Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
We synthesized heterostructures by tethering Ni(II)-doped CdS (Ni:CdS) quantum dots (QDs) to β-Pb0.33V2O5 nanowires (NWs) using L-cysteine as a molecular linker, and we evaluated the influence of doping on their redox photocatalytic reactivity. We initially hypothesized that incorporating Ni:CdS QDs into heterostructures could alter excited-state dynamics and mechanisms, and that the localization of excited electrons on Ni 3d states could promote redox photocatalytic mechanisms including reduction of CO2. Isolated Ni:CdS QDs were ferromagnetic, and they exhibited enhanced photocatalytic hydrogen evolution and photostability relative to undoped CdS QDs. Both Pb0.33V2O5/CdS heterostructures (with undoped QDs) and Pb0.33V2O5/Ni:CdS heterostructures (with Ni(II)-doped QDs) exhibited substantial energetic overlap between valence-band states of QDs and intercalative mid-gap states of β-Pb0.33V2O5 NWs. Within Pb0.33V2O5/CdS heterostructures, photoexcitation of CdS QDs was followed by rapid (50–100 ps) transfer of both holes and electrons to β-Pb0.33V2O5 NWs. In contrast, within Pb0.33V2O5/Ni:CdS heterostructures, holes were transferred from Ni:CdS QDs to β-Pb0.33V2O5 NWs within 100 ps, but electrons were transferred approximately 20-fold more slowly. This difference in electron- and hole-transfer kinetics promoted charge separation across the Pb0.33V2O5/Ni:CdS interface and enabled the photocatalytic reduction of CO2 to CO, CH4, and HCO2H with > 99.9% selectivity relative to the reduction of H+ to H2. These results highlight the opportunity to fine-tune dynamics and mechanisms of excited-state charge-transfer, and mechanisms of subsequent redox half-reactions, by doping QDs within heterostructures. Moreover, they reveal the promise of heterostructures comprising QDs and MxVyO5 materials as CO2-reduction photocatalysts.
Rossetti, R.; Nakahara, S.; Brus, L. E. Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution. J. Chem. Phys. 1983, 79, 1086–1088.
Brus, L. E. Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. J. Chem. Phys. 1984, 80, 4403–4409.
Bawendi, M. G.; Steigerwald, M. L.; Brus, L. E. The quantum mechanics of larger semiconductor clusters ("Quantum Dots"). Annu. Rev. Phys. Chem. 1990, 41, 477–496.
Fojtik, A.; Weller, H.; Koch, U.; Henglein, A. Photo-chemistry of colloidal metal sulfides 8. Photo-physics of extremely small CdS particles: Q-state CdS and magic agglomeration numbers. Ber. Bunsenges. Phys. Chem. 1984, 88, 969–977.
Henglein, A. Small-particle research: Physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem. Rev. 1989, 89, 1861–1873.
Ekimov, A. I.; Efros, A. L.; Onushchenko, A. A. Quantum size effect in semiconductor microcrystals. Solid State Commun. 1985, 56, 921–924.
Ekimov, A. I.; Onushchenko, A. A. Quantum size effect in three-dimensional microscopic semiconductor crystals. JETP Lett. 2023, 118, S15–S17.
Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mater. Sci. 2000, 30, 545–610.
Murray, C. B.; Norris, D. J.; Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 1993, 115, 8706–8715.
Sarma, D. D.; Kamat, P. V. 2023 Nobel prize in chemistry: A mega recognition for nanosized quantum dots. ACS Energy Lett. 2023, 8, 5149–5151.
Smith, A. M.; Nie, S. M. Semiconductor nanocrystals: Structure, properties, and band gap engineering. Acc. Chem. Res. 2010, 43, 190–200.
Zhu, H. M.; Yang, Y.; Wu, K. F.; Lian, T. Q. Charge transfer dynamics from photoexcited semiconductor quantum dots. Annu. Rev. Phys. Chem. 2016, 67, 259–281.
