Journal Home > Online First

Ocean is full of low-frequency, irregular, and widely distributed wave energy, which is suitable as the energy source for maritime Internet of Things (IoTs). Utilizing triboelectric nanogenerators (TENGs) to harvest ocean wave energy and power sensors is proven to be an effective scheme. However, in random ocean waves, the irregular electrical energy output by general TENGs restricts the applications. At present, achieving regularized water wave energy harvesting relies on rather complex mechanical structure designs, which is not conducive to industrialization. In this work, we proposed a novel mechanical controlled TENG (MC-TENG) with a simple controlled switch to realize the regularization function. The structural parameters of the MC-TENG are optimized, and the optimal output voltage, output current, and transferred charge respectively reach 1684.2 V, 85.4 μA, and 389.9 nC, generating a peak power density of 38.46 W·m−3·Hz−1. Under real water wave environment, the output of the MC-TENG is regularized and keeps stable regardless of any wave conditions. Moreover, the potential applications of the MC-TENG are demonstrated in powering environmental temperature, humidity, and wind speed sensors. This work renders a simple approach to achieve effective regularized ocean wave energy harvesting, promoting the TENG industrialization toward practical application of maritime IoTs.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Triboelectric nanogenerator integrated with a simple controlled switch for regularized water wave energy harvesting

Show Author's information Hongbo Yang1,2,§Xi Liang2,3,§Junwu Kan1Zhong Lin Wang2,4,5,6( )Tao Jiang2,4( )Zhanyong Hong2,4( )
College of Engineering, Zhejiang Normal University, Jinhua 321004, China
Beijing Key Laboratory of Micro-Nano Energy and Sensor, Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
The Beijing Key Laboratory for Nano-Photonics and Nano-Structure, Department of Physics, Capital Normal University, Beijing 100048, China
Guangzhou Institute of Blue Energy, Guangzhou 510555, China
Georgia Institute of Technology, Atlanta, GA 30332-0245, USA
Yonsei Frontier Lab, Yonsei University, Seoul 03722, Republic of Korea

§ Hongbo Yang and Xi Liang contributed equally to this work.

Abstract

Ocean is full of low-frequency, irregular, and widely distributed wave energy, which is suitable as the energy source for maritime Internet of Things (IoTs). Utilizing triboelectric nanogenerators (TENGs) to harvest ocean wave energy and power sensors is proven to be an effective scheme. However, in random ocean waves, the irregular electrical energy output by general TENGs restricts the applications. At present, achieving regularized water wave energy harvesting relies on rather complex mechanical structure designs, which is not conducive to industrialization. In this work, we proposed a novel mechanical controlled TENG (MC-TENG) with a simple controlled switch to realize the regularization function. The structural parameters of the MC-TENG are optimized, and the optimal output voltage, output current, and transferred charge respectively reach 1684.2 V, 85.4 μA, and 389.9 nC, generating a peak power density of 38.46 W·m−3·Hz−1. Under real water wave environment, the output of the MC-TENG is regularized and keeps stable regardless of any wave conditions. Moreover, the potential applications of the MC-TENG are demonstrated in powering environmental temperature, humidity, and wind speed sensors. This work renders a simple approach to achieve effective regularized ocean wave energy harvesting, promoting the TENG industrialization toward practical application of maritime IoTs.

Keywords: triboelectric nanogenerators, water wave energy harvesting, random excitation, mechanical control, regular output

References(47)

[1]

Wang, Z. L. On Maxwell's displacement current for energy and sensors: The origin of nanogenerators. Mater. Today 2017, 20, 74–82.

[2]

Ahmed, A.; Hassan, I.; Ibn-Mohammed, T.; Mostafa, H.; Reaney, I. M.; Koh, L. S. C.; Zu, J.; Wang, Z. L. Environmental life cycle assessment and techno-economic analysis of triboelectric nanogenerators. Energy Environ. Sci. 2017, 10, 653–671.

[3]

Yan, Z. G.; Wang, L. L.; Xia, Y. F.; Qiu, R. D.; Liu, W. Q.; Wu, M.; Zhu, Y.; Zhu, S. L.; Jia, C. Y.; Zhu, M. M. et al. Flexible high-resolution triboelectric sensor array based on patterned laser-induced graphene for self-powered real-time tactile sensing. Adv. Funct. Mater. 2021, 31, 2100709.

