electrolyte issues in lithium-sulfur batteries: Development, prospect, and challenges. Energy Fuels 2021, 35, 10405–10427.

[11]

Li, B.; Wang, P.; Xi, B. J.; Song, N.; An, X. G.; Chen, W. H.; Feng, J. K.; Xiong, S. L. In- situ embedding CoTe catalyst into 1D-2D nitrogen-doped carbon to didirectionally regulate lithium-sulfur batteries. Nano Res. 2022, 15, 8972–8982.

[12]

Deng, R. Y.; Wang, M.; Yu, H. Y.; Luo, S. R.; Li, J. H.; Chu, F. L.; Liu, B.; Wu, F. X. Recent advances and applications toward emerging lithium-sulfur batteries: Working principles and opportunities. Energy Environ. Mater. 2022, 5, 777–799.

[13]

Song, N.; Xi, B. J.; Wang, P.; Ma, X. J.; Chen, W. H.; Feng, J. K.; Xiong, S. L. Immobilizing VN ultrafine nanocrystals on N-doped carbon nanosheets enable multiple effects for high-rate lithium-sulfur batteries. Nano Res. 2022, 15, 1424–1432.

[14]

Tian, W. Z.; Xi, B. J.; Gu, Y.; Fu, Q.; Feng, Z. Y.; Feng, J. K.; Xiong, S. L. Bonding VSe2 ultrafine nanocrystals on graphene toward advanced lithium-sulfur batteries. Nano Res. 2020, 13, 2673–2682.

[15]

Du, Z. G.; Wu, C.; Chen, Y. C.; Zhu, Q.; Cui, Y. L. S.; Wang, H. Y.; Zhang, Y. Z.; Chen, X.; Shang, J. X.; Li, B. et al. High-entropy carbonitride MAX phases and their derivative MXenes. Adv. Energy Mater. 2022, 12, 2103228.

[16]

Wang, Z. R.; Zhang, Y. C.; Jiang, H. Y.; Wei, C. L.; An, Y. L.; Tan, L. W.; Xiong, S. L.; Feng, J. K. Free-standing Na2C6O6/MXene composite paper for high-performance organic sodium-ion batteries. Nano Res. 2023, 16, 458–465.

[17]

Wu, S. Y.; Li, X.; Zhang, Y. Z.; Guan, Q. H.; Wang, J.; Shen, C. Y.; Lin, H. Z.; Wang, J. T.; Wang, Y. L.; Zhan, L. et al. Interface engineering of MXene-based heterostructures for lithium-sulfur batteries. Nano Res. 2023, 16, 9158–9178.

[18]

Du, Z. G.; Guo, Y.; Wang, H. Y.; Gu, J. N.; Zhang, Y. Z.; Cheng, Z. J.; Li, B.; Li, S. M.; Yang, S. B. High-throughput production of 1T MoS2 monolayers based on controllable conversion of Mo-based MXenes. ACS Nano 2021, 15, 19275–19283.

[19]

Jiang, J. Z.; Bai, S. S.; Zou, J.; Liu, S.; Hsu, J. P.; Li, N.; Zhu, G. Y.; Zhuang, Z. C.; Kang, Q.; Zhang, Y. Z. Improving stability of MXenes. Nano Res. 2022, 15, 6551–6567.

[20]

Yuan, T.; Sun, Y. Y.; Li, S. Q.; Che, H. Y.; Zheng, Q. F.; Ni, Y. J.; Zhang, Y. X.; Zou, J.; Zang, X. X.; Wei, S. H. et al. Moisture stable and ultrahigh-rate Ni/Mn-based sodium-ion battery cathodes via K+ decoration. Nano Res. 2023, 16, 6890–6902.

[21]

Yuan, T.; Li, S. Q.; Sun, Y. Y.; Wang, J. H.; Chen, A. J.; Zheng, Q. F.; Zhang, Y. X.; Chen, L. W.; Nam, G.; Che, H. Y. et al. A high-rate, durable cathode for sodium-ion batteries: Sb-doped O3-type Ni/Mn-based layered oxides. ACS Nano 2022, 16, 18058–18070.

