AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Heterostructures of Ni(II)-doped CdS quantum dots and β-Pb0.33V2O5 nanowires: Enhanced charge separation and redox photocatalysis via doping of QDs

Karoline E. García-Pedraza1Jaime R. Ayala2,3Udani Wijethunga1Alice R. Giem2,3George Agbeworvi2,3Sarbajit Banerjee2,3( )David F. Watson1( )
Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, USA
Department of Chemistry, Texas A & M University, College Station, Texas 77843, USA
Department of Materials Science and Engineering, Texas A & M University, College Station, Texas 77843, USA
Show Author Information

Graphical Abstract

Heterostructures of Ni(II)-doped CdS quantum dots (QDs) and β-Pb0.33V2O5 nanowires, tethered via L-cysteine, photocatalytically reduce CO2 to CO, CH4, and HCO2H. The ultrafast transfer of photogenerated holes from Ni(II)-doped CdS QDs to the mid-gap states of β-Pb0.33V2O5 underpins photocatalysis.

Abstract

We synthesized heterostructures by tethering Ni(II)-doped CdS (Ni:CdS) quantum dots (QDs) to β-Pb0.33V2O5 nanowires (NWs) using L-cysteine as a molecular linker, and we evaluated the influence of doping on their redox photocatalytic reactivity. We initially hypothesized that incorporating Ni:CdS QDs into heterostructures could alter excited-state dynamics and mechanisms, and that the localization of excited electrons on Ni 3d states could promote redox photocatalytic mechanisms including reduction of CO2. Isolated Ni:CdS QDs were ferromagnetic, and they exhibited enhanced photocatalytic hydrogen evolution and photostability relative to undoped CdS QDs. Both Pb0.33V2O5/CdS heterostructures (with undoped QDs) and Pb0.33V2O5/Ni:CdS heterostructures (with Ni(II)-doped QDs) exhibited substantial energetic overlap between valence-band states of QDs and intercalative mid-gap states of β-Pb0.33V2O5 NWs. Within Pb0.33V2O5/CdS heterostructures, photoexcitation of CdS QDs was followed by rapid (50–100 ps) transfer of both holes and electrons to β-Pb0.33V2O5 NWs. In contrast, within Pb0.33V2O5/Ni:CdS heterostructures, holes were transferred from Ni:CdS QDs to β-Pb0.33V2O5 NWs within 100 ps, but electrons were transferred approximately 20-fold more slowly. This difference in electron- and hole-transfer kinetics promoted charge separation across the Pb0.33V2O5/Ni:CdS interface and enabled the photocatalytic reduction of CO2 to CO, CH4, and HCO2H with > 99.9% selectivity relative to the reduction of H+ to H2. These results highlight the opportunity to fine-tune dynamics and mechanisms of excited-state charge-transfer, and mechanisms of subsequent redox half-reactions, by doping QDs within heterostructures. Moreover, they reveal the promise of heterostructures comprising QDs and MxVyO5 materials as CO2-reduction photocatalysts.

Electronic Supplementary Material

Download File(s)
6675_ESM.pdf (3.6 MB)

References

[1]

Rossetti, R.; Nakahara, S.; Brus, L. E. Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution. J. Chem. Phys. 1983, 79, 1086–1088.

[2]

Brus, L. E. Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. J. Chem. Phys. 1984, 80, 4403–4409.

[3]

Bawendi, M. G.; Steigerwald, M. L.; Brus, L. E. The quantum mechanics of larger semiconductor clusters ("Quantum Dots"). Annu. Rev. Phys. Chem. 1990, 41, 477–496.

[4]

Fojtik, A.; Weller, H.; Koch, U.; Henglein, A. Photo-chemistry of colloidal metal sulfides 8. Photo-physics of extremely small CdS particles: Q-state CdS and magic agglomeration numbers. Ber. Bunsenges. Phys. Chem. 1984, 88, 969–977.

[5]

Henglein, A. Small-particle research: Physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem. Rev. 1989, 89, 1861–1873.

[6]

Ekimov, A. I.; Efros, A. L.; Onushchenko, A. A. Quantum size effect in semiconductor microcrystals. Solid State Commun. 1985, 56, 921–924.

[7]

Ekimov, A. I.; Onushchenko, A. A. Quantum size effect in three-dimensional microscopic semiconductor crystals. JETP Lett. 2023, 118, S15–S17.

