Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Hydrogen-bonded organic frameworks (HOFs) are a recent class of porous materials that have garnered considerable research interest owing to their distinctive characteristics. HOFs can be constructed through judicious selection of H-bonding motifs, which are further enforced by other weak intermolecular interactions such as π–π stacking, van der Waals forces, and framework interpenetration. Taking advantage of these interactions, we can expand the functional field of HOFs by introducing active molecules. Recently, researchers have made substantial advancements in using HOFs for chemical sensing, catalysis, proton conduction, biological applications, and others. The low bonding energy of H-bonds allows for precise control over the concentration of ligands in solvents, forming diverse HOF structures. These varied structures offer significant advantages for producing HOFs with photo-responsive and electro-responsive properties. However, the presence of H-bonds in HOFs results in their inherent lower stability compared to metal-organic frameworks (MOFs) and covalent-organic frameworks (COFs) formed via coordination and covalent bonds, respectively. As a result, the pursuit of stable and innovative HOF materials with novel functional sites remains an ongoing challenge. This review provides an overview of recent research progress in the development of new strategies for stable HOF synthesis and applications of HOFs with stimuli-responsive properties. We first classified all synthetic methods reported to date and discussed the stable HOFs synthesized, as well as their unique properties and applications. In addition, we summarized the applications of HOFs utilizing their synergistic responses to external stimuli, including photo, electrical, pressure, and chemical stimuli. We systematically reviewed stable HOF synthesis and applications, which may lead to a deeper understanding of the structure–activity relationship for these materials and guide future HOF design.
Lin, C. X.; Liu, Y.; Rinker, S.; Yan, H. DNA tile based self-assembly: Building complex nanoarchitectures. Chemphyschem 2006, 7, 1641–1647.
Pfeifer, W.; Sacca, B. From nano to macro through hierarchical self-assembly: The DNA paradigm. Chembiochem 2016, 17, 1063–1080.
Zhang, Y. Z.; Tu, J.; Wang, D. Q.; Zhu, H. T.; Maity, S. K.; Qu, X. M.; Bogaert, B.; Pei, H.; Zhang, H. B. Programmable and multifunctional DNA-based materials for biomedical applications. Adv. Mater. 2018, 30, 1703658.
Hu, Y. Q.; Wang, Y.; Yan, J. H.; Wen, N. C.; Xiong, H. J.; Cai, S. D.; He, Q. Y.; Peng, D. M.; Liu, Z. B.; Liu, Y. F. Dynamic DNA assemblies in biomedical applications. Adv. Sci. 2020, 7, 2000557.
Liu, B. T.; Gong, S. H.; Jiang, X. T.; Zhang, Y.; Wang, R.; Chen, Z. J.; Zhang, S.; Kirlikovali, K. O.; Liu, T. F.; Farha, O. K. et al. A solution processible single-crystal porous organic polymer. Nat. Synth. 2023, 2, 873–879.
Abrahams, B. F.; Hoskins, B. F.; Liu, J. P.; Robson, R. The archetype for a new class of simple extended 3D honeycomb frameworks. The synthesis and X-ray crystal structures of Cd(CN)5/3(OH)
Eddaoudi, M.; Moler, D. B.; Li, H. L.; Chen, B. L.; Reineke, T. M.; O'Keeffe, M.; Yaghi, O. M. Modular chemistry: Secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. Acc. Chem. Res. 2001, 34, 319–330.
Li, H. L.; Thomas, M.; Groy, T. L.; Yaghi, O. M. Establishing microporosity in open metal-organic frameworks: Gas sorption isotherms for Zn(BDC) (BDC=1,4-benzenedicarboxylate). J. Am. Chem. Soc. 1998, 120, 8571–8572.
Kim, J.; Chen, B. L.; Reineke, T. M.; Li, H. L.; Eddaoudi, M.; Moler, D. B.; O'Keeffe, M.; Yaghi, O. M. Assembly of metal-organic frameworks from large organic and inorganic secondary building units: New examples and simplifying principles for complex structures. J. Am. Chem. Soc. 2001, 123, 8239–8247.
Kondo, M.; Yoshitomi, T.; Matsuzaka, H.; Kitagawa, S.; Seki, K. Three-dimensional framework with channeling cavities for small molecules: {[M2(4,4'-bpy)3(NO3)4]· xH2O} n (M = Co, Ni, Zn). Angew. Chem., Int. Ed. 1997, 36, 1725–1727.
Li, H. L.; Eddaoudi, M.; O'Keeffe, M.; Yaghi, O. M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999, 402, 276–279.
O'Keeffe, M. Design of MOFs and intellectual content in reticular chemistry: A personal view. Chem. Soc. Rev. 2009, 38, 1215–1217.
O'Keeffe, M.; Peskov, M. A.; Ramsden, S. J.; Yaghi, O. M. The reticular chemistry structure resource (RCSR) database of, and symbols for, crystal nets. Acc. Chem. Res. 2008, 41, 1782–1789.
Ockwig, N. W.; Delgado-Friedrichs, O.; O'Keeffe, M.; Yaghi, O. M. Reticular chemistry: Occurrence and taxonomy of nets and grammar for the design of frameworks. Acc. Chem. Res. 2005, 38, 176–182.