[22]

Wang, W. P.; Zhang, J.; Chou, J.; Yin, Y. X.; You, Y.; Xin, S.; Guo, Y. G. Solidifying cathode-electrolyte interface for lithium-sulfur batteries. Adv. Energy Mater. 2021, 11, 2000791.

[23]

Kang, Q.; Li, Y.; Zhuang, Z. C.; Wang, D. S.; Zhi, C. Y.; Jiang, P. K.; Huang, X. Y. Dielectric polymer based electrolytes for high-performance all-solid-state lithium metal batteries. J. Energy Chem. 2022, 69, 194–204.

[24]

Li, G. R.; Qiu, W. L.; Gao, W. J.; Zhu, Y. J.; Zhang, X. M.; Li, H. Y.; Zhang, Y. G.; Wang, X.; Chen, Z. W. Finely-dispersed Ni2Co nanoalloys on flower-like graphene microassembly empowering a Bi-service matrix for superior lithium-sulfur electrochemistry. Adv. Funct. Mater. 2022, 32, 2202853.

[25]

Wang, J.; Li, L. G.; Hu, H. M.; Hu, H. F.; Guan, Q. H.; Huang, M.; Jia, L. J.; Adenusi, H.; Tian, K. V.; Zhang, J. et al. Toward dendrite-free metallic lithium anodes: From structural design to optimal electrochemical diffusion kinetics. ACS Nano 2022, 16, 17729–17760.

[26]

Kang, Q.; Zhuang, Z. C.; Liu, Y. J.; Liu, Z. H.; Li, Y.; Sun, B.; Pei, F.; Zhu, H.; Li, H. F.; Li, P. L. et al. Engineering the structural uniformity of gel polymer electrolytes via pattern-guided alignment for durable, safe solid-state lithium metal batteries. Adv. Mater. 2023, 35, 2303460.

[27]

Liu, Y. T.; Elias, Y.; Meng, J. S.; Aurbach, D.; Zou, R. Q.; Xia, D. G.; Pang, Q. Q. Electrolyte solutions design for lithium-sulfur batteries. Joule 2021, 5, 2323–2364.

[28]

Amine, R.; Liu, J. Z.; Acznik, I.; Sheng, T.; Lota, K.; Sun, H.; Sun, C. J.; Fic, K.; Zuo, X. B.; Ren, Y. et al. Regulating the hidden solvation-ion-exchange in concentrated electrolytes for stable and safe lithium metal batteries. Adv. Energy Mater. 2020, 10, 2000901.

[29]
Kang, Q.; Li, Y.; Zhuang, Z. C.; Yang, H. J.; Luo, L. X.; Xu, J.; Wang, J.; Guan, Q. H.; Zhu, H.; Zuo, Y. Z. et al. Engineering a dynamic solvent-phobic liquid electrolyte interphase for long-life lithium metal batteries. Adv. Mater., in press, DOI: 10.1002/adma.202308799.
DOI
[30]

Liu, J.; Zhou, Y. H.; Yan, T. Y.; Gao, X. P. Perspectives of high-performance Li-S battery electrolytes. Adv. Funct. Mater. 2024, 34, 2309625.

[31]

Zhang, X.; Li, X. Y.; Zhang, Y. Z.; Li, X.; Guan, Q. H.; Wang, J.; Zhuang, Z. C.; Zhuang, Q.; Cheng, X. M.; Liu, H. T. et al. Accelerated Li+ desolvation for diffusion booster enabling low-temperature sulfur redox kinetics via electrocatalytic carbon-grazfted-CoP porous nanosheets. Adv. Funct. Mater. 2023, 33, 2302624.

[32]

Zhao, Z. Q.; Pan, Y. K.; Yi, S.; Su, Z.; Chen, H. L.; Huang, Y. N.; Niu, B.; Long, D. H.; Zhang, Y. Y. Enhanced electron delocalization within coherent nano-heterocrystal ensembles for optimizing polysulfide conversion in high-energy-density Li-S batteries. Adv. Mater. 2024, 36, 2310052.