[8]

Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mater. Sci. 2000, 30, 545–610.

[9]

Murray, C. B.; Norris, D. J.; Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 1993, 115, 8706–8715.

[10]

Sarma, D. D.; Kamat, P. V. 2023 Nobel prize in chemistry: A mega recognition for nanosized quantum dots. ACS Energy Lett. 2023, 8, 5149–5151.

[11]

Smith, A. M.; Nie, S. M. Semiconductor nanocrystals: Structure, properties, and band gap engineering. Acc. Chem. Res. 2010, 43, 190–200.

[12]

Zhu, H. M.; Yang, Y.; Wu, K. F.; Lian, T. Q. Charge transfer dynamics from photoexcited semiconductor quantum dots. Annu. Rev. Phys. Chem. 2016, 67, 259–281.

[13]

Kim, J. Y.; Voznyy, O.; Zhitomirsky, D.; Sargent, E. H. 25th Anniversary article: Colloidal quantum dot materials and devices: A quarter-century of advances. Adv. Mater. 2013, 25, 4986–5010.

[14]

Jing, L. H.; Kershaw, S. V.; Li, Y. L.; Huang, X. D.; Li, Y. Y.; Rogach, A. L.; Gao, M. Y. Aqueous based semiconductor nanocrystals. Chem. Rev. 2016, 116, 10623–10730.

[15]

Kovalenko, M. V.; Manna, L.; Cabot, A.; Hens, Z.; Talapin, D. V.; Kagan, C. R.; Klimov, V. I.; Rogach, A. L.; Reiss, P.; Milliron, D. J. et al. Prospects of nanoscience with nanocrystals. ACS Nano 2015, 9, 1012–1057.

[16]

Pietryga, J. M.; Park, Y. S.; Lim, J.; Fidler, A. F.; Bae, W. K.; Brovelli, S.; Klimov, V. I. Spectroscopic and device aspects of nanocrystal quantum dots. Chem. Rev. 2016, 116, 10513–10622.

[17]

Harris, R. D.; Bettis Homan, S.; Kodaimati, M.; He, C.; Nepomnyashchii, A. B.; Swenson, N. K.; Lian, S. C.; Calzada, R.; Weiss, E. A. Electronic processes within quantum dot-molecule complexes. Chem. Rev. 2016, 116, 12865–12919.

[18]

Lin, S. X.; Peng, X. G. Current status and challenges of solar cells based on semiconductor nanocrystals. Energy Fuels 2021, 35, 18928–18941.

[19]

Efros, A. L.; Brus, L. E. Nanocrystal quantum dots: From discovery to modern development. ACS Nano 2021, 15, 6192–6210.

[20]

Weiss, E. A. Designing the surfaces of semiconductor quantum dots for colloidal photocatalysis. ACS Energy Lett. 2017, 2, 1005–1013.

[21]

Kodaimati, M. S.; McClelland, K. P.; He, C.; Lian, S. C.; Jiang, Y. S.; Zhang, Z. Y.; Weiss, E. A. Viewpoint: Challenges in colloidal photocatalysis and some strategies for addressing them. Inorg. Chem. 2018, 57, 3659–3670.

[22]

Knowles, K. E.; Peterson, M. D.; McPhail, M. R.; Weiss, E. A. Exciton dissociation within quantum dot-organic complexes: Mechanisms, use as a probe of interfacial structure, and applications. J. Phys. Chem. C 2013, 117, 10229–10243.

[23]

Arcudi, F.; Đorđević, L.; Nagasing, B.; Stupp, S. I.; Weiss, E. A. Quantum dot-sensitized photoreduction of CO2 in water with turnover number > 80,000. J. Am. Chem. Soc. 2021, 143, 18131–18138.

[24]

Kamat, P. V.; Christians, J. A.; Radich, E. J. Quantum dot solar cells: Hole transfer as a limiting factor boosting the photoconversion efficiency. Langmuir 2014, 30, 5716–5725.

[25]

Spanhel, L.; Haase, M.; Weller, H.; Henglein, A. Photochemistry of colloidal semiconductors. 20. Surface modification and stability of strong luminescing CdS particles. J. Am. Chem. Soc. 1987, 109, 5649–5655.

[26]

Selinsky, R. S.; Ding, Q.; Faber, M. S.; Wright, J. C.; Jin, S. Quantum dot nanoscale heterostructures for solar energy conversion. Chem. Soc. Rev. 2013, 42, 2963–2985.