Hoskins, B. F.; Robson, R. Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the Zn(CN)2 and Cd(CN)2 structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and CuI[4,4 ',4 ",4 '''-tetracyanotetraphenylmethane]BF4· xC6H5NO2. J. Am. Chem. Soc. 1990, 112, 1546–1554.
Brunet, P.; Demers, E.; Maris, T.; Enright, G. D.; Wuest, J. D. Designing permeable molecular crystals that react with external agents to give crystalline products. Angew. Chem., Int. Ed. 2003, 42, 5303–5306.
Furukawa, H.; Cordova, K. E.; O'Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444.
Kolotuchin, S. V.; Fenlon, E. E.; Wilson, S. R.; Loweth, C. J.; Zimmerman, S. C. Self-assembly of 1,3,5-benzenetricarboxylic acids (trimesic acids) and several analogues in the solid state. Angew. Chem., Int. Ed. 1996, 34, 2654–2657.
Li, B.; Wen, H. M.; Cui, Y. J.; Zhou, W.; Qian, G. D.; Chen, B. L. Emerging multifunctional metal-organic framework materials. Adv. Mater. 2016, 28, 8819–8860.
Little, M. A.; Cooper, A. I. The chemistry of porous organic molecular materials. Adv. Funct. Mater. 2020, 30, 1909842.
Malek, N.; Maris, T.; Perron, M. È.; Wuest, J. D. Molecular tectonics: Porous cleavable networks constructed by dipole-directed stacking of hydrogen-bonded sheets. Angew. Chem., Int. Ed. 2005, 44, 4021–4025.
Wuest, J. D. Atoms and the void: Modular construction of ordered porous solids. Nat. Commun. 2020, 11, 4652.
Zhou, H. C.; Long, J. R.; Yaghi, O. M. Introduction to metal-organic frameworks. Chem. Rev. 2012, 112, 673–674.
He, Y. B.; Xiang, S. C.; Chen, B. L. A microporous hydrogen-bonded organic framework for highly selective C2H2/C2H4 separation at ambient temperature. J. Am. Chem. Soc. 2011, 133, 14570–14573.
Yin, Q.; Zhao, P.; Sa, R. J.; Chen, G. C.; Lü, J.; Liu, T. F.; Cao, R. An ultra-robust and crystalline redeemable hydrogen-bonded organic framework for synergistic chemo-photodynamic therapy. Angew. Chem., Int. Ed. 2018, 57, 7691–7696.
Bao, Z. B.; Xie, D. Y.; Chang, G. G.; Wu, H.; Li, L. Y.; Zhou, W.; Wang, H. L.; Zhang, Z. G.; Xing, H. B.; Yang, Q. W. et al. Fine tuning and specific binding sites with a porous hydrogen-bonded metal-complex framework for gas selective separations. J. Am. Chem. Soc. 2018, 140, 4596–4603.
Hu, F.; Liu, C. P.; Wu, M. Y.; Pang, J. D.; Jiang, F. L.; Yuan, D. Q.; Hong, M. C. An ultrastable and easily regenerated hydrogen-bonded organic molecular framework with permanent porosity. Angew. Chem., Int. Ed. 2017, 56, 2101–2104.
Nandi, S.; Chakraborty, D.; Vaidhyanathan, R. A permanently porous single molecule H-bonded organic framework for selective CO2 capture. Chem. Commun. 2016, 52, 7249–7252.
Wang, B.; Lv, X. L.; Lv, J.; Ma, L.; Lin, R. B.; Cui, H.; Zhang, J.; Zhang, Z. J.; Xiang, S. C.; Chen, B. L. A novel mesoporous hydrogen-bonded organic framework with high porosity and stability. Chem. Commun. 2019, 56, 66–69.
Wang, L.; Yang, L. X.; Gong, L. L.; Krishna, R.; Gao, Z.; Tao, Y.; Yin, W. H.; Xu, Z. Z.; Luo, F. Constructing redox-active microporous hydrogen-bonded organic framework by imide-functionalization: Photochromism, electrochromism, and selective adsorption of C2H2 over CO2. Chem. Eng. J. 2020, 383, 123117.
Xi, X. J.; Li, Y.; Lang, F. F.; Xu, L.; Pang, J. D.; Bu, X. H. Robust porous hydrogen-bonded organic frameworks: Synthesis and applications in gas adsorption and separation. Giant 2023, 16, 100181.
Yin, Q.; Li, Y. L.; Li, L.; Lü, J.; Liu, T. F.; Cao, R. Novel hierarchical meso-microporous hydrogen-bonded organic framework for selective separation of acetylene and ethylene versus methane. ACS Appl. Mater. Interfaces 2019, 11, 17823–17827.
Yin, Q.; Lü, J.; Li, H. F.; Liu, T. F.; Cao, R. Robust microporous porphyrin-based hydrogen-bonded organic framework for highly selective separation of C2 hydrocarbons versus methane. Cryst. Growth Des. 2019, 19, 4157–4161.
Zentner, C. A.; Lai, H. W. H.; Greenfield, J. T.; Wiscons, R. A.; Zeller, M.; Campana, C. F.; Talu, O.; FitzGerald, S. A.; Rowsell, J. L. High surface area and Z' in a thermally stable 8-fold polycatenated hydrogen-bonded framework. Chem. Commun. 2015, 51, 11642–11645.
