Journal Home > Online First

Solid polymer electrolytes (SPEs) based all-solid-state batteries (ASSBs) have attracted extensive attention as a promising candidate for next-generation energy storage systems. Typical ASSBs require high fabrication pressure to achieve high areal capacity, under which, however, SPEs struggle and risk damage or failure due to their low mechanical strength. There is also a lack of study on complex stress and strain SPEs experience during ASSB cell assembly processes. Here, ceramic solid electrolytes are selected as interlayers to address the stress–strain conditions during assembling. As a result, high areal capacity ASSBs with a LiCoO2 loading of 12 mg·cm−2 were assembled with SPE-based composite electrolytes. Around 200 cycles were carried out for these cells at a current density of 1 mA·cm−2 under room temperature. The capacity decay of the battery at 200 cycles is observed to be as low as 0.06% per cycle. This work identifies a critical issue for application of SPEs in ASSBs and provides a potential strategy for the design of SPE-based ASSBs with high specific energy and long cycle life.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Solid polymer electrolyte-based high areal capacity all-solid-state batteries enabled with ceramic interlayers

Show Author's information Chenji Hu1,§Daiqian Chen2,§Yage Huang1,§Guoyong Xue1Xi Liu3Jingshu Wang2Jun Ma1Bowen Chen2Qi Chen2Linsen Li1,4Yanbin Shen2Liwei Chen1,2,4( )
School of Chemistry and Chemical Engineering, in-situ Center for Physical Sciences, Shanghai Electrochemical Energy Device Research Center (SEED) and Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
i-Lab, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, China
IDONÅNO Co Ltd, Shanghai 201614, China
Future Battery Research Center, Global Institute of Future Technology, Shanghai Jiao Tong University, Shanghai 200240, China

§ Chenji Hu, Daiqian Chen, and Yage Huang contributed equally to this work.

Abstract

Solid polymer electrolytes (SPEs) based all-solid-state batteries (ASSBs) have attracted extensive attention as a promising candidate for next-generation energy storage systems. Typical ASSBs require high fabrication pressure to achieve high areal capacity, under which, however, SPEs struggle and risk damage or failure due to their low mechanical strength. There is also a lack of study on complex stress and strain SPEs experience during ASSB cell assembly processes. Here, ceramic solid electrolytes are selected as interlayers to address the stress–strain conditions during assembling. As a result, high areal capacity ASSBs with a LiCoO2 loading of 12 mg·cm−2 were assembled with SPE-based composite electrolytes. Around 200 cycles were carried out for these cells at a current density of 1 mA·cm−2 under room temperature. The capacity decay of the battery at 200 cycles is observed to be as low as 0.06% per cycle. This work identifies a critical issue for application of SPEs in ASSBs and provides a potential strategy for the design of SPE-based ASSBs with high specific energy and long cycle life.

Keywords: high areal capacity, all-solid-state batteries, ceramic interlayer, solid polymer electrolyte

References(33)

[1]

Manthiram, A.; Yu, X. W.; Wang, S. F. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2017, 2, 16103.

[2]

Janek, J.; Zeier, W. G. Challenges in speeding up solid-state battery development. Nat. Energy 2023, 8, 230–240.

[3]

Yoon, K.; Lee, S.; Oh, K.; Kang, K. Challenges and strategies towards practically feasible solid-state lithium metal batteries. Adv. Mater. 2022, 34, 2104666.

[4]

Chen, R. S.; Li, Q. H.; Yu, X. Q.; Chen, L. Q.; Li, H. Approaching practically accessible solid-state batteries: Stability issues related to solid electrolytes and interfaces. Chem. Rev. 2020, 120, 6820–6877.

[5]

Jia, H. H.; Hu, C. J.; Zhang, Y. X.; Chen, L. W. A review on solid-state Li-S battery: From the conversion mechanism of sulfur to engineering design. J. Electrochem. 2023, 29, 2217008.

[6]

Reinoso, D. M.; Frechero, M. A. Strategies for rational design of polymer-based solid electrolytes for advanced lithium energy storage applications. Energy Storage Mater. 2022, 52, 430–464.

[7]

Fan, L. Z.; He, H. C.; Nan, C. W. Tailoring inorganic-polymer composites for the mass production of solid-state batteries. Nat. Rev. Mater. 2021, 6, 1003–1019.