[33]

Jia, L. J.; Hu, H. F.; Cheng, X. M.; Dong, H.; Li, H. H.; Zhang, Y. Z.; Zhang, H.; Zhao, X. Y.; Li, C. H.; Zhang, J. et al. Toward low-temperature Zinc-ion batteries: Strategy, progress, and prospect in vanadium-based cathodes. Adv. Energy Mater. 2024, 14, 2304010.

[34]

Guan, S. Y.; Yuan, Z. L.; Zhuang, Z. C.; Zhang, H. H.; Wen, H.; Fan, Y. P.; Li, B. J.; Wang, D. S.; Liu, B. Z. Why do single-atom alloys catalysts outperform both single-atom catalysts and nanocatalysts on MXene. Angew. Chem., Int. Ed. 2024, 63, e202316550.

[35]

Li, X.; Zuo, Y. Z.; Zhang, Y. Z.; Wang, J.; Wang, Y. L.; Yu, H. M.; Zhan, L.; Ling, L. C.; Du, Z. G.; Yang, S. B. Controllable sulfurization of MXenes to in-plane multi-heterostructures for efficient sulfur redox kinetics. Adv. Energy Mater. 2024, 14, 2303389.

[36]

Zhu, Q.; Xu, H. F.; Shen, K.; Zhang, Y. Z.; Li, B.; Yang, S. B. Efficient polysulfides conversion on Mo2CT x MXene for high-performance lithium-sulfur batteries. Rare Met. 2022, 41, 311–318.

[37]

Li, Z. L.; Zhuang, Z. C.; Lv, F.; Zhu, H.; Zhou, L.; Luo, M. C.; Zhu, J. X.; Lang, Z. Q.; Feng, S. H.; Chen, W. et al. The marriage of the FeN4 moiety and MXene boosts oxygen reduction catalysis: Fe 3d electron delocalization matters. Adv. Mater. 2018, 30, 1803220.

[38]

Benchakar, M.; Natu, V.; Elmelegy, T. A.; Sokol, M.; Snyder, J.; Comminges, C.; Morais, C.; Célérier, S.; Habrioux, A.; Barsoum, M. W. On a two-dimensional MoS2/Mo2CT x hydrogen evolution catalyst obtained by the topotactic sulfurization of Mo2CT x MXene. J. Electrochem. Soc. 2020, 167, 124507.

[39]

Li, H.; Zhang, Q.; Yap, C. C. R.; Tay, B. K.; Edwin, T. H. T.; Olivier, A.; Baillargeat, D. From bulk to monolayer MoS2: Evolution of Raman scattering. Adv. Funct. Mater. 2012, 22, 1385–1390.

[40]

Lee, C.; Yan, H. G.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 2010, 4, 2695–2700.

[41]

Sarycheva, A.; Gogotsi, Y. Raman spectroscopy analysis of the structure and surface chemistry of Ti3C2T x MXene. Chem. Mater. 2020, 32, 3480–3488.

[42]

Halim, J.; Kota, S.; Lukatskaya, M. R.; Naguib, M.; Zhao, M. Q.; Moon, E. J.; Pitock, J.; Nanda, J.; May, S. J.; Gogotsi, Y. et al. Synthesis and characterization of 2D molybdenum carbide (MXene). Adv. Funct. Mater. 2016, 26, 3118–3127.

[43]

Yan, Y. Y.; Li, H. T.; Cheng, C.; Yan, T. R.; Gao, W. P.; Mao, J.; Dai, K. H.; Zhang, L. Boosting polysulfide redox conversion of Li-S batteries by one-step-synthesized Co-Mo bimetallic nitride. J. Energy Chem. 2021, 61, 336–346.

[44]

Xiao, Y. Y.; Liu, Y. T.; Qin, G. H.; Han, P. Y.; Guo, X. Y.; Cao, S. X.; Liu, F. S. Building MoSe2-Mo2C incorporated hollow fluorinated carbon fibers for Li-S batteries. Compos. Part B: Eng. 2020, 193, 108004.

