AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Engineering Cu2O/Cu/N-C interface to induce directional migration of charge for driving photocatalytic homo-coupling of terminal alkynes

Xiaoqin Yan1,§Tianyi Xu1,§Wenwen Zhan1,§Yang Yang1( )Yang Yu1Jianjian Yi3Xiaoxiao He2( )Lei Yang4Jianwei Zhao4Liming Sun1( )Xiguang Han1
Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Department of Chemistry, School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, China
State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, China
Shenzhen HUASUAN Technology Co., Ltd, Shenzhen 518055, China

§ Xiaoqin Yan, Tianyi Xu, and Wenwen Zhan contributed equally to this work.

Show Author Information

Graphical Abstract

The construction of the Cu2O/Cu/N-C interface facilitates the directional migration of photogenerated carriers, thereby promoting the formation of key active intermediates in terminal alkynes homo-coupling and facilitating the rearrangement of its internal charge, ultimately enabling a smooth homo-coupling reaction.

Abstract

The efficient utilization of visible light catalysts for organic reactions necessitates not only the effective separation of photogenerated electrons and holes to participate in the reaction, but also their ability to form key intermediates with reactant molecules. The present study successfully synthesized a crusiform-like mesoporous structure of nitrogen-doped carbon-coated Cu2O/Cu (Cu2O/Cu/N-C) with a Cu2O/dual electron acceptor interface using etched HKUST-1 as the precursor. A series of theoretical and experimental studies have demonstrated that the Cu2O/Cu/N-C interface in the photocatalytic homo-coupling of terminal alkynes not only effectively enhances the separation of photogenerated electron−hole pairs, but also facilitates the formation of the key intermediate [Cu2O/Cu/N-C]-phenylacetylide and promotes the rearrangement of its internal charges. As a result, the homo-coupling reaction can be effectively facilitated. The primary reason for the functional role of Cu2O/Cu/N-C interface lies in the downward bending of energy band from Cu2O to N-doped C layers, induced by the different work functions of Cu2O, Cu and N-doped C layers. Consequently, Cu2O/Cu/N-C photocatalysts demonstrate exceptional photocatalytic activity in the homo-coupling reaction of terminal alkynes under blue-light irradiation and air atmosphere. The present study presents a novel research methodology for the development of highly efficient visible light catalysts to facilitate organic reactions in future applications.

Electronic Supplementary Material

Download File(s)
6669_ESM.pdf (3.3 MB)

References

[1]

Shaw, M. H.; Twilton, J.; MacMillan, D. W. C. Photoredox catalysis in organic chemistry. J. Org. Chem. 2016, 81, 6898–6926.

[2]

Kärkäs, M. D.; Porco, Jr. J. A.; Stephenson, C. R. J. Photochemical approaches to complex chemotypes: Applications in natural product synthesis. Chem. Rev. 2016, 116, 9683–9747.

[3]

Xuan, J.; Xiao, W. J. Visible-light photoredox catalysis. Angew. Chem., Int. Ed. 2012, 51, 6828–6838.

[4]

Palmisano, G.; Augugliaro, V.; Pagliaro, M.; Palmisano, L. Photocatalysis: A promising route for 21st century organic chemistry. Chem. Commun. 2007, 3425–3437.

[5]

Pan, X. Y.; Zheng, J.; Zhang, L. X.; Yi, Z. G. Core-shell Au@SnO2 nanostructures supported on Na2Ti4O9 nanobelts as a highly active and deactivation-resistant catalyst toward selective nitroaromatics reduction. Inorg. Chem. 2019, 58, 11164–11171.

[6]

Lang, X. J.; Chen, X. D.; Zhao, J. C. Heterogeneous visible light photocatalysis for selective organic transformations. Chem. Soc. Rev. 2014, 43, 473–486.

[7]

Yang, M. Q.; Gao, M. M.; Hong, M. H.; Ho, G. W. Visible-to-NIR photon harvesting: Progressive engineering of catalysts for solar-powered environmental purification and fuel production. Adv. Mater. 2018, 30, 1802894.