Zhang, X.; Li, L. B.; Wang, J. X.; Wen, H. M.; Krishna, R.; Wu, H.; Zhou, W.; Chen, Z. N.; Li, B.; Qian, G. D. et al. Selective ethane/ethylene separation in a robust microporous hydrogen-bonded organic framework. J. Am. Chem. Soc. 2020, 142, 633–640.
Li, P.; He, Y. B.; Zhao, Y. F.; Weng, L. H.; Wang, H. L.; Krishna, R.; Wu, H.; Zhou, W.; O'Keeffe, M.; Han, Y. et al. A rod-packing microporous hydrogen-bonded organic framework for highly selective separation of C2H2/CO2 at room temperature. Angew. Chem., Int. Ed. 2015, 54, 574–577.
Li, P.; He, Y. B.; Arman, H. D.; Krishna, R.; Wang, H. L.; Weng, L. H.; Chen, B. A microporous six-fold interpenetrated hydrogen-bonded organic framework for highly selective separation of C2H4/C2H6. Chem. Commun. 2014, 50, 13081–13084.
Wang, H. L.; Li, B.; Wu, H.; Hu, T. L.; Yao, Z. Z.; Zhou, W.; Xiang, S. C.; Chen, B. L. A flexible microporous hydrogen-bonded organic framework for gas sorption and separation. J. Am. Chem. Soc. 2015, 137, 9963–9970.
Yang, W.; Yang, F.; Hu, T. L.; King, S. C.; Wang, H. L.; Wu, H.; Zhou, W.; Li, J. R.; Arman, H. D.; Chen, B. L. Microporous diaminotriazine-decorated porphyrin-based hydrogen-bonded organic framework: Permanent porosity and proton conduction. Cryst. Growth Des. 2016, 16, 5831–5835.
Yang, W.; Li, B.; Wang, H. L.; Alduhaish, O.; Alfooty, K.; Zayed, M. A.; Li, P.; Arman, H. D.; Chen, B. L. A microporous porphyrin-based hydrogen-bonded organic framework for gas separation. Cryst. Growth Des. 2015, 15, 2000–2004.
Wang, H. L.; Wu, H.; Kan, J. L.; Chang, G. G.; Yao, Z. Z.; Li, B.; Zhou, W.; Xiang, S. C.; Zhao, J. C. G.; Chen, B. L. A microporous hydrogen-bonded organic framework with amine sites for selective recognition of small molecules. J. Mater. Chem. A 2017, 5, 8292–8296.
Wang, H. L.; Bao, Z. B.; Wu, H.; Lin, R. B.; Zhou, W.; Hu, T. L.; Li, B.; Zhao, J. C. G.; Chen, B. L. Two solvent-induced porous hydrogen-bonded organic frameworks: Solvent effects on structures and functionalities. Chem. Commun. 2017, 53, 11150–11153.
Feng, S.; Shang, Y. X.; Wang, Z. K.; Kang, Z. X.; Wang, R. M.; Jiang, J. Z.; Fan, L. L.; Fan, W. D.; Liu, Z. N.; Kong, G. D. et al. Fabrication of a hydrogen-bonded organic framework membrane through solution processing for pressure-regulated gas separation. Angew. Chem., Int. Ed. 2020, 59, 3840–3845.
Chen, T. H.; Popov, I.; Kaveevivitchai, W.; Chuang, Y. C.; Chen, Y. S.; Daugulis, O.; Jacobson, A. J.; Miljanić, O. S. Thermally robust and porous noncovalent organic framework with high affinity for fluorocarbons and CFCs. Nat. Commun. 2014, 5, 5131.
Lü, J.; Perez-Krap, C.; Suyetin, M.; Alsmail, N. H.; Yan, Y.; Yang, S. H.; Lewis, W.; Bichoutskaia, E.; Tang, C. C.; Blake, A. J. et al. A robust binary supramolecular organic framework (SOF) with high CO2 adsorption and selectivity. J. Am. Chem. Soc. 2014, 136, 12828–12831.
Liao, M. S.; Scheiner, S. Electronic structure and bonding in metal porphyrins, metal = Fe, Co, Ni, Cu, Zn. J. Chem. Phys. 2002, 117, 205–219.
Chen, X.; Takahashi, K.; Kokado, K.; Nakamura, T.; Hisaki, I. A proton conductive hydrogen-bonded framework incorporating 18-crown-6-ether and dicarboxy- o-terphenyl moieties. Mater. Adv. 2021, 2, 5639–5644.
Delmas, L. C.; Horton, P. N.; White, A. J. P.; Coles, S. J.; Lickiss, P. D.; Davies, R. P. Siloxane-based linkers in the construction of hydrogen bonded assemblies and porous 3D MOFs. Chem. Commun. 2017, 53, 12524–12527.
Guo, G. M.; Wang, D. B.; Zheng, X. H.; Bi, X. W.; Liu, S. P.; Sun, L. S.; Zhao, Y. J. Construction of tetraphenylethylene-based fluorescent hydrogen-bonded organic frameworks for detection of explosives. Dyes Pigments. 2022, 197, 109881.
Hisaki, I.; Suzuki, Y.; Gomez, E.; Cohen, B.; Tohnai, N.; Douhal, A. Docking strategy to construct thermostable, single-crystalline, hydrogen-bonded organic framework with high surface area. Angew. Chem., Int. Ed. 2018, 57, 12650–12655.