[45]

He, H. N.; Huang, D.; Gan, Q. M.; Hao, J. N.; Liu, S. L.; Wu, Z. B.; Pang, W. K.; Johannessen, B.; Tang, Y. G.; Luo, J. L. et al. Anion vacancies regulating endows MoSSe with fast and stable potassium ion storage. ACS Nano 2019, 13, 11843–11852.

[46]

Chen, P.; Wang, T. Y.; He, D.; Shi, T.; Chen, M. F.; Fang, K.; Lin, H. Z.; Wang, J.; Wang, C. Y.; Pang, H. Delocalized isoelectronic heterostructured FeCoO x S y catalysts with tunable electron density for accelerated sulfur redox kinetics in Li-S batteries. Angew. Chem., Int. Ed. 2023, 62, e202311693.

[47]

Zhu, Z.; Zeng, Y. X.; Pei, Z. H.; Luan, D. Y.; Wang, X.; Lou, X. W. Bimetal-organic framework nanoboxes enable accelerated redox kinetics and polysulfide trapping for lithium-sulfur batteries. Angew. Chem., Int. Ed. 2023, 62, e202305828.

[48]

Wang, H. L.; Zhou, Y. M.; Tao, S. Y. CoP-CoOOH heterojunction with modulating interfacial electronic structure: A robust biomass-upgrading electrocatalyst. Appl. Catal. B: Environ. 2022, 315, 121588.

[49]

Xia, H. C.; Zan, L. X.; Yuan, P. F.; Qu, G.; Dong, H. L.; Wei, Y. F.; Yu, Y.; Wei, Z. Y.; Yan, W. F.; Hu, J. S. et al. Evolution of stabilized 1T-MoS2 by atomic-interface engineering of 2H-MoS2/Fe-N x towards enhanced sodium ion storage. Angew. Chem., Int. Ed. 2023, 62, e202218282.

[50]

Chu, K.; Luo, Y. J.; Shen, P.; Li, X. C.; Li, Q. Q.; Guo, Y. L. Unveiling the synergy of O-vacancy and heterostructure over MoO3− x /MXene for N2 electroreduction to NH3. Adv. Energy Mater. 2022, 12, 2103022.

[51]

Li, X.; Guan, Q. H.; Zhuang, Z. C.; Zhang, Y. Z.; Lin, Y. H.; Wang, J.; Shen, C. Y.; Lin, H. Z.; Wang, Y. L.; Zhan, L. et al. Ordered mesoporous carbon grafted MXene catalytic heterostructure as Li-ion kinetic pump toward high-efficient sulfur/sulfide conversions for Li-S battery. ACS Nano 2023, 17, 1653–1662.

[52]

Yao, W. Q.; Tian, C. X.; Yang, C.; Xu, J.; Meng, Y. F.; Manke, I.; Chen, N.; Wu, Z. L.; Zhan, L.; Wang, Y. L. et al. P-doped NiTe2 with Te-Vacancies in lithium-sulfur batteries prevents shuttling and promotes polysulfide conversion. Adv. Mater. 2022, 34, 2106370.

[53]

Henderson, W. A.; Seo, D. M.; Han, S. D.; Borodin, O. Electrolyte solvation and ionic association. VII. Correlating Raman spectroscopic data with solvate species. J. Electrochem. Soc. 2020, 167, 110551.

[54]

Chen, S. R.; Zheng, J. M.; Mei, D. H.; Han, K. S.; Engelhard, M. H.; Zhao, W. G.; Xu, W.; Liu, J.; Zhang, J. G. High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes. Adv. Mater. 2018, 30, 1706102.

[55]

Ren, X. D.; Chen, S. R.; Lee, H.; Mei, D. H.; Engelhard, M. H.; Burton, S. D.; Zhao, W. G.; Zheng, J. M.; Li, Q. Y.; Ding, M. S. et al. Localized high-concentration sulfone electrolytes for high-efficiency lithium-metal batteries. Chem 2018, 4, 1877–1892.