[8]

Han, L. F.; Wang, L.; Chen, Z. H.; Kan, Y. C.; Hu, Y.; Zhang, H.; He, X. M. Incombustible polymer electrolyte boosting safety of solid-state lithium batteries: A review. Adv. Funct. Mater. 2023, 33, 2300892.

[9]

Ding, L. M.; Dong, S. J.; Wang, E. K. Advances in solid polymer electrolytes. J. Electrochem. 1997, 3, 349–361.

[10]

Chen, D. Q.; Hu, C. J.; Chen, Q.; Xue, G. Y.; Tang, L. F.; Dong, Q. Y.; Chen, B. W.; Zhang, F. R.; Gao, M. W.; Xu, J. J. et al. High ceramic content composite solid-state electrolyte films prepared via a scalable solvent-free process. Nano Res. 2023, 16, 3847–3854.

[11]

Jin, F.; Li, J.; Hu, C. J.; Dong, H. C.; Chen, P.; Shen, Y. B.; Chen, L. W. High performance solid-state battery with integrated cathode and electrolyte. Acta Phys. Chim. Sin. 2019, 35, 1399–1403.

[12]

An, Y.; Han, X.; Liu, Y. Y.; Azhar, A.; Na, J.; Nanjundan, A. K.; Wang, S. P.; Yu, J. X.; Yamauchi, Y. Progress in solid polymer electrolytes for lithium-ion batteries and beyond. Small 2022, 18, 2103617.

[13]

Fu, X. L.; Shang, C. Q.; Yang, M. Y.; Akinoglu, E. M.; Wang, X.; Zhou, G. F. An ion-conductive separator for high safety Li metal batteries. J. Power Sources 2020, 475, 228687.

[14]

Fraile-Insagurbe, D.; Boaretto, N.; Aldalur, I.; Raposo, I.; Bonilla, F. J.; Armand, M.; Martínez-Ibañez, M. Novel single-ion conducting polymer electrolytes with high toughness and high resistance against lithium dendrites. Nano Res. 2023, 16, 8457–8468.

[15]

Zhang, F. Y.; Guo, Y. N.; Zhang, L. Q.; Jia, P.; Liu, X.; Qiu, P.; Zhang, H. B.; Huang, J. Y. A review of the effect of external pressure on all-solid-state batteries. eTransportation 2023, 15, 100220.

[16]

Flores, A.; Ania, F.; Baltá-Calleja, F. J. From the glassy state to ordered polymer structures: A microhardness study. Polymer 2009, 50, 729–746.

[17]

Casettari, L.; Bonacucina, G.; Cespi, M.; Perinelli, D. R.; Micheli, M.; Cacciatore, I.; Di Stefano, A.; Palmieri, G. F. Effect of manufacturing temperature and molecular weights on compression, mechanical and dissolution properties of PEO matrix tablets. J. Drug Deliv. Sci. Technol. 2016, 32, 236–240.

[18]

Vondran, J. L.; Sun, W.; Schauer, C. L. Crosslinked, electrospun chitosan-poly(ethylene oxide) nanofiber mats. J. Appl. Polym. Sci. 2008, 109, 968–975.

[19]

Huo, H. Y.; Jiang, M.; Mogwitz, B.; Sann, J.; Yusim, Y.; Zuo, T. T.; Moryson, Y.; Minnmann, P.; Richter, F. H.; Veer Singh, C. et al. Interface design enabling stable polymer/thiophosphate electrolyte separators for dendrite-free lithium metal batteries. Angew. Chem., Int. Ed. 2023, 62, e202218044.

[20]

Stallard, J. C.; Wheatcroft, L.; Booth, S. G.; Boston, R.; Corr, S. A.; De Volder, M. F. L.; Inkson, B. J.; Fleck, N. A. Mechanical properties of cathode materials for lithium-ion batteries. Joule 2022, 6, 984–1007.

[21]

Xu, H.; Li, W. Y.; Huang, L.; Zeng, D. L.; Zhang, Y. F.; Sun, Y. B.; Cheng, H. S. Zwitterion-doped self-supporting single-ion conducting polymer electrolyte membrane for dendrite-free lithium metal secondary batteries. Sci. China Mater. 2023, 66, 3799–3809.