Inokuchi, D.; Hirao, Y.; Takahashi, K.; Matsumoto, K.; Mori, H.; Kubo, T. Dynamics of water molecules in a 3-fold interpenetrated hydrogen-bonded organic framework based on tetrakis(4-pyridyl)methane. J. Phys. Chem. C 2019, 123, 6599–6606.
Khanpour, M.; Deng, W. Z.; Fang, Z. B.; Li, Y. L.; Yin, Q.; Zhang, A. A.; Rouhani, F.; Morsali, A.; Liu, T. F. Radiochromic hydrogen-bonded organic frameworks for X-ray detection. Chem.—Eur. J. 2021, 27, 10957–10965.
Li, P. H.; Li, P.; Ryder, M. R.; Liu, Z. C.; Stern, C. L.; Farha, O. K.; Stoddart, J. F. Interpenetration isomerism in triptycene-based hydrogen-bonded organic frameworks. Angew. Chem., Int. Ed. 2019, 58, 1664–1669.
Li, Y. L.; Alexandrov, E. V.; Yin, Q.; Li, L.; Fang, Z. B.; Yuan, W. B.; Proserpio, D. M.; Liu, T. F. Record complexity in the polycatenation of three porous hydrogen-bonded organic frameworks with stepwise adsorption behaviors. J. Am. Chem. Soc. 2020, 142, 7218–7224.
Suzuki, Y.; Tohnai, N.; Hisaki, I. Triaxially woven hydrogen-bonded chicken wires of a tetrakis(carboxybiphenyl)ethene. Chem.—Eur. J. 2020, 26, 17056–17062.
Tang, Y. C.; Zhang, C. Y.; Fan, L. L.; Shang, Y. X.; Feng, Y.; Pang, J.; Cui, X. L.; Kong, G. D.; Wang, R. M.; Kang, Z. X. et al. Regulating the orientation of hydrogen-bonded organic framework membranes based on substrate modification. Cryst. Growth Des. 2021, 21, 5292–5299.
Wang, J. X.; Gu, X. W.; Lin, Y. X.; Li, B.; Qian, G. D. A novel hydrogen-bonded organic framework with highly permanent porosity for boosting ethane/ethylene separation. ACS Mater. Lett. 2021, 3, 497–503.
Yang, W.; Wang, J. W.; Wang, H. L.; Bao, Z. B.; Zhao, J. C. G.; Chen, B. L. Highly interpenetrated robust microporous hydrogen-bonded organic framework for gas separation. Cryst. Growth Des. 2017, 17, 6132–6137.
Yang, W.; Zhou, W.; Chen, B. L. A flexible microporous hydrogen-bonded organic framework. Cryst. Growth Des. 2019, 19, 5184–5188.
Yang, Y.; Li, L. B.; Lin, R. B.; Ye, Y. X.; Yao, Z. Z.; Yang, L.; Xiang, F. H.; Chen, S. M.; Zhang, Z. J.; Xiang, S. C. et al. Ethylene/ethane separation in a stable hydrogen-bonded organic framework through a gating mechanism. Nat. Chem. 2021, 13, 933–939.
Yoon, T. U.; Baek, S. B.; Kim, D.; Kim, E. J.; Lee, W. G.; Singh, B. K.; Lah, M. S.; Bae, Y. S.; Kim, K. S. Efficient separation of C2 hydrocarbons in a permanently porous hydrogen-bonded organic framework. Chem. Commun. 2018, 54, 9360–9363.
Zhang, X.; Wang, J. X.; Li, L. B.; Pei, J. Y.; Krishna, R.; Wu, H.; Zhou, W.; Qian, G. D.; Chen, B. L.; Li, B. A rod-packing hydrogen-bonded organic framework with suitable pore confinement for benchmark ethane/ethylene separation. Angew. Chem., Int. Ed. 2021, 60, 10304–10310.
Mühlbauer, E.; Klinkebiel, A.; Beyer, O.; Auras, F.; Wuttke, S.; Lüning, U.; Bein, T. Functionalized PCN-6 metal-organic frameworks. Microporous Mesoporous Mater. 2015, 216, 51–55.
Lin, Y. X.; Jiang, X. F.; Kim, S. T.; Alahakoon, S. B.; Hou, X. S.; Zhang, Z. Y.; Thompson, C. M.; Smaldone, R. A.; Ke, C. F. An elastic hydrogen-bonded cross-linked organic framework for effective iodine capture in water. J. Am. Chem. Soc. 2017, 139, 7172–7175.
Karmakar, A.; Illathvalappil, R.; Anothumakkool, B.; Sen, A.; Samanta, P.; Desai, A. V.; Kurungot, S.; Ghosh, S. K. Hydrogen-bonded organic frameworks (HOFs): A new class of porous crystalline proton-conducting materials. Angew. Chem., Int. Ed. 2016, 55, 10667–10671.
Qin, W. K.; Si, D. H.; Yin, Q.; Gao, X. Y.; Huang, Q. Q.; Feng, Y. N.; Xie, L.; Zhang, S.; Huang, X. S.; Liu, T. F. et al. Reticular synthesis of hydrogen-bonded organic frameworks and their derivatives via mechanochemistry. Angew. Chem., Int. Ed. 2022, 61, e202202089.