[8]

Feng, X. J.; Zhao, Z. R.; Yang, F.; Jin, T. N.; Ma, Y. J.; Bao, M. 1,3-Diynes synthesis by homo-coupling of terminal alkynes using a Pd(PPh3)4/Ag2O simple catalyst system. J. Organomet. Chem. 2011, 696, 1479–1482.

[9]

Sonogashira, K.; Tohda, Y.; Hagihara, N. A convenient synthesis of acetylenes: Catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines. Tetrahedron Lett. 1975, 16, 4467–4470.

[10]

Crowley, J. D.; Goldup, S. M.; Gowans, N. D.; Leigh, D. A.; Ronaldson, V. E.; Slawin, A. M. Z. An unusual nickel-copper-mediated alkyne homocoupling reaction for the active-template synthesis of [2]rotaxanes. J. Am. Chem. Soc. 2010, 132, 6243–6248.

[11]

Chakraborty, D.; Nandi, S.; Mullangi, D.; Haldar, S.; Vinod, C. P.; Vaidhyanathan, R. Cu/Cu2O nanoparticles supported on a phenol-pyridyl COF as a heterogeneous catalyst for the synthesis of unsymmetrical diynes via Glaser-hay coupling. ACS Appl. Mater. Interfaces 2019, 11, 15670–15679.

[12]

Leforestier, B.; Gyton, M. R.; Chaplin, A. B. Oxidative addition of a mechanically entrapped C(sp)−C(sp) bond to a rhodium(I) pincer complex. Angew. Chem. 2020, 132, 23706–23710.

[13]

Kianmehr, E.; Faghih, N.; Khan, K. M. Palladium-catalyzed regioselective benzylation-annulation of pyridine N-oxides with toluene derivatives via multiple C−H bond activations: Benzylation versus arylation. Org. Lett. 2015, 17, 414–417.

[14]

Ma, X. Y.; Tzouras, N. V.; Peng, M.; Van Hecke, K.; Nolan, S. P. Azolium aurates as pre-catalysts for the oxidative coupling of terminal alkynes under mild conditions. J. Org. Chem. 2022, 87, 4883–4893.

[15]

Su, L. B.; Dong, J. Y.; Liu, L.; Sun, M. L.; Qiu, R. H.; Zhou, Y. B.; Yin, S. F. Copper catalysis for selective heterocoupling of terminal alkynes. J. Am. Chem. Soc. 2016, 138, 12348–12351.

[16]

Allen, S. E.; Walvoord, R. R.; Padilla-Salinas, R.; Kozlowski, M. C. Aerobic copper-catalyzed organic reactions. Chem. Rev. 2013, 113, 6234–6458.

[17]

Zhang, Z. H.; Dong, X. Y.; Du, X. Y.; Gu, Q. S.; Li, Z. L.; Liu, X. Y. Copper-catalyzed enantioselective sonogashira-type oxidative cross-coupling of unactivated C(sp3)−H bonds with alkynes. Nat. Commun. 2019, 10, 5689.

[18]

Dong, X. Y.; Cheng, J. T.; Zhang, Y. F.; Li, Z. L.; Zhan, T. Y.; Chen, J. J.; Wang, F. L.; Yang, N. Y.; Ye, L.; Gu, Q. S. et al. Copper-catalyzed asymmetric radical 1, 2-carboalkynylation of alkenes with alkyl halides and terminal alkynes. J. Am. Chem. Soc. 2020, 142, 9501–9509.

[19]

Kamata, K.; Yamaguchi, S.; Kotani, M.; Yamaguchi, K.; Mizuno, N. Efficient oxidative alkyne homocoupling catalyzed by a monomeric dicopper-substituted silicotungstate. Angew. Chem. 2008, 120, 2441–2444.

[20]

Zhu, Y. G.; Shi, Y. A facile copper(I)-catalyzed homocoupling of terminal alkynes to 1,3-diynes with diaziridinone under mild conditions. Org. Biomol. Chem. 2013, 11, 7451–7454.

[21]

Lu, W. X.; Yu, X. Q.; Bao, M. Cu-based ternary deep eutectic solvents for homo- and cross-coupling reactions of terminal alkynes. Green Chem. 2023, 25, 5123–5127.