Kim, J. Y.; Voznyy, O.; Zhitomirsky, D.; Sargent, E. H. 25th Anniversary article: Colloidal quantum dot materials and devices: A quarter-century of advances. Adv. Mater. 2013, 25, 4986–5010.
Jing, L. H.; Kershaw, S. V.; Li, Y. L.; Huang, X. D.; Li, Y. Y.; Rogach, A. L.; Gao, M. Y. Aqueous based semiconductor nanocrystals. Chem. Rev. 2016, 116, 10623–10730.
Kovalenko, M. V.; Manna, L.; Cabot, A.; Hens, Z.; Talapin, D. V.; Kagan, C. R.; Klimov, V. I.; Rogach, A. L.; Reiss, P.; Milliron, D. J. et al. Prospects of nanoscience with nanocrystals. ACS Nano 2015, 9, 1012–1057.
Pietryga, J. M.; Park, Y. S.; Lim, J.; Fidler, A. F.; Bae, W. K.; Brovelli, S.; Klimov, V. I. Spectroscopic and device aspects of nanocrystal quantum dots. Chem. Rev. 2016, 116, 10513–10622.
Harris, R. D.; Bettis Homan, S.; Kodaimati, M.; He, C.; Nepomnyashchii, A. B.; Swenson, N. K.; Lian, S. C.; Calzada, R.; Weiss, E. A. Electronic processes within quantum dot-molecule complexes. Chem. Rev. 2016, 116, 12865–12919.
Lin, S. X.; Peng, X. G. Current status and challenges of solar cells based on semiconductor nanocrystals. Energy Fuels 2021, 35, 18928–18941.
Efros, A. L.; Brus, L. E. Nanocrystal quantum dots: From discovery to modern development. ACS Nano 2021, 15, 6192–6210.
Weiss, E. A. Designing the surfaces of semiconductor quantum dots for colloidal photocatalysis. ACS Energy Lett. 2017, 2, 1005–1013.
Kodaimati, M. S.; McClelland, K. P.; He, C.; Lian, S. C.; Jiang, Y. S.; Zhang, Z. Y.; Weiss, E. A. Viewpoint: Challenges in colloidal photocatalysis and some strategies for addressing them. Inorg. Chem. 2018, 57, 3659–3670.
Knowles, K. E.; Peterson, M. D.; McPhail, M. R.; Weiss, E. A. Exciton dissociation within quantum dot-organic complexes: Mechanisms, use as a probe of interfacial structure, and applications. J. Phys. Chem. C 2013, 117, 10229–10243.
Arcudi, F.; Đorđević, L.; Nagasing, B.; Stupp, S. I.; Weiss, E. A. Quantum dot-sensitized photoreduction of CO2 in water with turnover number > 80,000. J. Am. Chem. Soc. 2021, 143, 18131–18138.
Kamat, P. V.; Christians, J. A.; Radich, E. J. Quantum dot solar cells: Hole transfer as a limiting factor boosting the photoconversion efficiency. Langmuir 2014, 30, 5716–5725.
Spanhel, L.; Haase, M.; Weller, H.; Henglein, A. Photochemistry of colloidal semiconductors. 20. Surface modification and stability of strong luminescing CdS particles. J. Am. Chem. Soc. 1987, 109, 5649–5655.
Selinsky, R. S.; Ding, Q.; Faber, M. S.; Wright, J. C.; Jin, S. Quantum dot nanoscale heterostructures for solar energy conversion. Chem. Soc. Rev. 2013, 42, 2963–2985.
Watson, D. F. Linker-assisted assembly and interfacial electron-transfer reactivity of quantum dot-substrate architectures. J. Phys. Chem. Lett. 2010, 1, 2299–2309.
Handy, J. V.; Zaheer, W.; Rothfuss, A. R. M.; McGranahan, C. R.; Agbeworvi, G.; Andrews, J. L.; García-Pedraza, K. E.; Ponis, J. D.; Ayala, J. R.; Ding, Y. et al. Lone but not alone: Precise positioning of lone pairs for the design of photocatalytic architectures. Chem. Mater. 2022, 34, 1439–1458.