Wang, L. G.; Su, H.; Zhang, Z.; Xin, J. J.; Liu, H.; Wang, X. G.; Yang, C. Y.; Liang, X.; Wang, S. W.; Liu, H. et al. Co-Co dinuclear active sites dispersed on zirconium-doped heterostructured Co9S8/Co3O4 for high-current-density and durable acidic oxygen evolution. Angew. Chem., Int. Ed. 2023, 62, e202314185.
Samanta, J.; Dorn, R. W.; Zhang, W. L.; Jiang, X. F.; Zhang, M. S.; Staples, R. J.; Rossini, A. J.; Ke, C. F. An ultra-dynamic anion-cluster-based organic framework. Chem 2022, 8, 253–267.
Wang, L. G.; Wu, J. B.; Wang, S. W.; Liu, H.; Wang, Y.; Wang, D. S. The reformation of catalyst: From a trial-and-error synthesis to rational design. Nano Res. 2024, 17, 3261–3301.
Wang, L. G.; Wang, D. S.; Li, Y. D. Single-atom catalysis for carbon neutrality. Carbon Energy 2022, 4, 1021–1079.
Chen, E. X.; Qiu, M.; Zhang, Y. F.; Zhu, Y. S.; Liu, L. Y.; Sun, Y. Y.; Bu, X. H.; Zhang, J.; Lin, Q. P. Acid and base resistant zirconium polyphenolate-metalloporphyrin scaffolds for efficient CO2 photoreduction. Adv. Mater. 2018, 30, 1704388.
Fang, Z. B.; Liu, T. T.; Liu, J. X.; Jin, S. Y.; Wu, X. P.; Gong, X. Q.; Wang, K. C.; Yin, Q.; Liu, T. F.; Cao, R. et al. Boosting interfacial charge-transfer kinetics for efficient overall CO2 photoreduction via rational design of coordination spheres on metal-organic frameworks. J. Am. Chem. Soc. 2020, 142, 12515–12523.
Fateeva, A.; Chater, P. A.; Ireland, C. P.; Tahir, A. A.; Khimyak, Y. Z.; Wiper, P. V.; Darwent, J. R.; Rosseinsky, M. J. A water-stable porphyrin-based metal-organic framework active for visible-light photocatalysis. Angew. Chem., Int. Ed. 2012, 51, 7440–7444.
Fu, Y. H.; Sun, D. R.; Chen, Y. J.; Huang, R. K.; Ding, Z. X.; Fu, X. Z.; Li, Z. H. An amine-functionalized titanium metal-organic framework photocatalyst with visible-light-induced activity for CO2 reduction. Angew. Chem., Int. Ed. 2012, 51, 3364–3367.
Sun, D. R.; Fu, Y. H.; Liu, W. J.; Ye, L.; Wang, D. K.; Yang, L.; Fu, X. Z.; Li, Z. H. Studies on photocatalytic CO2 reduction over NH2-Uio-66(Zr) and its derivatives: Towards a better understanding of photocatalysis on metal-organic frameworks. Chem.—Eur. J. 2013, 19, 14279–14285.
Xu, H. Q.; Hu, J. H.; Wang, D. K.; Li, Z. H.; Zhang, Q.; Luo, Y.; Yu, S. H.; Jiang, H. L. Visible-light photoreduction of CO2 in a metal-organic framework: Boosting electron-hole separation via electron trap states. J. Am. Chem. Soc. 2015, 137, 13440–13443.
Zhang, H. B.; Wei, J.; Dong, J. C.; Liu, G. G.; Shi, L.; An, P. F.; Zhao, G. X.; Kong, J. T.; Wang, X. J.; Meng, X. G. et al. Efficient visible-light-driven carbon dioxide reduction by a single-atom implanted metal-organic framework. Angew. Chem., Int. Ed. 2016, 55, 14310–14314.
Yin, Q.; Alexandrov, E. V.; Si, D. H.; Huang, Q. Q.; Fang, Z. B.; Zhang, Y.; Zhang, A. A.; Qin, W. K.; Li, Y. L.; Liu, T. F. et al. Metallization-prompted robust porphyrin-based hydrogen-bonded organic frameworks for photocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2022, 61, e202115854.
Zhang, A. A.; Li, Y. L.; Fang, Z. B.; Xie, L.; Cao, R.; Liu, Y. Y.; Liu, T. F. Facile preparation of hydrogen-bonded organic framework/Cu2O heterostructure films via electrophoretic deposition for efficient CO2 photoreduction. ACS Appl. Mater. Interfaces 2022, 14, 21050–21058.
Zhang, A. A.; Si, D. H.; Huang, H. B.; Xie, L.; Fang, Z. B.; Liu, T. F.; Cao, R. Partial metalation of porphyrin moieties in hydrogen-bonded organic frameworks provides enhanced CO2 photoreduction activity. Angew. Chem., Int. Ed. 2022, 61, e202203955.
Li, T.; Liu, B. T.; Fang, Z. B.; Yin, Q.; Wang, R.; Liu, T. F. Integrating active C3N4 moieties in hydrogen-bonded organic frameworks for efficient photocatalysis. J. Mater. Chem. A 2021, 9, 4687–4691.
Mikhnenko, O. V.; Blom, P. W. M.; Nguyen, T. Q. Exciton diffusion in organic semiconductors. Energy Environ. Sci. 2015, 8, 1867–1888.