[27]

Watson, D. F. Linker-assisted assembly and interfacial electron-transfer reactivity of quantum dot-substrate architectures. J. Phys. Chem. Lett. 2010, 1, 2299–2309.

[28]

Handy, J. V.; Zaheer, W.; Rothfuss, A. R. M.; McGranahan, C. R.; Agbeworvi, G.; Andrews, J. L.; García-Pedraza, K. E.; Ponis, J. D.; Ayala, J. R.; Ding, Y. et al. Lone but not alone: Precise positioning of lone pairs for the design of photocatalytic architectures. Chem. Mater. 2022, 34, 1439–1458.

[29]

Kamat, P. V. Quantum dot solar cells. The next big thing in photovoltaics. J. Phys. Chem. Lett. 2013, 4, 908–918.

[30]

Li, J.; Jiménez-Calvo, P.; Paineau, E.; Ghazzal, M. N. Metal chalcogenides based heterojunctions and novel nanostructures for photocatalytic hydrogen evolution. Catalysts 2020, 10, 89.

[31]

Padgaonkar, S.; Olding, J. N.; Lauhon, L. J.; Hersam, M. C.; Weiss, E. A. Emergent optoelectronic properties of mixed-dimensional heterojunctions. Acc. Chem. Res. 2020, 53, 763–772.

[32]

Li, Q. Y.; Wu, K. F.; Zhu, H. M.; Yang, Y.; He, S.; Lian, T. Q. Charge transfer from quantum-confined 0D, 1D, and 2D nanocrystals. Chem. Rev. 2024, 124, 5695–5763.

[33]

Pelcher, K. E.; Milleville, C. C.; Wangoh, L.; Chauhan, S.; Crawley, M. R.; Marley, P. M.; Piper, L. F. J.; Watson, D. F.; Banerjee, S. Integrating β-Pb0.33V2O5 nanowires with CdSe quantum dots: Toward nanoscale heterostructures with tunable interfacial energetic offsets for charge transfer. Chem. Mater. 2015, 27, 2468–2479.

[34]

Zaheer, W.; McGranahan, C. R.; Ayala, J. R.; Garcia-Pedraza, K.; Carrillo, L. J.; Rothfuss, A. R. M.; Wijethunga, U.; Agbeworvi, G.; Giem, A. R.; Andrews, J. L. et al. Photocatalytic hydrogen evolution mechanisms mediated by stereoactive lone pairs of Sb2VO5 in quantum dot heterostructures. Chem Catal. 2024, 4, 100844.

[35]

Andrews, J. L.; Cho, J.; Wangoh, L.; Suwandaratne, N.; Sheng, A.; Chauhan, S.; Nieto, K.; Mohr, A.; Kadassery, K. J.; Popeil, M. R. et al. Hole extraction by design in photocatalytic architectures interfacing CdSe quantum dots with topochemically stabilized tin vanadium oxide. J. Am. Chem. Soc. 2018, 140, 17163–17174.

[36]

Cho, J.; Sheng, A.; Suwandaratne, N.; Wangoh, L.; Andrews, J. L.; Zhang, P. H.; Piper, L. F. J.; Watson, D. F.; Banerjee, S. The middle road less taken: Electronic-structure-inspired design of hybrid photocatalytic platforms for solar fuel generation. Acc. Chem. Res. 2019, 52, 645–655.

[37]

Ayala, J. R.; García-Pedraza, K. E.; Giem, A. R.; Wijethunga, U.; Hariyani, S.; Carrillo, L.; Jaye, C.; Weiland, C.; Fischer, D. A.; Watson, D. F. et al. Interface-modulated kinetic differentials in electron and hole transfer rates as a key design principle for redox photocatalysis by Sb2VO5/QD heterostructures. J. Chem. Phys. 2024, 160, 194703.

[38]

Walsh, A.; Payne, D. J.; Egdell, R. G.; Watson, G. W. Stereochemistry of post-transition metal oxides: Revision of the classical lone pair model. Chem. Soc. Rev. 2011, 40, 4455–4463.

[39]

Pelcher, K. E.; Milleville, C. C.; Wangoh, L.; Cho, J.; Sheng, A.; Chauhan, S.; Sfeir, M. Y.; Piper, L. F. J.; Watson, D. F.; Banerjee, S. Programming interfacial energetic offsets and charge transfer in β-Pb0.33V2O5/quantum-dot heterostructures: Tuning valence-band edges to overlap with midgap states. J. Phys. Chem. C 2016, 120, 28992–29001.