Kamat, P. V. Quantum dot solar cells. The next big thing in photovoltaics. J. Phys. Chem. Lett. 2013, 4, 908–918.
Li, J.; Jiménez-Calvo, P.; Paineau, E.; Ghazzal, M. N. Metal chalcogenides based heterojunctions and novel nanostructures for photocatalytic hydrogen evolution. Catalysts 2020, 10, 89.
Padgaonkar, S.; Olding, J. N.; Lauhon, L. J.; Hersam, M. C.; Weiss, E. A. Emergent optoelectronic properties of mixed-dimensional heterojunctions. Acc. Chem. Res. 2020, 53, 763–772.
Li, Q. Y.; Wu, K. F.; Zhu, H. M.; Yang, Y.; He, S.; Lian, T. Q. Charge transfer from quantum-confined 0D, 1D, and 2D nanocrystals. Chem. Rev. 2024, 124, 5695–5763.
Pelcher, K. E.; Milleville, C. C.; Wangoh, L.; Chauhan, S.; Crawley, M. R.; Marley, P. M.; Piper, L. F. J.; Watson, D. F.; Banerjee, S. Integrating β-Pb0.33V2O5 nanowires with CdSe quantum dots: Toward nanoscale heterostructures with tunable interfacial energetic offsets for charge transfer. Chem. Mater. 2015, 27, 2468–2479.
Zaheer, W.; McGranahan, C. R.; Ayala, J. R.; Garcia-Pedraza, K.; Carrillo, L. J.; Rothfuss, A. R. M.; Wijethunga, U.; Agbeworvi, G.; Giem, A. R.; Andrews, J. L. et al. Photocatalytic hydrogen evolution mechanisms mediated by stereoactive lone pairs of Sb2VO5 in quantum dot heterostructures. Chem Catal. 2024, 4, 100844.
Andrews, J. L.; Cho, J.; Wangoh, L.; Suwandaratne, N.; Sheng, A.; Chauhan, S.; Nieto, K.; Mohr, A.; Kadassery, K. J.; Popeil, M. R. et al. Hole extraction by design in photocatalytic architectures interfacing CdSe quantum dots with topochemically stabilized tin vanadium oxide. J. Am. Chem. Soc. 2018, 140, 17163–17174.
Cho, J.; Sheng, A.; Suwandaratne, N.; Wangoh, L.; Andrews, J. L.; Zhang, P. H.; Piper, L. F. J.; Watson, D. F.; Banerjee, S. The middle road less taken: Electronic-structure-inspired design of hybrid photocatalytic platforms for solar fuel generation. Acc. Chem. Res. 2019, 52, 645–655.
Ayala, J. R.; García-Pedraza, K. E.; Giem, A. R.; Wijethunga, U.; Hariyani, S.; Carrillo, L.; Jaye, C.; Weiland, C.; Fischer, D. A.; Watson, D. F. et al. Interface-modulated kinetic differentials in electron and hole transfer rates as a key design principle for redox photocatalysis by Sb2VO5/QD heterostructures. J. Chem. Phys. 2024, 160, 194703.
Walsh, A.; Payne, D. J.; Egdell, R. G.; Watson, G. W. Stereochemistry of post-transition metal oxides: Revision of the classical lone pair model. Chem. Soc. Rev. 2011, 40, 4455–4463.
Pelcher, K. E.; Milleville, C. C.; Wangoh, L.; Cho, J.; Sheng, A.; Chauhan, S.; Sfeir, M. Y.; Piper, L. F. J.; Watson, D. F.; Banerjee, S. Programming interfacial energetic offsets and charge transfer in β-Pb0.33V2O5/quantum-dot heterostructures: Tuning valence-band edges to overlap with midgap states. J. Phys. Chem. C 2016, 120, 28992–29001.