Wang, H.; Liu, W. X.; He, X.; Zhang, P.; Zhang, X. D.; Xie, Y. An excitonic perspective on low-dimensional semiconductors for photocatalysis. J. Am. Chem. Soc. 2020, 142, 14007–14022.
Zhou, Q. X.; Guo, Y.; Zhu, Y. F. Photocatalytic sacrificial H2 evolution dominated by micropore-confined exciton transfer in hydrogen-bonded organic frameworks. Nat. Catal. 2023, 6, 574–584.
Cai, J. Q.; Liu, X. M.; Gao, Z. J.; Li, L. L.; Wang, H. Chlorophylls derivatives: Photophysical properties, assemblies, nanostructures and biomedical applications. Mater. Today 2021, 45, 77–92.
Kwon, N.; Kim, H.; Li, X. S.; Yoon, J. Supramolecular agents for combination of photodynamic therapy and other treatments. Chem. Sci. 2021, 12, 7248–7268.
Li, X. S.; Bai, H. T.; Yang, Y. C.; Yoon, J.; Wang, S.; Zhang, X. Supramolecular antibacterial materials for combatting antibiotic resistance. Adv. Mater. 2019, 31, 1805092.
Li, Z. L.; Li, S. K.; Guo, Y. H.; Yuan, C. Q.; Yan, X. H.; Schanze, K. S. Metal-free nanoassemblies of water-soluble photosensitizer and adenosine triphosphate for efficient and precise photodynamic cancer therapy. ACS Nano. 2021, 15, 4979–4988.
Xie, B. R.; Li, C. X.; Yu, Y.; Zeng, J. Y.; Zhang, M. K.; Wang, X. S.; Zeng, X.; Zhang, X. Z. A singlet oxygen reservoir based on poly-pyridone and porphyrin nanoscale metal-organic framework for cancer therapy. CCS Chem. 2021, 3, 1187–1202.
Yang, M. Y.; Li, X. S.; Yoon, J. Activatable supramolecular photosensitizers: Advanced design strategies. Mater. Chem. Front. 2021, 5, 1683–1693.
Zou, Q. L.; Abbas, M.; Zhao, L. Y.; Li, S. K.; Shen, G. Z.; Yan, X. H. Biological photothermal nanodots based on self-assembly of peptide-porphyrin conjugates for antitumor therapy. J. Am. Chem. Soc. 2017, 139, 1921–1927.
Liu, B. T.; Pan, X. H.; Nie, D. Y.; Hu, X. J.; Liu, E. P.; Liu, T. F. Ionic hydrogen-bonded organic frameworks for ion-responsive antimicrobial membranes. Adv. Mater. 2020, 32, 2005912.
Wang, Y.; Cao, R.; Wang, C.; Song, X. Y.; Wang, R. N.; Liu, J. C.; Zhang, M. M.; Huang, J. Y.; You, T. T.; Zhang, Y. H. et al. In situ embedding hydrogen-bonded organic frameworks nanocrystals in electrospinning nanofibers for ultrastable broad-spectrum antibacterial activity. Adv. Funct. Mater. 2023, 33, 2214388.
Liu, B. T.; Pan, X. H.; Zhang, D. Y.; Wang, R.; Chen, J. Y.; Fang, H. R.; Liu, T. F. Construction of function-oriented core–shell nanostructures in hydrogen-bonded organic frameworks for near-infrared-responsive bacterial inhibition. Angew. Chem., Int. Ed. 2021, 60, 25701–25707.
Lee, S. K.; Zu, Y. B.; Herrmann, A.; Geerts, Y.; Müllen, K.; Bard, A. J. Electrochemistry, spectroscopy and electrogenerated chemiluminescence of perylene, terrylene, and quaterrylene diimides in aprotic solution. J. Am. Chem. Soc. 1999, 121, 3513–3520.
Yang, Y. C.; He, P.; Wang, Y. X.; Bai, H. T.; Wang, S.; Xu, J. F.; Zhang, X. Supramolecular radical anions triggered by bacteria in situ for selective photothermal therapy. Angew. Chem., Int. Ed. 2017, 56, 16239–16242.
Zhang, A. D.; Jiang, W.; Wang, Z. H. Fulvalene-embedded perylene diimide and its stable radical anion. Angew. Chem., Int. Ed. 2020, 59, 752–757.
Yang, J.; Choi, J.; Bang, D.; Kim, E.; Lim, E. K.; Park, H.; Suh, J. S.; Lee, K.; Yoo, K. H.; Kim, E. K. et al. Convertible organic nanoparticles for near-infrared photothermal ablation of cancer cells. Angew. Chem., Int. Ed. 2011, 50, 441–444.
Zhou, B.; Yan, D. P. Hydrogen-bonded two-component ionic crystals showing enhanced long-lived room-temperature phosphorescence via TADF-assisted förster resonance energy transfer. Adv. Funct. Mater. 2018, 29, 1807599.
Yin, W. Y.; Yu, J.; Lv, F. T.; Yan, L.; Zheng, L. R.; Gu, Z. J.; Zhao, Y. L. Functionalized nano-MoS2 with peroxidase catalytic and near-infrared photothermal activities for safe and synergetic wound antibacterial applications. ACS Nano 2016, 10, 11000–11011.