[40]

Milleville, C. C.; Pelcher, K. E.; Sfeir, M. Y.; Banerjee, S.; Watson, D. F. Directional charge transfer mediated by mid-gap states: A transient absorption spectroscopy study of CdSe quantum dot/β-Pb0.33V2O5 heterostructures. J. Phys. Chem. C 2016, 120, 5221–5232.

[41]

Cho, J.; Suwandaratne, N. S.; Razek, S.; Choi, Y. H.; Piper, L. F. J.; Watson, D. F.; Banerjee, S. Elucidating the mechanistic origins of photocatalytic hydrogen evolution mediated by MoS2/CdS quantum-dot heterostructures. ACS Appl. Mater. Interfaces 2020, 12, 43728–43740.

[42]

Rothfuss, A. R. M.; Ayala, J. R.; Handy, J. V.; McGranahan, C. R.; García-Pedraza, K. E.; Banerjee, S.; Watson, D. F. Linker-assisted assembly of ligand-bridged CdS/MoS2 heterostructures: Tunable light-harvesting properties and ligand-dependent control of charge-transfer dynamics and photocatalytic hydrogen evolution. ACS Appl. Mater. Interfaces 2023, 15, 39966–39979.

[43]

He, J.; Janáky, C. Recent advances in solar-driven carbon dioxide conversion: Expectations versus reality. ACS Energy Lett. 2020, 5, 1996–2014.

[44]

Jacobson, T. A.; Kler, J. S.; Hernke, M. T.; Braun, R. K.; Meyer, K. C.; Funk, W. E. Direct human health risks of increased atmospheric carbon dioxide. Nat. Sustain. 2019, 2, 691–701.

[45]

Muringa Kandy, M.; Rajeev K, A.; Sankaralingam, M. Development of proficient photocatalytic systems for enhanced photocatalytic reduction of carbon dioxide. Sustainable Energy Fuels 2021, 5, 12–33.

[46]

Wang, J.; Xia, T.; Wang, L.; Zheng, X. S.; Qi, Z. M.; Gao, C.; Zhu, J. F.; Li, Z. Q.; Xu, H. X.; Xiong, Y. J. Enabling visible-light-driven selective CO2 reduction by doping quantum dots: Trapping electrons and suppressing H2 evolution. Angew. Chem., Int. Ed. 2018, 57, 16447–16451.

[47]

Zhang, M.; Liu, Z. H.; Wang, J.; Chen, Z. H.; Jiang, G. C.; Zhang, Q. W.; Li, Z. Q. Generating long-lived charge carriers in CdS quantum dots by Cu-doping for photocatalytic CO2 reduction. Inorg. Chem. 2024, 63, 2234–2240.

[48]

Shi, L.; Yan, Y. K.; Wang, Y.; Bo, T. T.; Zhou, W.; Ren, X. H.; Li, Y. S. Efficient and selective photocatalytic CO2 reduction over Ga single atom decorated quantum dots under visible light. Inorg. Chem. Front. 2023, 10, 2731–2741.

[49]

Li, W. H.; Ma, D. K.; Hu, X.; Gou, F. L.; Yang, X. G.; MacSwain, W.; Qi, C. Z.; Zheng, W. W. General strategy for enhanced CH4 selectivity in photocatalytic CO2 reduction reactions by surface oxophilicity engineering. J. Catal. 2022, 415, 77–86.

[50]

Liu, H. Z.; Liu, X.; Li, B.; Luo, H. Q.; Ma, J. G.; Cheng, P. Hybrid metal-organic frameworks encapsulated hybrid Ni-doped CdS nanoparticles for visible-light-driven CO2 reduction. ACS Appl. Mater. Interfaces 2022, 14, 28123–28132.

[51]

Ma, Z. T.; Wang, Q. Y.; Liu, L. M.; Zhang, R. A.; Liu, Q. C.; Liu, P. G.; Wu, L. H.; Liu, C. Y.; Bai, Y.; Zhang, Y. D. et al. Low-coordination environment design of single Co atoms for efficient CO2 photoreduction. Nano Res. 2024, 17, 3745–3751.