[56]

Hou, L. P.; Li, Z.; Yao, N.; Bi, C. X.; Li, B. Q.; Chen, X.; Zhang, X. Q.; Zhang, Q. Weakening the solvating power of solvents to encapsulate lithium polysulfides enables long-cycling lithium-sulfur batteries. Adv. Mater. 2022, 34, 2205284.

[57]

Xu, J.; Yu, F. T.; Hua, J. L.; Tang, W. Q.; Yang, C.; Hu, S. Z.; Zhao, S. L.; Zhang, X. S.; Xin, Z.; Niu, D. F. Donor dominated triazine-based microporous polymer as a polysulfide immobilizer and catalyst for high-performance lithium-sulfur batteries. Chem. Eng. J. 2020, 392, 123694.

[58]

Wang, Y. L.; Song, J.; Wong, W. Y. Constructing 2D sandwich-like MOF/MXene heterostructures for durable and fast aqueous Zinc-ion batteries. Angew. Chem., Int. Ed. 2023, 62, e202218343.

[59]

Hua, W. X.; Li, H.; Pei, C.; Xia, J. Y.; Sun, Y. F.; Zhang, C.; Lv, W.; Tao, Y.; Jiao, Y.; Zhang, B. S. et al. Selective catalysis remedies polysulfide shuttling in lithium-sulfur batteries. Adv. Mater. 2021, 33, 2101006.

[60]

Zhou, C.; Hong, M.; Hu, N. T.; Yang, J. H.; Zhu, W. H.; Kong, L. W.; Li, M. Bi-metallic coupling-induced electronic-state modulation of metal phosphides for kinetics-enhanced and dendrite-free Li-S batteries. Adv. Funct. Mater. 2023, 33, 2213310.

[61]

Zhang, L.; Qian, T.; Zhu, X. Y.; Hu, Z. L.; Wang, M. F.; Zhang, L. Y.; Jiang, T.; Tian, J. H.; Yan, C. L. In situ optical spectroscopy characterization for optimal design of lithium-sulfur batteries. Chem. Soc. Rev. 2019, 48, 5432–5453.

[62]

Yao, W. Q.; Xu, J.; Cao, Y. J.; Meng, Y. F.; Wu, Z. L.; Zhan, L.; Wang, Y. L.; Zhang, Y. L.; Manke, I.; Chen, N. et al. Dynamic intercalation-conversion site supported ultrathin 2D mesoporous SnO2/SnSe2 hybrid as bifunctional polysulfide immobilizer and lithium regulator for lithium-sulfur chemistry. ACS Nano 2022, 16, 10783–10797.

[63]

Luo, D.; Li, C. J.; Zhang, Y. G.; Ma, Q. Y.; Ma, C. Y.; Nie, Y. H.; Li, M.; Weng, X. F.; Huang, R.; Zhao, Y. et al. Design of quasi-MOF nanospheres as a dynamic electrocatalyst toward accelerated sulfur reduction reaction for high-performance lithium-sulfur batteries. Adv. Mater. 2022, 34, 2105541.

[64]

Zhao, C.; Xu, G. L.; Yu, Z.; Zhang, L. C.; Hwang, I.; Mo, Y. X.; Ren, Y. X.; Cheng, L.; Sun, C. J.; Ren, Y. et al. A high-energy and long-cycling lithium-sulfur pouch cell via a macroporous catalytic cathode with double-end binding sites. Nat. Nanotechnol. 2021, 16, 166–173.

File
6682_ESM.pdf (4.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 19 February 2024
Revised: 26 March 2024
Accepted: 03 April 2024
Published: 15 May 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. U1710252), the Natural Science Foundation of Jiangsu Province (BK. 20210130), Innovative and Entrepreneurial Doctor in Jiangsu Province (No. JSSCBS20211428), China Postdoctoral Science Foundation (No. 2023M731084), Shanghai Sailing Program of China (No. 23YF1408900) and the Fundamental Research Funds for the Central Universities (No. JKD01231701). J. W. acknowledged the funding provided by the Alexander von Humboldt Foundation and the basic funding of the Helmholtz Association. Dr. Y. Z. Z. thanks the Shanghai Super Postdoctoral Incentive Program. We also thank the support from Nano-X, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences.

Return