Liang, W. B.; Carraro, F.; Solomon, M. B.; Bell, S. G.; Amenitsch, H.; Sumby, C. J.; White, N. G.; Falcaro, P.; Doonan, C. J. Enzyme encapsulation in a porous hydrogen-bonded organic framework. J. Am. Chem. Soc. 2019, 141, 14298–14305.
Yu, D. Q.; Zhang, H. C.; Liu, Z. Q.; Liu, C.; Du, X. B.; Ren, J. S.; Qu, X. G. Hydrogen-bonded organic framework (HOF)-based single-neural stem cell encapsulation and transplantation to remodel impaired neural networks. Angew. Chem., Int. Ed. 2022, 61, e202201485.
Björn, L. O. Photoenzymes and related topics: An update. Photochem. Photobiol. 2018, 94, 459–465.
Li, W. P.; Shi, J. F.; Chen, Y.; Liu, X. Y.; Meng, X. X.; Guo, Z. Y.; Li, S. H.; Zhang, B. Y.; Jiang, Z. Y. Nano-sized mesoporous hydrogen-bonded organic frameworks for in situ enzyme immobilization. Chem. Eng. J. 2023, 468, 143609.
Tong, L. J.; Lin, Y. H.; Kou, X. X.; Shen, Y. J.; Shen, Y.; Huang, S. M.; Zhu, F.; Chen, G. S.; Ouyang, G. F. Pore-environment-dependent photoresponsive oxidase-like activity in hydrogen-bonded organic frameworks. Angew. Chem., Int. Ed. 2023, 62, e202218661.
He, Z.; Li, Y. Q.; Wu, H.; Yang, Y. H.; Chen, Y. L.; Zhu, J. K.; Li, Q. N.; Jiang, G. H. Novel stimuli-responsive spiropyran-based switch@HOFs materials enable dynamic anticounterfeiting. ACS Appl. Mater. Interfaces 2022, 14, 48133–48142.
Liu, B. T.; Liu, E. P.; Sa, R. J.; Liu, T. F. Crystalline hydrogen-bonded organic chains achieving ultralong phosphorescence via triplet-triplet energy transfer. Adv. Opt. Mater. 2020, 8, 2000281.
Paulsen, B. D.; Tybrandt, K.; Stavrinidou, E.; Rivnay, J. Organic mixed ionic-electronic conductors. Nat. Mater. 2020, 19, 13–26.
Chen, S. M.; Ju, Y.; Zhang, H.; Zou, Y. B.; Lin, S.; Li, Y. B.; Wang, S. Q.; Ma, E.; Deng, W. H.; Xiang, S. C. et al. Photo responsive electron and proton conductivity within a hydrogen-bonded organic framework. Angew. Chem., Int. Ed. 2023, 62, e202308418.
Huang, Q. Y.; Chen, X. X.; Li, W. L.; Yang, Z. Y.; Zhang, Y.; Zhao, J.; Chi, Z. G. Local dynamics in a hydrogen-bonded organic framework for adaptive guest accommodation with programmable luminescence. Chem 2023, 9, 1241–1254.
Han, B.; Wang, H. L.; Wang, C. M.; Wu, H.; Zhou, W.; Chen, B. L.; Jiang, J. Z. Postsynthetic metalation of a robust hydrogen-bonded organic framework for heterogeneous catalysis. J. Am. Chem. Soc. 2019, 141, 8737–8740.
Lin, R. B.; He, Y. B.; Li, P.; Wang, H. L.; Zhou, W.; Chen, B. L. Multifunctional porous hydrogen-bonded organic framework materials. Chem. Soc. Rev. 2019, 48, 1362–1389.
Yu, B. Q.; Li, L. J.; Liu, S. S.; Wang, H. L.; Liu, H. Y.; Lin, C. X.; Liu, C.; Wu, H.; Zhou, W.; Li, X. Y. et al. Robust biological hydrogen-bonded organic framework with post-functionalized rhenium(I) sites for efficient heterogeneous visible-light-driven CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 8983–8989.
Huang, Q. Y.; Li, W. L.; Mao, Z.; Qu, L. J.; Li, Y.; Zhang, H.; Yu, T.; Yang, Z. Y.; Zhao, J.; Zhang, Y. et al. An exceptionally flexible hydrogen-bonded organic framework with large-scale void regulation and adaptive guest accommodation abilities. Nat. Commun. 2019, 10, 3074.
Horike, S.; Shimomura, S.; Kitagawa, S. Soft porous crystals. Nat. Chem. 2009, 1, 695–704.
Huang, Q. Y.; Li, W. L.; Mao, Z.; Zhang, H.; Li, Y.; Ma, D. Y.; Wu, H. Y.; Zhao, J.; Yang, Z. Y.; Zhang, Y. et al. Dynamic molecular weaving in a two-dimensional hydrogen-bonded organic framework. Chem 2021, 7, 1321–1332.
Xiao, W. C.; Hu, C. H.; Ward, M. D. Guest exchange through single crystal-single crystal transformations in a flexible hydrogen-bonded framework. J. Am. Chem. Soc. 2014, 136, 14200–14206.
Huang, Y. G.; Shiota, Y.; Wu, M. Y.; Su, S. Q.; Yao, Z. S.; Kang, S.; Kanegawa, S.; Li, G. L.; Wu, S. Q.; Kamachi, T. et al. Superior thermoelasticity and shape-memory nanopores in a porous supramolecular organic framework. Nat. Commun. 2016, 7, 11564.