[52]

Nevins, J. S.; Coughlin, K. M.; Watson, D. F. Attachment of CdSe nanoparticles to TiO2 via aqueous linker-assisted assembly: Influence of molecular linkers on electronic properties and interfacial electron transfer. ACS Appl. Mater. Interfaces 2011, 3, 4242–4253.

[53]

Marley, P. M.; Stabile, A. A.; Kwan, C. P.; Singh, S.; Zhang, P. H.; Sambandamurthy, G.; Banerjee, S. Charge disproportionation and voltage-induced metal-insulator transitions evidenced in β-Pb X V2O5 nanowires. Adv. Funct. Mater. 2013, 23, 153–160.

[54]

Yang, Z. L.; Gao, D. Q.; Zhu, Z. H.; Zhang, J.; Shi, Z. H.; Zhang, Z. P.; Xue, D. S. Ferromagnetism in sphalerite and wurtzite CdS nanostructures. Nanoscale Res. Lett. 2013, 8, 17.

[55]

Kuisma-Kursula, P. Accuracy, precision and detection limits of SEM-WDS, SEM-EDS and PIXE in the multi-elemental analysis of medieval glass. 3.0.CO;2-W">X-Ray Spectrom. 2000, 29, 111–118.

[56]

Giribabu, G.; Murali, G.; Amaranatha Reddy, D.; Liu, C. L.; Vijayalakshmi, R. P. Structural, optical and magnetic properties of Co doped CdS nanoparticles. J. Alloys Compd. 2013, 581, 363–368.

[57]

Premarani, R.; Jebaraj Devadasan, J.; Saravanakumar, S.; Chandramohan, R.; Mahalingam, T. Structural, optical and magnetic properties of Ni-doped CdS thin films prepared by CBD. J. Mater. Sci.: Mater. Electron. 2015, 26, 2059–2065.

[58]

Murugesan, R.; Sivakumar, S.; Anandan, P.; Haris, M. Structural, optical and magnetic properties of Ba and Ni doped CdS thin films prepared by spray pyrolysis method. J. Mater. Sci.: Mater. Electron. 2017, 28, 12432–12439.

[59]

Yu, W. W.; Qu, L. H.; Guo, W. Z.; Peng, X. G. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater. 2003, 15, 2854–2860.

[60]

Thambidurai, M.; Muthukumarasamy, N.; Agilan, S.; Sabari Arul, N.; Murugan, N.; Balasundaraprabhu, R. Structural and optical characterization of Ni-doped CdS quantum dots. J. Mater. Sci. 2011, 46, 3200–3206.

[61]

Huang, H. M.; Dai, B. Y.; Wang, W.; Lu, C. H.; Kou, J. H.; Ni, Y. R.; Wang, L. Z.; Xu, Z. Z. Oriented built-in electric field introduced by surface gradient diffusion doping for enhanced photocatalytic H2 evolution in CdS nanorods. Nano Lett. 2017, 17, 3803–3808.

[62]

Mocatta, D.; Cohen, G.; Schattner, J.; Millo, O.; Rabani, E.; Banin, U. Heavily doped semiconductor nanocrystal quantum dots. Science 2011, 332, 77–81.

[63]

Han, K.; Im, W. B.; Heo, J.; Chung, W. J. A complete inorganic colour converter based on quantum-dot-embedded silicate glasses for white light-emitting-diodes. Chem. Commun. 2016, 52, 3564–3567.

[64]

Su, Y. Y.; Hessou, E. P.; Colombo, E.; Belletti, G.; Moussadik, A.; Lucas, I. T.; Frochot, V.; Daudon, M.; Rouzière, S.; Bazin, D. et al. Crystalline structures of L-cysteine and L-cystine: A combined theoretical and experimental characterization. Amino Acids 2022, 54, 1123–1133.

[65]

Morris-Cohen, A. J.; Frederick, M. T.; Cass, L. C.; Weiss, E. A. Simultaneous determination of the adsorption constant and the photoinduced electron transfer rate for a CdS quantum dot-viologen complex. J. Am. Chem. Soc. 2011, 133, 10146–10154.

[66]

Huang, J. E.; Huang, Z. Q.; Jin, S. Y.; Lian, T. Q. Exciton dissociation in CdSe quantum dots by hole transfer to phenothiazine. J. Phys. Chem. C 2008, 112, 19734–19738.