[22]

Vogt, C. G.; Oltermann, M.; Pickhardt, W.; Grätz, S.; Borchardt, L. Bronze age of direct mechanocatalysis: How alloyed milling materials advance coupling in ball mills. Adv. Energy Sustain. Res. 2021, 2, 2100011.

[23]

Van Raden, J. M.; White, B. M.; Zakharov, L. N.; Jasti, R. Nanohoop rotaxanes from active metal template syntheses and their potential in sensing applications. Angew. Chem., Int. Ed. 2019, 58, 7341–7345.

[24]

Sagadevan, A.; Charpe, V. P.; Hwang, K. C. Copper(I) chloride catalysed room temperature Csp-Csp homocoupling of terminal alkynes mediated by visible light. Catal. Sci. Technol. 2016, 6, 7688–7692.

[25]

Sagadevan, A.; Lyu, P. C.; Hwang, K. C. Visible-light-activated copper(I) catalyzed oxidative Csp-Csp cross-coupling reaction: Efficient synthesis of unsymmetrical conjugated diynes without ligands and base. Green Chem. 2016, 18, 4526–4530.

[26]

Glaser, C. Beiträge zur kenntniss des acetenylbenzols. Ber. Dtsch. Chem. Ges. 1869, 2, 422–424.

[27]

Hay, A. Communications-oxidative coupling of acetylenes. J. Org. Chem. 1960, 25, 1275–1276.

[28]

Hay, A. S. Oxidative coupling of acetylenes. II. J. Org. Chem. 1962, 27, 3320–3321.

[29]

Do, H. Q.; Daugulis, O. An aromatic Glaser-hay reaction. J. Am. Chem. Soc. 2009, 131, 17052–17053.

[30]

Johansson Seechurn, C. C. C.; Kitching, M. O.; Colacot, T. J.; Snieckus, V. Palladium-catalyzed cross-coupling: A historical contextual perspective to the 2010 Nobel prize. Angew. Chem., Int. Ed. 2012, 51, 5062–5085.

[31]

van Gelderen, L.; Rothenberg, G.; Calderone, V. R.; Wilson, K.; Shiju, N. R. Efficient alkyne homocoupling catalysed by copper immobilized on functionalized silica. Appl. Organomet. Chem. 2013, 27, 23–27.

[32]

Pawar, A. A.; Halivni, S.; Waiskopf, N.; Ben-Shahar, Y.; Soreni-Harari, M.; Bergbreiter, S.; Banin, U.; Magdassi, S. Rapid three-dimensional printing in water using semiconductor-metal hybrid nanoparticles as photoinitiators. Nano Lett. 2017, 17, 4497–4501.

[33]

Ben-Shahar, Y.; Stone, D.; Banin, U. Rich landscape of colloidal semiconductor-metal hybrid nanostructures: Synthesis, synergetic characteristics, and emerging applications. Chem. Rev. 2023, 123, 3790–3851.

[34]

Cohen, T.; Waiskopf, N.; Levi, A.; Stone, D.; Remennik, S.; Banin, U. Flow synthesis of photocatalytic semiconductor-metal hybrid nanocrystals. Nanoscale 2022, 14, 1944–1953.

[35]

Chen, W.; Li, X. J.; Wang, F.; Javaid, S.; Pang, Y. P.; Chen, J. Y.; Yin, Z. Y.; Wang, S. B.; Li, Y. G.; Jia, G. H. Nonepitaxial gold-tipped ZnSe hybrid nanorods for efficient photocatalytic hydrogen production. Small 2020, 16, 1902231.

[36]

Ben-Shahar, Y.; Philbin, J. P.; Scotognella, F.; Ganzer, L.; Cerullo, G.; Rabani, E.; Banin, U. Charge carrier dynamics in photocatalytic hybrid semiconductor-metal nanorods: Crossover from auger recombination to charge transfer. Nano Lett. 2018, 18, 5211–5216.

[37]

Lin, W. H.; Chiu, Y. H.; Shao, P. W.; Hsu, Y. J. Metal-particle-decorated ZnO nanocrystals: Photocatalysis and charge dynamics. ACS Appl. Mater. Interfaces 2016, 8, 32754–32763.