[4]

Wang, L. L.; Liu, W. Q.; Yan, Z. G.; Wang, F. J.; Wang, X. Stretchable and shape-adaptable triboelectric nanogenerator based on biocompatible liquid electrolyte for biomechanical energy harvesting and wearable human–machine interaction. Adv. Funct. Mater. 2020, 31, 2007221.

[5]

Wang, Z. L. Nanogenerators, self-powered systems, blue energy, piezotronics and piezo-phototronics—A recall on the original thoughts for coining these fields. Nano Energy 2018, 54, 477–483.

[6]

Li, Q.; Liu, Y.; Guo, S. H.; Zhou, H. S. Solar energy storage in the rechargeable batteries. Nano Today 2017, 16, 46–60.

[7]

Gurung, A.; Qiao, Q. Q. Solar charging batteries: Advances, challenges, and opportunities. Joule 2018, 2, 1217–1230.

[8]

Brabec, C. J.;Sariciftci, N. S.; Hummelen, J. C. Plastic solar cells. 3.0.CO;2-A">Adv. Funct. Mater. 2001, 11, 15–26.

[9]

Marom, R.; Amalraj, S. F.; Leifer, N.; Jacob, D.; Aurbach, D. A review of advanced and practical lithium battery materials. J. Mater. Chem. 2011, 21, 9938–9954.

[10]

Zeng, X. Q.; Li, M.; El-Hady. D. A.; Alshitari, W.; Al-Bogami, A. S.; Lu, J.; Amine, K. Commercialization of lithium battery technologies for electric vehicles. Adv. Energy Mater. 2019, 9, 1900161.

[11]

Zhao, T. C.; Xu, M. Y.; Xiao, X.; Ma, Y.; Li, Z.; Wang, Z. L. Recent progress in blue energy harvesting for powering distributed sensors in ocean. Nano Energy 2021, 88, 106199.

[12]

Hao, C. C.; He, J.; Zhang, Z. X.; Yuan, Y.; Chou, X. J.; Xue, C. Y. A pendulum hybrid generator for water wave energy harvesting and hydrophone-based wireless sensing. AIP Adv. 2020, 10, 125019.

[13]

Huang, B.; Wang, P. Z.; Wang, L.; Yang, S.; Wu, D. Z. Recent advances in ocean wave energy harvesting by triboelectric nanogenerator: An overview. Nanotechnol 2020, 9, 716–735.

[14]

Falnes, J.; Løvseth, J. Ocean wave energy. Energy Policy 1991, 19, 768–775.

[15]

Aderinto, T.; Li, H. Ocean wave energy converters: Status and challenges. Energies 2018, 11, 1250.

[16]

Jeon, S. B.; Kim, D.; Seol, M. L.; Park, S. J.; Choi, Y. K. 3-Dimensional broadband energy harvester based on internal hydrodynamic oscillation with a package structure. Nano Energy 2015, 17, 82–90

[17]

Niu, S. M.; Wang, S. H.; Liu, Y.; Zhou, Y. S.; Lin, L.; Hu, Y. F.; Pradel, K. C.; Wang, Z. L. A theoretical study of grating structured triboelectric nanogenerators. Energy Environ. Sci. 2014, 7, 2339–2349.

[18]

Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.

[19]

Choi, D.; Lee, S.; Park, S. M.; Cho, H.; Hwang, W.; Kim, D. S. Energy harvesting model of moving water inside a tubular system and its application of a stick-type compact triboelectric nanogenerator. Nano Res. 2015, 8, 2481–2491.

[20]

Quan, Z. C.; Han, C. B.; Jiang, T.; Wang, Z. L. Robust thin films-based triboelectric nanogenerator arrays for harvesting bidirectional wind energy. Adv. Energy Mater. 2016, 6, 1501799.

[21]

Seol, M. L.; Jeon, S. B.; Han, J. W.; Choi, Y. K. Ferrofluid-based triboelectric–electromagnetic hybrid generator for sensitive and sustainable vibration energy harvesting. Nano Energy 2017, 31, 233–238.