[67]

Tvrdy, K.; Frantsuzov, P. A.; Kamat, P. V. Photoinduced electron transfer from semiconductor quantum dots to metal oxide nanoparticles. Proc. Natl. Acad. Sci. USA 2011, 108, 29–34.

[68]

Horrocks, G. A.; Likely, M. F.; Velazquez, J. M.; Banerjee, S. Finite size effects on the structural progression induced by lithiation of V2O5: A combined diffraction and Raman spectroscopy study. J. Mater. Chem. A 2013, 1, 15265–15277.

[69]

Popović, Z. V.; Konstantinović, M. J.; Moshchalkov, V. V.; Isobe, M.; Ueda, Y. Raman scattering study of charge ordering in β-Ca0.33V2O5. J. Phys.: Condens. Matter 2003, 15, L139–L145.

[70]

Baddour-Hadjean, R.; Pereira-Ramos, J. P.; Navone, C.; Smirnov, M. Raman microspectrometry study of electrochemical lithium intercalation into sputtered crystalline V2O5 thin films. Chem. Mater. 2008, 20, 1916–1923.

[71]

Kalha, C.; Fernando, N. K.; Bhatt, P.; Johansson, F. O. L.; Lindblad, A.; Rensmo, H.; Medina, L. Z.; Lindblad, R.; Siol, S.; Jeurgens, L. P. H. et al. Hard x-ray photoelectron spectroscopy: A snapshot of the state-of-the-art in 2020. J. Phys.: Condens. Matter 2021, 33, 233001.

[72]

Razek, S. A.; Popeil, M. R.; Wangoh, L.; Rana, J.; Suwandaratne, N.; Andrews, J. L.; Watson, D. F.; Banerjee, S.; Piper, L. F. J. Designing catalysts for water splitting based on electronic structure considerations. Electron. Struct. 2020, 2, 023001.

[73]

Agbeworvi, G.; Zaheer, W.; Handy, J. V.; Andrews, J. L.; Perez-Beltran, S.; Jaye, C.; Weiland, C.; Fischer, D. A.; Balbuena, P. B.; Banerjee, S. Toggling stereochemical activity through interstitial positioning of cations between 2D V2O5 double layers. Chem. Mater. 2023, 35, 7175–7188.

[74]

Wangoh, L.; Marley, P. M.; Quackenbush, N. F.; Sallis, S.; Fischer, D. A.; Woicik, J. C.; Banerjee, S.; Piper, L. F. J. Electron lone pair distortion facilitated metal-insulator transition in β -Pb0.33V2O5 nanowires. Appl. Phys. Lett. 2014, 104, 182108.

[75]

Wang, H. Y.; Hu, R.; Lei, Y. J.; Jia, Z. Y.; Hu, G. L.; Li, C. B.; Gu, Q. Highly efficient and selective photocatalytic CO2 reduction based on water-soluble CdS QDs modified by the mixed ligands in one pot. Catal. Sci. Technol. 2020, 10, 2821–2829.

[76]

Hernandez, F.; Yang, M.; Nagelj, N.; Lee, A. Y.; Noh, H.; Hur, K. P.; Fu, X. Y.; Savoie, C. J.; Schwartzberg, A. M.; Olshansky, J. H. The role of surface functionalization in quantum dot-based photocatalytic CO2 reduction: Balancing efficiency and stability. Nanoscale 2024, 16, 5624–5633.

[77]

Ciesler, M.; Wang, H.; Zhang, S. B.; West, D. Ultrafast charge transfer enhancement in CdS–MoS2 via a linker molecule. J. Phys. Chem. C 2023, 127, 19668–19674.

[78]

Ciesler, M.; West, D.; Zhang, S. B. Ligand-assisted charge-transfer mechanism: The case of CdSe/Cysteine/MoS2 heterostructures. J. Phys. Chem. Lett. 2021, 12, 12329–12335.

Nano Research
Pages 10279-10291
Cite this article:
García-Pedraza KE, Ayala JR, Wijethunga U, et al. Heterostructures of Ni(II)-doped CdS quantum dots and β-Pb0.33V2O5 nanowires: Enhanced charge separation and redox photocatalysis via doping of QDs. Nano Research, 2024, 17(12): 10279-10291. https://doi.org/10.1007/s12274-024-6675-5
Topics:

559

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 12 July 2024
Revised: 29 October 2024
Accepted: 30 October 2024
Published: 18 November 2024
© Tsinghua University Press 2024
Return