[38]

Suzuki, T. M.; Takayama, T.; Sato, S.; Iwase, A.; Kudo, A.; Morikawa, T. Enhancement of CO2 reduction activity under visible light irradiation over Zn-based metal sulfides by combination with Ru-complex catalysts. Appl. Catal. B: Environ. 2018, 224, 572–578.

[39]

Pourrahimi, A. M.; Villa, K.; Palenzuela, C. L. M.; Ying, Y. L.; Sofer, Z.; Pumera, M. Catalytic and light-driven ZnO/Pt janus nano/micromotors: Switching of motion mechanism via interface roughness and defect tailoring at the nanoscale. Adv. Funct. Mater. 2019, 29, 1808678.

[40]

Sun, L. M.; Li, R.; Zhan, W. W.; Yuan, Y. S.; Wang, X. J.; Han, X. G.; Zhao, Y. L. Double-shelled hollow rods assembled from nitrogen/sulfur-codoped carbon coated indium oxide nanoparticles as excellent photocatalysts. Nat. Commun. 2019, 10, 2270.

[41]

Xu, Q.; Dai, L. L.; Wang, Z. J.; Wu, J. Q.; Lu, H. Y.; Yuan, L. T.; Zhu, Q. H.; Zeng, X. F. Renewable ultrathin carbon nitride nanosheets and its practical utilization for photocatalytic decarboxylation free radical coupling reaction. Chem. Eng. J. 2023, 466, 142990.

[42]

Zhang, Q.; Zhang, J. H.; Wang, X. H.; Li, L. F.; Li, Y. F.; Dai, W. L. In-N-In boosting interfacial charge transfer in carbon-coated hollow tubular In2O3/ZnIn2S4 heterostructure derived from In-MOF for enhanced photocatalytic hydrogen evolution. ACS Catal. 2021, 11, 6276–6289.

[43]

Zhuang, Y.; Sun, L. M.; Zeng, S. Y.; Zhan, W. W.; Wang, X. J.; Zhao, Y. L.; Han, X. G. Engineering migration pathway for effective separation of photogenerated carriers on multicomponent heterojunctions coated with nitrogen-doped carbon. Chem.—Eur. J. 2019, 25, 14133–14139.

[44]

Sun, L. M.; Yuan, Y. S.; Li, R.; Zhan, W. W.; Wang, X. J.; Zhao, Y. L.; Han, X. G. Significantly enhanced photocatalytic performance of In2O3 hollow spheres via the coating effect of an N, S-codoped carbon layer. J. Mater. Chem. A 2019, 7, 25423–25432.

[45]

Cai, Q.; Liu, C. L.; Yin, C. C.; Huang, W.; Cui, L. F.; Shi, H. C.; Fang, X. Y.; Zhang, L.; Kang, S. F.; Wang, Y. G. Biotemplating synthesis of graphitic carbon-coated TiO2 and its application as efficient visible-light-driven photocatalyst for Cr6+ remove. ACS Sustain. Chem. Eng. 2017, 5, 3938–3944.

[46]

Jiang, D. H.; Zhang, Y. G.; Li, X. H. Folded-up thin carbon nanosheets grown on Cu2O cubes for improving photocatalytic activity. Nanoscale 2017, 9, 12348–12352.

[47]

Wang, J. C.; Zhang, L.; Fang, W. X.; Ren, J.; Li, Y. Y.; Yao, H. C.; Wang, J. S.; Li, Z. J. Enhanced photoreduction CO2 activity over direct Z-scheme α-Fe2O3/Cu2O heterostructures under visible light irradiation. ACS Appl. Mater. Interfaces 2015, 7, 8631–8639.

[48]

Luo, Z. W.; Jiang, H.; Li, D.; Hu, L. Z.; Geng, W. H.; Wei, P.; Ouyang, P. K. Improved photocatalytic activity and mechanism of Cu2O/N-TiO2 prepared by a two-step method. RSC Adv. 2014, 4, 17797–17804.

[49]

Zhang, J.; Ma, H. P.; Liu, Z. F. Highly efficient photocatalyst based on all oxides WO3/Cu2O heterojunction for photoelectrochemical water splitting. Appl. Catal. B: Environ. 2017, 201, 84–91.