Milleville, C. C.; Pelcher, K. E.; Sfeir, M. Y.; Banerjee, S.; Watson, D. F. Directional charge transfer mediated by mid-gap states: A transient absorption spectroscopy study of CdSe quantum dot/β-Pb0.33V2O5 heterostructures. J. Phys. Chem. C 2016, 120, 5221–5232.
Cho, J.; Suwandaratne, N. S.; Razek, S.; Choi, Y. H.; Piper, L. F. J.; Watson, D. F.; Banerjee, S. Elucidating the mechanistic origins of photocatalytic hydrogen evolution mediated by MoS2/CdS quantum-dot heterostructures. ACS Appl. Mater. Interfaces 2020, 12, 43728–43740.
Rothfuss, A. R. M.; Ayala, J. R.; Handy, J. V.; McGranahan, C. R.; García-Pedraza, K. E.; Banerjee, S.; Watson, D. F. Linker-assisted assembly of ligand-bridged CdS/MoS2 heterostructures: Tunable light-harvesting properties and ligand-dependent control of charge-transfer dynamics and photocatalytic hydrogen evolution. ACS Appl. Mater. Interfaces 2023, 15, 39966–39979.
He, J.; Janáky, C. Recent advances in solar-driven carbon dioxide conversion: Expectations versus reality. ACS Energy Lett. 2020, 5, 1996–2014.
Jacobson, T. A.; Kler, J. S.; Hernke, M. T.; Braun, R. K.; Meyer, K. C.; Funk, W. E. Direct human health risks of increased atmospheric carbon dioxide. Nat. Sustain. 2019, 2, 691–701.
Muringa Kandy, M.; Rajeev K, A.; Sankaralingam, M. Development of proficient photocatalytic systems for enhanced photocatalytic reduction of carbon dioxide. Sustainable Energy Fuels 2021, 5, 12–33.
Wang, J.; Xia, T.; Wang, L.; Zheng, X. S.; Qi, Z. M.; Gao, C.; Zhu, J. F.; Li, Z. Q.; Xu, H. X.; Xiong, Y. J. Enabling visible-light-driven selective CO2 reduction by doping quantum dots: Trapping electrons and suppressing H2 evolution. Angew. Chem., Int. Ed. 2018, 57, 16447–16451.
Zhang, M.; Liu, Z. H.; Wang, J.; Chen, Z. H.; Jiang, G. C.; Zhang, Q. W.; Li, Z. Q. Generating long-lived charge carriers in CdS quantum dots by Cu-doping for photocatalytic CO2 reduction. Inorg. Chem. 2024, 63, 2234–2240.
Shi, L.; Yan, Y. K.; Wang, Y.; Bo, T. T.; Zhou, W.; Ren, X. H.; Li, Y. S. Efficient and selective photocatalytic CO2 reduction over Ga single atom decorated quantum dots under visible light. Inorg. Chem. Front. 2023, 10, 2731–2741.
Li, W. H.; Ma, D. K.; Hu, X.; Gou, F. L.; Yang, X. G.; MacSwain, W.; Qi, C. Z.; Zheng, W. W. General strategy for enhanced CH4 selectivity in photocatalytic CO2 reduction reactions by surface oxophilicity engineering. J. Catal. 2022, 415, 77–86.
Liu, H. Z.; Liu, X.; Li, B.; Luo, H. Q.; Ma, J. G.; Cheng, P. Hybrid metal-organic frameworks encapsulated hybrid Ni-doped CdS nanoparticles for visible-light-driven CO2 reduction. ACS Appl. Mater. Interfaces 2022, 14, 28123–28132.
Ma, Z. T.; Wang, Q. Y.; Liu, L. M.; Zhang, R. A.; Liu, Q. C.; Liu, P. G.; Wu, L. H.; Liu, C. Y.; Bai, Y.; Zhang, Y. D. et al. Low-coordination environment design of single Co atoms for efficient CO2 photoreduction. Nano Res. 2024, 17, 3745–3751.
