Journal Home > Online First

Zero-dimensional metal halides are of unique structures and tunable photoluminescence properties, showing great potential applications such as light-emitting diodes (LEDs) and sensing. Herein, we successfully synthesized Cu+ doped (MA)2ZnCl4 metal halides by a slow evaporation solvent method. The introduction of Cu+ results in sky-blue self-trapped exciton emission in (MA)2ZnCl4 at 486 nm at room temperature, and a photoluminescence quantum yield is as high as 54.9%. Interestingly, at low temperatures, Cu+-doped (MA)2ZnCl4 exhibits two emission peaks located at 482 and 605 nm, respectively. This temperature-dependent dual emission indicates two excited state structures that exist on the triplet excited-state potential energy surface. In addition, the temperature sensor we fitted has good performance (Sr = 1.65 %·K−1), which is the first attempt in Cu+ doped Zn-based metal halides. Our work enriches the family of sky-blue metal halides and provides a promising strategy for building sky-blue LEDs.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Temperature-dependent self-trapped exciton emission in Cu(I) doped zinc-based metal halides from well-resolved excited state structures

Show Author's information Yunlong BaiShuai ZhangNengneng LuoBingsuo ZouRuosheng Zeng( )
State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Physical Science and Technology, Guangxi University, Nanning 530004, China

Abstract

Zero-dimensional metal halides are of unique structures and tunable photoluminescence properties, showing great potential applications such as light-emitting diodes (LEDs) and sensing. Herein, we successfully synthesized Cu+ doped (MA)2ZnCl4 metal halides by a slow evaporation solvent method. The introduction of Cu+ results in sky-blue self-trapped exciton emission in (MA)2ZnCl4 at 486 nm at room temperature, and a photoluminescence quantum yield is as high as 54.9%. Interestingly, at low temperatures, Cu+-doped (MA)2ZnCl4 exhibits two emission peaks located at 482 and 605 nm, respectively. This temperature-dependent dual emission indicates two excited state structures that exist on the triplet excited-state potential energy surface. In addition, the temperature sensor we fitted has good performance (Sr = 1.65 %·K−1), which is the first attempt in Cu+ doped Zn-based metal halides. Our work enriches the family of sky-blue metal halides and provides a promising strategy for building sky-blue LEDs.

Keywords: self-trapped exciton, temperature sensor, sky-blue emission, metal halides, excited state structures

References(37)

[1]

Chen, C. X.; Zhang, S.; Zeng, R. S.; Luo, B. B.; Chen, Y. J.; Cao, S.; Zhao, J. L.; Zou, B. S.; Zhang, J. Z. Competing energy transfer in two-dimensional Mn2+-doped BDACdBr4 hybrid layered perovskites with near-unity photoluminescence quantum yield. ACS Appl. Mater. Interfaces 2022, 14, 45725–45733.

[2]

Zhu, C. L.; Nguyen, T.; Boehme, S. C.; Moskalenko, A.; Dirin, D. N.; Bodnarchuk, M. I.; Katan, C.; Even, J.; Rainò, G.; Kovalenko, M. V. Many-body correlations and exciton complexes in CsPbBr3 quantum dots. Adv. Mater. 2023, 35, 2208354.

[3]

Zhang, Q. Y.; Diao, F. Y.; Xue, X. Y.; Sheng, X. L.; Barba, D.; Wang, Y. Q. Self-assembly of CsPbBr3 nanocubes into 2D nanosheets. ACS Appl. Mater. Interfaces 2021, 13, 44777–44785.

[4]

Zhao, X.; Fang, W. H.; Long, R.; Prezhdo, O. V. Chemical passivation of methylammonium fragments eliminates traps, extends charge lifetimes, and restores structural stability of CH3NH3PbI3 perovskite. Nano Res. 2022, 15, 4765–4772.

[5]

Su, B. B.; Xia, Z. G. Research progresses of photoluminescence and application for emerging zero-dimensional metal halides luminescence materials. Chin. J. Lumin. 2021, 42, 733–754.

[6]

Bao, S.; Yu, H. Y.; Gao, G. Y.; Zhu, H. Y.; Wang, D. S.; Zhu, P. F.; Wang, G. F. Rare-earth single atom based luminescent composite nanomaterials: Tunable full-color single phosphor and applications in WLEDs. Nano Res. 2022, 15, 3594–3605.