[50]

Gong, H. H.; Zhang, Y. F.; Cao, Y.; Luo, M. L.; Feng, Z. C.; Yang, W. B.; Liu, K. W.; Cao, H. M.; Yan, H. J. Pt@Cu2O/WO3 composite photocatalyst for enhanced photocatalytic water oxidation performance. Appl. Catal. B: Environ. 2018, 237, 309–317.

[51]

Yao, S.; Sun, B. Q.; Zhang, P.; Tian, Z. Y.; Yin, H. Q.; Zhang, Z. M. Anchoring ultrafine Cu2O nanocluster on PCN for CO2 photoreduction in water vapor with much improved stability. Appl. Catal. B: Environ. 2022, 317, 121702.

[52]

Guo, S.; Kong, L. H.; Wang, P.; Yao, S.; Lu, T. B.; Zhang, Z. M. Switching excited state distribution of metal-organic framework for dramatically boosting photocatalysis. Angew. Chem., Int. Ed. 2022, 61, e202206193.

[53]

Fu, S. S.; Yao, S.; Guo, S.; Guo, G. C.; Yuan, W. J.; Lu, T. B.; Zhang, Z. M. Feeding carbonylation with CO2 via the synergy of single-site/nanocluster catalysts in a photosensitizing MOF. J. Am. Chem. Soc. 2021, 143, 20792–20801.

[54]

Chui, S. S.-Y.; Lo, S. M.-F.; Charmant, J. P. H.; Orpen, A. G.; Williams, I. D. A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3] n. Science, 1999, 283, 1148–1150

[55]

Frankcombe, T. J.; and Liu, Y. Interpretation of oxygen 1s X-ray photoelectron spectroscopy of ZnO. Chem. Mater. 2023, 35, 5468–5474.

[56]

Tang, J.; Chen, J. B.; Zhang, Z. Y.; Ma, Q. C.; Hu, X. L.; Li, P.; Liu, Z. Q.; Cui, P. X.; Wan, C.; Ke, Q. P. et al. Spontaneous generation of singlet oxygen on microemulsion-derived manganese oxides with rich oxygen vacancies for efficient aerobic oxidation. Chem. Sci. 2023, 14, 13402–13409.

[57]

Han, X.; He, X. X.; Wang, F.; Chen, J. Q.; Xu, J. H.; Wang, X. J.; Han, X. G. Engineering an N-doped Cu2O@N-C interface with long-lived photo-generated carriers for efficient photoredox catalysts. J. Mater. Chem. A 2017, 5, 10220–10226.

[58]

Han, X. G.; He, X. X.; Sun, L. M.; Han, X.; Zhan, W. W.; Xu, J. H.; Wang, X. J.; Chen, J. Q. Increasing effectiveness of photogenerated carriers by in situ anchoring of Cu2O nanoparticles on a nitrogen-doped porous carbon yolk-shell cuboctahedral framework. ACS Catal. 2018, 8, 3348–3356.

[59]

Hagfeldt, A.; Graetzel, M. Light-induced redox reactions in nanocrystalline systems. Chem. Rev. 1995, 95, 49–68.

[60]

Vequizo, J. J. M.; Matsunaga, H.; Ishiku, T.; Kamimura, S.; Ohno, T.; Yamakata, A. Trapping-induced enhancement of photocatalytic activity on brookite TiO2 powders: Comparison with anatase and rutile TiO2 powders. ACS Catal. 2017, 7, 2644–2651.

[61]

Dworak, L.; Roth, S.; Wachtveitl, J. Charge transfer-induced state filling in CdSe quantum dot-alizarin complexes. J. Phys. Chem. C 2017, 121, 2613–2619.

Nano Research
Pages 6895-6902
Cite this article:
Yan X, Xu T, Zhan W, et al. Engineering Cu2O/Cu/N-C interface to induce directional migration of charge for driving photocatalytic homo-coupling of terminal alkynes. Nano Research, 2024, 17(8): 6895-6902. https://doi.org/10.1007/s12274-024-6669-3
Topics:

646

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 21 February 2024
Revised: 27 March 2024
Accepted: 29 March 2024
Published: 21 May 2024
© Tsinghua University Press 2024
Return