Nevins, J. S.; Coughlin, K. M.; Watson, D. F. Attachment of CdSe nanoparticles to TiO2 via aqueous linker-assisted assembly: Influence of molecular linkers on electronic properties and interfacial electron transfer. ACS Appl. Mater. Interfaces 2011, 3, 4242–4253.
Marley, P. M.; Stabile, A. A.; Kwan, C. P.; Singh, S.; Zhang, P. H.; Sambandamurthy, G.; Banerjee, S. Charge disproportionation and voltage-induced metal-insulator transitions evidenced in β-Pb X V2O5 nanowires. Adv. Funct. Mater. 2013, 23, 153–160.
Yang, Z. L.; Gao, D. Q.; Zhu, Z. H.; Zhang, J.; Shi, Z. H.; Zhang, Z. P.; Xue, D. S. Ferromagnetism in sphalerite and wurtzite CdS nanostructures. Nanoscale Res. Lett. 2013, 8, 17.
Kuisma-Kursula, P. Accuracy, precision and detection limits of SEM-WDS, SEM-EDS and PIXE in the multi-elemental analysis of medieval glass. 3.0.CO;2-W">X-Ray Spectrom. 2000, 29, 111–118.
Giribabu, G.; Murali, G.; Amaranatha Reddy, D.; Liu, C. L.; Vijayalakshmi, R. P. Structural, optical and magnetic properties of Co doped CdS nanoparticles. J. Alloys Compd. 2013, 581, 363–368.
Premarani, R.; Jebaraj Devadasan, J.; Saravanakumar, S.; Chandramohan, R.; Mahalingam, T. Structural, optical and magnetic properties of Ni-doped CdS thin films prepared by CBD. J. Mater. Sci.: Mater. Electron. 2015, 26, 2059–2065.
Murugesan, R.; Sivakumar, S.; Anandan, P.; Haris, M. Structural, optical and magnetic properties of Ba and Ni doped CdS thin films prepared by spray pyrolysis method. J. Mater. Sci.: Mater. Electron. 2017, 28, 12432–12439.
Yu, W. W.; Qu, L. H.; Guo, W. Z.; Peng, X. G. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater. 2003, 15, 2854–2860.
Thambidurai, M.; Muthukumarasamy, N.; Agilan, S.; Sabari Arul, N.; Murugan, N.; Balasundaraprabhu, R. Structural and optical characterization of Ni-doped CdS quantum dots. J. Mater. Sci. 2011, 46, 3200–3206.
Huang, H. M.; Dai, B. Y.; Wang, W.; Lu, C. H.; Kou, J. H.; Ni, Y. R.; Wang, L. Z.; Xu, Z. Z. Oriented built-in electric field introduced by surface gradient diffusion doping for enhanced photocatalytic H2 evolution in CdS nanorods. Nano Lett. 2017, 17, 3803–3808.
Mocatta, D.; Cohen, G.; Schattner, J.; Millo, O.; Rabani, E.; Banin, U. Heavily doped semiconductor nanocrystal quantum dots. Science 2011, 332, 77–81.
Han, K.; Im, W. B.; Heo, J.; Chung, W. J. A complete inorganic colour converter based on quantum-dot-embedded silicate glasses for white light-emitting-diodes. Chem. Commun. 2016, 52, 3564–3567.
Su, Y. Y.; Hessou, E. P.; Colombo, E.; Belletti, G.; Moussadik, A.; Lucas, I. T.; Frochot, V.; Daudon, M.; Rouzière, S.; Bazin, D. et al. Crystalline structures of L-cysteine and L-cystine: A combined theoretical and experimental characterization. Amino Acids 2022, 54, 1123–1133.
Morris-Cohen, A. J.; Frederick, M. T.; Cass, L. C.; Weiss, E. A. Simultaneous determination of the adsorption constant and the photoinduced electron transfer rate for a CdS quantum dot-viologen complex. J. Am. Chem. Soc. 2011, 133, 10146–10154.