[22]

Athanasiou, C. E.; Jin, M. Y.; Ramirez, C.; Padture, N. P.; Sheldon, B. W. High-toughness inorganic solid electrolytes via the use of reduced graphene oxide. Matter 2020, 3, 212–229.

[23]

Kim, Y.; Jo, H.; Allen, J. L.; Choe, H.; Wolfenstine, J.; Sakamoto, J. The effect of relative density on the mechanical properties of hot-pressed cubic Li7La3Zr2O12. J. Am. Ceram. Soc. 2016, 99, 1367–1374.

[24]

Wang, A. N.; Nonemacher, J. F.; Yan, G.; Finsterbusch, M.; Malzbender, J.; Krüger, M. Mechanical properties of the solid electrolyte Al-substituted Li7La3Zr2O12 (LLZO) by utilizing micro-pillar indentation splitting test. J. Eur. Ceram Soc. 2018, 38, 3201–3209.

[25]

LePage, W. S.; Chen, Y. X.; Kazyak, E.; Chen, K. H.; Sanchez, A. J.; Poli, A.; Arruda, E. M.; Thouless, M. D.; Dasgupta, N. P. Lithium mechanics: Roles of strain rate and temperature and implications for lithium metal batteries. J. Electrochem. Soc. 2019, 166, A89–A97.

[26]

Xue, G. Y.; Li, J.; Chen, J. C.; Chen, D. Q.; Hu, C. J.; Tang, L. F.; Chen, B. W.; Yi, R. W.; Shen, Y. B.; Chen, L. W. A single-ion polymer superionic conductor. Acta Phys. Chim. Sin. 2023, 39, 2205012.

[27]

Masias, A.; Felten, N.; Garcia-Mendez, R.; Wolfenstine, J.; Sakamoto, J. Elastic, plastic, and creep mechanical properties of lithium metal. J. Mater. Sci. 2019, 54, 2585–2600.

[28]

de Vasconcelos, L. S.; Xu, R.; Xu, Z. R.; Zhang, J.; Sharma, N.; Shah, S. R.; Han, J. X.; He, X. M.; Wu, X. Y.; Sun, H. et al. Chemomechanics of rechargeable batteries: Status, theories, and perspectives. Chem Rev. 2022, 122, 13043–13107.

[29]

Hu, C. J.; Shen, Y. B.; Shen, M.; Liu, X.; Chen, H. W.; Liu, C. H.; Kang, T.; Jin, F.; Li, L.; Li, J. et al. Superionic conductors via bulk interfacial conduction. J. Am. Chem. Soc. 2020, 142, 18035–18041.

[30]

Wang, C. H.; Liang, J. W.; Jiang, M.; Li, X. N.; Mukherjee, S.; Adair, K.; Zheng, M.; Zhao, Y.; Zhao, F. P.; Zhang, S. M. et al. Interface-assisted in-situ growth of halide electrolytes eliminating interfacial challenges of all-inorganic solid-state batteries. Nano Energy 2020, 76, 105015.

[31]

He, L. H.; Swain, M. V. Microindentation. Compr. Biomater. II 2017, 3, 144–168.

[32]

Nowicki, M.; Richter, A.; Wolf, B.; Kaczmarek, H. Nanoscale mechanical properties of polymers irradiated by UV. Polymer 2003, 44, 6599–6606.

[33]

Li, X. N.; Liang, J. W.; Chen, N.; Luo, J.; Adair, K. R.; Wang, C. H.; Banis, M. N.; Sham, T. K.; Zhang, L.; Zhao, S. Q. et al. Water-mediated synthesis of a superionic halide solid electrolyte. Angew. Chem., Int. Ed. 2019, 58, 16427–16432.

File
6667_ESM.pdf (756.8 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 01 February 2024
Revised: 28 March 2024
Accepted: 28 March 2024
Published: 30 April 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

This work was supported by funding from the National Key R&D Program of China (No. 2021YFB3800300), Science and Technology Commission of Shanghai Municipality (No. 23DZ1200800), and China Postdoctoral Science Foundation (Nos. BX20220199 and 2023M732208).

Return