Lv, Y. C.; Liang, J. S.; Xiong, Z. L.; Yang, X.; Li, Y. B.; Zhang, H.; Xiang, S. C.; Chen, B. L.; Zhang, Z. J. Smart-responsive HOF heterostructures with multiple spatial-resolved emission modes toward photonic security platform. Adv. Mater. 2024, 36, 2309130.
Xu, X.; Yan, B. Bioinspired luminescent HOF-based foam as ultrafast and ultrasensitive pressure and acoustic bimodal sensor for human-machine interactive object and information recognition. Adv. Mater. 2023, 35, 2303410.
Hisaki, I.; Suzuki, Y.; Gomez, E.; Ji, Q.; Tohnai, N.; Nakamura, T.; Douhal, A. Acid responsive hydrogen-bonded organic frameworks. J. Am. Chem. Soc. 2019, 141, 2111–2121.
Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2021, 15, 1730–1752.
Wu, Y. L.; Mao, X. N.; Zhang, M. C.; Zhao, X.; Xue, R. J.; Di, S. J.; Huang, W.; Wang, L.; Li, Y. Y.; Li, Y. G. 2D molecular sheets of hydrogen-bonded organic frameworks for ultrastable sodium-ion storage. Adv. Mater. 2021, 33, 2106079.
Zhao, X.; Yin, Q.; Mao, X. N.; Cheng, C.; Zhang, L.; Wang, L.; Liu, T. F.; Li, Y. Y.; Li, Y. G. Theory-guided design of hydrogen-bonded cobaltoporphyrin frameworks for highly selective electrochemical H2O2 production in acid. Nat. Commun. 2022, 13, 2721.
Hao, Q.; Li, Z. J.; Lu, C.; Sun, B.; Zhong, Y. W.; Wan, L. J.; Wang, D. Oriented two-dimensional covalent organic framework films for near-infrared electrochromic application. J. Am. Chem. Soc. 2019, 141, 19831–19838.
Kung, C. W.; Wang, T. C.; Mondloch, J. E.; Fairen-Jimenez, D.; Gardner, D. M.; Bury, W.; Klingsporn, J. M.; Barnes, J. C.; Van Duyne, R.; Stoddart, J. F. et al. Metal-organic framework thin films composed of free-standing acicular nanorods exhibiting reversible electrochromism. Chem. Mater. 2013, 25, 5012–5017.
Stec, G. J.; Lauchner, A.; Cui, Y.; Nordlander, P.; Halas, N. J. Multicolor electrochromic devices based on molecular plasmonics. ACS Nano. 2017, 11, 3254–3261.
Matsui, J.; Kikuchi, R.; Miyashita, T. A trilayer film approach to multicolor electrochromism. J. Am. Chem. Soc. 2014, 136, 842–845.
Woodward, A. N.; Kolesar, J. M.; Hall, S. R.; Saleh, N. A.; Jones, D. S.; Walter, M. G. Thiazolothiazole fluorophores exhibiting strong fluorescence and viologen-like reversible electrochromism. J. Am. Chem. Soc. 2017, 139, 8467–8473.
Takada, K.; Sakamoto, R.; Yi, S. T.; Katagiri, S.; Kambe, T.; Nishihara, H. Electrochromic bis(terpyridine)metal complex nanosheets. J. Am. Chem. Soc. 2015, 137, 4681–4689.
Feng, J. F.; Liu, T. F.; Cao, R. An electrochromic hydrogen-bonded organic framework film. Angew. Chem., Int. Ed. 2020, 59, 22392–22396.
Feng, J. F.; Luo, Y.; Wang, X. Y.; Cai, G. F.; Cao, R. A large-area patterned hydrogen-bonded organic framework electrochromic film and device. Small 2023, 19, 2304691.
Gao, X. Y.; Lu, W. Y.; Wang, Y.; Song, X. Y.; Wang, C.; Kirlikovali, K. O.; Li, P. Recent advancements of photo- and electro-active hydrogen-bonded organic frameworks. Sci. China Chem. 2022, 65, 2077–2095.
Lu, M. L.; Huang, W.; Gao, S. Z.; Zhang, J. L.; Liang, W. B.; Li, Y.; Yuan, R.; Xiao, D. R. Pyrene-based hydrogen-bonded organic frameworks as new emitters with porosity- and aggregation-induced enhanced electrochemiluminescence for ultrasensitive MicroRNA assay. Anal. Chem. 2022, 94, 15832–15838.
Wang, C.; Wang, Y.; Kirlikovali, K. O.; Ma, K. K.; Zhou, Y. M.; Li, P.; Farha, O. K. Ultrafine silver nanoparticle encapsulated porous molecular traps for discriminative photoelectrochemical detection of mustard gas simulants by synergistic size-exclusion and site-specific recognition. Adv. Mater. 2022, 34, 2202287.
Wang, C.; Song, X. Y.; Wang, Y.; Xu, R.; Gao, X. Y.; Shang, C.; Lei, P.; Zeng, Q. D.; Zhou, Y. M.; Chen, B. L. et al. A solution-processable porphyrin-based hydrogen-bonded organic framework for photoelectrochemical sensing of carbon dioxide. Angew. Chem., Int. Ed. 2023, 62, e202311482.