[22]

Wang, X. F.; Niu, S. M.; Yin, Y. J.; Yi, F.; You, Z.; Wang, Z. L. Triboelectric nanogenerator based on fully enclosed rolling spherical structure for harvesting low-frequency water wave energy. Adv. Energy Mater. 2015, 5, 1501467.

[23]

Seol, M. L.; Lee, S. H.; Han, J. W.; Kim, D.; Cho, G. H.; Choi, Y. K. Impact of contact pressure on output voltage of triboelectric nanogenerator based on deformation of interfacial structures. Nano Energy 2015, 17, 63–71.

[24]

Mao, Y. C.; Geng, D. L.; Liang, E. J.; Wang, X. D. Single-electrode triboelectric nanogenerator for scavenging friction energy from rolling tires. Nano Energy 2015, 15, 227–234.

[25]

Kim, T.; Chung, J.; Kim, D. Y.; Moon, J. H.; Lee, S.; Cho, M.; Lee, S. H.; Lee, S. Design and optimization of rotating triboelectric nanogenerator by water electrification and inertia. Nano Energy 2016, 27, 340–351.

[26]

Wang, Z. L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 2013, 7, 9533–9557.

[27]

Lang, S. B. Pyroelectricity: From ancient curiosity to modern imaging tool. Phys. Today 2005, 58, 31–36.

[28]

An, J.; Wang, Z. M.; Jiang, T.; Liang, X.; Wang, Z. L. Whirling-folded triboelectric nanogenerator with high average power for water wave energy harvesting. Adv. Funct. Mater. 2019, 29, 1904867.

[29]

Zhang, C. G.; He, L. X.; Zhou, L. L.; Yang, O.; Yuan, W.; Wei, X. L.; Liu, Y. B.; Lu, L.; Wang, J.; Wang, Z. L. Active resonance triboelectric nanogenerator for harvesting omnidirectional water-wave energy. Joule 2021, 5, 1613–1623.

[30]

Pang, H.; Feng, Y. W.; An, J.; Chen, P. F.; Han, J. J.; Jiang, T.; Wang, Z. L. Segmented swing-structured fur-based triboelectric nanogenerator for harvesting blue energy toward marine environmental applications. Adv. Funct. Mater. 2021, 31, 2106398.

[31]

Jiang, T.; Pang, H.; An, J.; Lu, P. J.; Feng, Y. W.; Liang, X.; Zhong, W.; Wang, Z. L. Robust swing-structured triboelectric nanogenerator for efficient blue energy harvesting. Adv. Energy Mater. 2020, 10, 2000064.

[32]

Cao, B.; Wang, P. H.; Rui, P. S.; Wei, X. X.; Wang, Z. X.; Yang, Y. W.; Tu, X. B.; Chen, C.; Wang, Z. Z.; Yang, Z. Q. et al. Broadband and output-controllable triboelectric nanogenerator enabled by coupling swing-rotation switching mechanism with potential energy storage/release strategy for low-frequency mechanical energy harvesting. Adv. Energy Mater. 2022, 12, 2270194

[33]

Lu, P. J.; Pang, H.; Ren, J.; Feng, Y. W.; An, J.; Liang, X.; Jiang, T.; Wang, Z. L. Swing-structured triboelectric–electromagnetic hybridized nanogenerator for breeze wind energy harvesting. Adv. Mater. Technol. 2021, 6, 2100496.

[34]

Feng, Y. W.; Liang, X.; An, J.; Jiang, T.; Wang, Z. L. Soft-contact cylindrical triboelectric–electromagnetic hybrid nanogenerator based on swing structure for ultra-low frequency water wave energy harvesting. Nano Energy 2021, 81, 105625.

[35]

Wang, H. Y.; Zhu, Q. Y.; Ding, Z. Y.; Li, Z. L.; Zheng, H. W.; Fu, J. J.; Diao, C. L.; Zhang, X. N.; Tian, J. J.; Zi, Y. L. A fully-packaged ship-shaped hybrid nanogenerator for blue energy harvesting toward seawater self-desalination and self-powered positioning. Nano Energy 2019, 57, 616–624.