[7]

Han, D. Y.; Wang, J.; Agosta, L.; Zang, Z.; Zhao, B.; Kong, L. M.; Lu, H. Z.; Mosquera-Lois, I.; Carnevali, V.; Dong, J. C. et al. Tautomeric mixture coordination enables efficient lead-free perovskite LEDs. Nature 2023, 622, 493–498.

[8]

Huang, T.; Li, K.; Lei, J. Y.; Niu, Q.; Peng, H.; Zou, B. S. Origin of singlet self-trapped exciton and enhancement of photoluminescence quantum yield of organic-inorganic hybrid antimony(III) chlorides with the [SbCl5]2− units. Nano Res. 2023, 16, 12680–12688.

[9]

Ling, Y. M.; Zhao, X. Q.; Hao, P. Y.; Song, Y. D.; Liu, J. W.; Zhao, L.; Qian, Y.; Guo, C. F. Gd3+-sensitized rare earth fluoride scintillators for high-resolution flexible X-ray imaging. Chem. Eng. J. 2023, 476, 146790.

[10]

Li, D. Y.; Wu, J. H.; Wang, X. Y.; Zhang, X. Y.; Yue, C. Y.; Lei, X. W. Reversible triple-mode photo-and radioluminescence and nonlinear optical switching in highly efficient 0D hybrid cuprous halides. Chem. Mater. 2023, 35, 6598–6611.

[11]

Yang, H. X.; Chen, X. X.; Chu, Y. Y.; Sun, C. J.; Lu, H. L.; Yuan, M. J.; Zhang, Y. H.; Long, G. K.; Zhang, L. B.; Li, X. Y. A universal hydrochloric acid-assistant powder-to-powder strategy for quick and mass preparation of lead-free perovskite microcrystals. Light Sci. Appl. 2023, 12, 75.

[12]

Cui, M. H.; Qin, C. C.; Zhou, Z. P.; Jiang, Y. Z.; Zhang, S. C.; Yuan, Z. Y.; Yuan, M. J.; Yu, K.; Jiang, Y. H.; Liu, Y. F. Tuning coherent phonon dynamics in two-dimensional phenylethylammonium lead bromide perovskites. Nano Res. 2023, 16, 3408–3414.

[13]

Yao, J. L.; Zhang, Z. X.; Wang, D. Y.; Huang, K. K.; Yang, W. S.; Sun, L. T.; Xie, R. G.; Pradhan, N. Mapping the space of inorganic and hybrid halides and their optical properties using mechanochemistry and first-principles calculations. Chem. Mater. 2023, 35, 8745–8757.

[14]
Li, X. H.; Li, Y. F.; Feng, Y. X.; Qi, J. H.; Shen, J. L.; Shi, G. D.; Yang, S. P.; Yuan, M. J.; He, T. W. Strain regulation of mixed-halide perovskites enables high-performance wide-bandgap photovoltaics. Adv. Mater., in press, https://doi.org/10.1002/adma.202401103.
DOI
[15]

Zhang, J. S.; Shum, P. P.; Su, L. A review of geometry-confined perovskite morphologies: From synthesis to efficient optoelectronic applications. Nano Res. 2022, 15, 7402–7431.

[16]

Hao, F.; Stoumpos, C. C.; Cao, D. H.; Chang, R. P. H.; Kanatzidis, M. G. Lead-free solid-state organic–inorganic halide perovskite solar cells. Nat. Photonics 2014, 8, 489–494.

[17]

Chaudhary, M.; Karmakar, A.; Mishra, V.; Bhattacharya, A.; Mumbaraddi, D.; Mar, A.; Michaelis, V. K. Effect of aliovalent bismuth substitution on structure and optical properties of CsSnBr3. Commun. Chem. 2023, 6, 75.

[18]

Xiao, Z. W.; Song, Z. N.; Yan, Y. F. From lead halide perovskites to lead-free metal halide perovskites and perovskite derivatives. Adv. Mater. 2019, 31, 1803792.

[19]

Morad, V.; Cherniukh, I.; Pöttschacher, L.; Shynkarenko, Y.; Yakunin, S.; Kovalenko, M. V. Manganese(II) in tetrahedral halide environment: Factors governing bright green luminescence. Chem. Mater. 2019, 31, 10161–10169.

[20]

Bae, Y.; Ryu, J.; Yoon, S.; Kang, D. W. Recent progress in quasi-two-dimensional and quantum dot perovskite light-emitting diodes harnessing the diverse effects of ligands: A review. Nano Res. 2022, 15, 6449–6465.