Huang, J. E.; Huang, Z. Q.; Jin, S. Y.; Lian, T. Q. Exciton dissociation in CdSe quantum dots by hole transfer to phenothiazine. J. Phys. Chem. C 2008, 112, 19734–19738.
Tvrdy, K.; Frantsuzov, P. A.; Kamat, P. V. Photoinduced electron transfer from semiconductor quantum dots to metal oxide nanoparticles. Proc. Natl. Acad. Sci. USA 2011, 108, 29–34.
Horrocks, G. A.; Likely, M. F.; Velazquez, J. M.; Banerjee, S. Finite size effects on the structural progression induced by lithiation of V2O5: A combined diffraction and Raman spectroscopy study. J. Mater. Chem. A 2013, 1, 15265–15277.
Popović, Z. V.; Konstantinović, M. J.; Moshchalkov, V. V.; Isobe, M.; Ueda, Y. Raman scattering study of charge ordering in β-Ca0.33V2O5. J. Phys.: Condens. Matter 2003, 15, L139–L145.
Baddour-Hadjean, R.; Pereira-Ramos, J. P.; Navone, C.; Smirnov, M. Raman microspectrometry study of electrochemical lithium intercalation into sputtered crystalline V2O5 thin films. Chem. Mater. 2008, 20, 1916–1923.
Kalha, C.; Fernando, N. K.; Bhatt, P.; Johansson, F. O. L.; Lindblad, A.; Rensmo, H.; Medina, L. Z.; Lindblad, R.; Siol, S.; Jeurgens, L. P. H. et al. Hard x-ray photoelectron spectroscopy: A snapshot of the state-of-the-art in 2020. J. Phys.: Condens. Matter 2021, 33, 233001.
Razek, S. A.; Popeil, M. R.; Wangoh, L.; Rana, J.; Suwandaratne, N.; Andrews, J. L.; Watson, D. F.; Banerjee, S.; Piper, L. F. J. Designing catalysts for water splitting based on electronic structure considerations. Electron. Struct. 2020, 2, 023001.
Agbeworvi, G.; Zaheer, W.; Handy, J. V.; Andrews, J. L.; Perez-Beltran, S.; Jaye, C.; Weiland, C.; Fischer, D. A.; Balbuena, P. B.; Banerjee, S. Toggling stereochemical activity through interstitial positioning of cations between 2D V2O5 double layers. Chem. Mater. 2023, 35, 7175–7188.
Wangoh, L.; Marley, P. M.; Quackenbush, N. F.; Sallis, S.; Fischer, D. A.; Woicik, J. C.; Banerjee, S.; Piper, L. F. J. Electron lone pair distortion facilitated metal-insulator transition in β -Pb0.33V2O5 nanowires. Appl. Phys. Lett. 2014, 104, 182108.
Wang, H. Y.; Hu, R.; Lei, Y. J.; Jia, Z. Y.; Hu, G. L.; Li, C. B.; Gu, Q. Highly efficient and selective photocatalytic CO2 reduction based on water-soluble CdS QDs modified by the mixed ligands in one pot. Catal. Sci. Technol. 2020, 10, 2821–2829.
Hernandez, F.; Yang, M.; Nagelj, N.; Lee, A. Y.; Noh, H.; Hur, K. P.; Fu, X. Y.; Savoie, C. J.; Schwartzberg, A. M.; Olshansky, J. H. The role of surface functionalization in quantum dot-based photocatalytic CO2 reduction: Balancing efficiency and stability. Nanoscale 2024, 16, 5624–5633.
Ciesler, M.; Wang, H.; Zhang, S. B.; West, D. Ultrafast charge transfer enhancement in CdS–MoS2 via a linker molecule. J. Phys. Chem. C 2023, 127, 19668–19674.
Ciesler, M.; West, D.; Zhang, S. B. Ligand-assisted charge-transfer mechanism: The case of CdSe/Cysteine/MoS2 heterostructures. J. Phys. Chem. Lett. 2021, 12, 12329–12335.