[36]

Chandrasekhar, A.; Vivekananthan, V.; Kim, S. J. A fully packed spheroidal hybrid generator for water wave energy harvesting and self-powered position tracking. Nano Energy 2020, 69, 104439.

[37]

Zhang, C. G.; Yuan, W.; Zhang, B. F.; Yang, O.; Liu, Y. B.; He, L. X.; Wang, J.; Wang, Z. L. High space efficiency hybrid nanogenerators for effective water wave energy harvesting. Adv. Funct. Mater. 2022, 32, 2111775.

[38]

Gao, Q.; Xu, Y. H.; Yu, X.; Jing, Z. X.; Cheng, T. H.; Wang, Z. L. Gyroscope-structured triboelectric nanogenerator for harvesting multidirectional ocean wave energy. ACS Nano 2022, 16, 6781–6788.

[39]

Zhang, X. M.; Yang, Q. X.; Ji, P. Y.; Wu, Z. F.; Li, Q. Y.; Yang, H. K.; Li, X. C.; Zheng, G. C.; Xi, Y.; Wang, Z. L. Modeling of liquid–solid hydrodynamic water wave energy harvesting system based on triboelectric nanogenerator. Nano Energy 2022, 99, 107362.

[40]

Liang, X.; Liu, S. J.; Ren, Z. W.; Jiang, T.; Wang, Z. L. Self-powered intelligent buoy based on triboelectric nanogenerator for water level alarming. Adv. Funct. Mater. 2022, 32, 2205313.

[41]

Wang, X. X.; Gao, Q.; Zhu, M. K.; Wang, J. L.; Zhu, J. Y.; Zhao, H. W.; Wang, Z. L, Cheng, T. H. Bioinspired butterfly wings triboelectric nanogenerator with drag amplification for multidirectional underwater-wave energy harvesting. Appl. Energy 2022, 323, 119648.

[42]

Yin, M. F.; Lu, X. H.; Qiao, G. D.; Xu, Y. H.; Wang, Y. Q.; Cheng, T. H.; Wang, Z. L. Mechanical regulation triboelectric nanogenerator with controllable output performance for random energy harvesting. Adv. Energy Mater. 2020, 10, 2000627.

[43]

Meng, L. X.; Yang, Y. F.; Liu, S. M.; Wang, S.; Zhang, T.; Guo, X. L. Energy storage triboelectric nanogenerator based on ratchet mechanism for random ocean energy harvesting. ACS Omega 2023, 8, 1362–1368.

[44]

He, G. F.; Luo, Y. J.; Zhai, Y.; Wu, Y.; You, J.; Lu, R.; Zeng, S. K.; Wang, Z. L. Regulating random mechanical motion using the principle of auto-winding mechanical watch for driving TENG with constant AC output—An approach for efficient usage of high entropy energy. Nano Energy 2021, 87, 106195.

[45]

Zou, H. Y.; Zhang, Y.; Guo, L. T.; Wang, P. H.; He, X.; Dai, G. Z.; Zheng, H. W.; Chen, C. Y.; Wang, A. C.; Xu, C. et al. Quantifying the triboelectric series. Nat. Commun. 2019, 10, 1427.

[46]

Feng, Y. W.; Jiang, T.; Liang, X.; An, J.; Wang, Z. L. Cylindrical triboelectric nanogenerator based on swing structure for efficient harvesting of ultra-low-frequency water wave energy. Appl. Phys. Rev. 2020, 7, 021401.

[47]

Xi, F. B.; Pang, Y. K.; Li, W.; Jiang, T.; Zhang, L. M.; Guo, T.; Liu, G. X.; Zhang, C.; Wang, Z. L. Universal power management strategy for triboelectric nanogenerator. Nano Energy 2017, 37, 168–176.

File
6679_ESM.pdf (1.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 16 February 2024
Revised: 24 March 2024
Accepted: 02 April 2024
Published: 27 April 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

The research was supported by the National Key Research and Development Project from Minister of Science and Technology (Nos. 2021YFA1201604 and 2021YFA1201601), Beijing Nova Program (No. 20220484036), Innovation Project of Ocean Science and Technology (No. 22-3-3-hygg-18-hy), and Youth Innovation Promotion Association, CAS.

Return