[21]

Morad, V.; Shynkarenko, Y.; Yakunin, S.; Brumberg, A.; Schaller, R. D.; Kovalenko, M. V. Disphenoidal zero-dimensional lead, tin, and germanium halides: Highly emissive singlet and triplet self-trapped excitons and X-ray scintillation. J. Am. Chem. Soc. 2019, 141, 9764–9768.

[22]

Su, B. B.; Li, M. Z.; Song, E. H.; Xia, Z. G. Sb3+-doping in cesium zinc halides single crystals enabling high-efficiency near-infrared emission. Adv. Funct. Mater. 2021, 31, 2105316.

[23]

Tan, Z. F.; Chu, Y. M.; Chen, J. X.; Li, J. H.; Ji, G. Q.; Niu, G. D.; Gao, L.; Xiao, Z. W.; Tang, J. Lead-free perovskite variant solid solutions Cs2Sn1− x Te x Cl6: Bright luminescence and high anti-water stability. Adv. Mater. 2020, 32, 2002443.

[24]

Jin, J. C.; Han, K.; Hu, Y. K.; Xia, Z. G. Zn2+ doping in organic manganese(II) bromide hybrid scintillators toward enhanced light yield for X-ray imaging. Adv. Opt. Mater. 2023, 11, 2300330.

[25]

Shi, Z. F.; Zhang, F.; Yan, J. J.; Zhang, Y.; Chen, X.; Chen, S.; Wu, D.; Li, X. J.; Zhang, Y.; Shan, C. X. Robust frequency-upconversion lasing operated at 400 K from inorganic perovskites microcavity. Nano Res. 2022, 15, 492–501.

[26]

Ren, M.; Zhang, S.; Chang, T.; Yao, J. D.; Gao, Y. L.; Yuan, M. J.; Cao, S.; Zhao, J. L.; Zou, B. S.; Zeng, R. S. Cu substitution boosts self-trapped exciton emission in zinc-based metal halides for sky-blue light-emitting diodes. J. Mater. Chem. C 2022, 10, 9530–9537.

[27]

Yang, B.; Chen, J. S.; Hong, F.; Mao, X.; Zheng, K. B.; Yang, S. Q.; Li, Y. J.; Pullerits, T.; Deng, W. Q.; Han, K. L. Lead-free, air-stable all-inorganic cesium bismuth halide perovskite nanocrystals. Angew. Chem., Int. Ed. 2017, 56, 12471–12475.

[28]

Zhu, D. X.; Zaffalon, M. L.; Pinchetti, V.; Brescia, R.; Moro, F.; Fasoli, M.; Fanciulli, M.; Tang, A. W.; Infante, I.; De Trizio, L. et al. Bright blue emitting Cu-doped Cs2ZnCl4 colloidal nanocrystals. Chem. Mater. 2020, 32, 5897–5903.

[29]

Cheng, P. F.; Feng, L.; Liu, Y. F.; Zheng, D. Y.; Sang, Y. B.; Zhao, W. Y.; Yang, Y.; Yang, S. Q.; Wei, D. H.; Wang, G. X. et al. Doped zero-dimensional cesium zinc halides for high-efficiency blue light emission. Angew. Chem., Int. Ed. 2020, 59, 21414–21418.

[30]

Tian, Y.; Peng, H.; Wei, Q. L.; Chen, Y. X.; Xia, J. J.; Lin, W. C.; Peng, C. Y.; He, X. F.; Zou, B. S. Moisture-induced reversible structure conversion of zero-dimensional organic cuprous bromide hybrids for multiple photoluminescent anti-counterfeiting, information encryption and rewritable luminescent paper. Chem. Eng. J. 2023, 458, 141436.

[31]

Xing, Z. S.; Zhou, Z. C.; Zhong, G. H.; Chan, C. C. S.; Li, Y. Y.; Zou, X. H.; Halpert, J. E.; Su, H. B.; Wong, K. S. Barrierless exciton self-trapping and emission mechanism in low-dimensional copper halides. Adv. Funct. Mater. 2022, 32, 2207638.

[32]

Lim, A. R. Effects of paramagnetic interactions by the partial replacement of Zn2+ ions with Cu2+ ions in lead-free zinc-based perovskite (MA)2ZnCl4 crystal by MAS NMR. AIP Adv. 2019, 9, 105115.

[33]

Gao, Y. L.; Han, X. X.; Wei, Q. L.; Chang, T.; Chen, Y. J.; Zou, B. S.; Cao, S.; Zhao, J. L.; Zeng, R. S. Efficient orange emission in Mn2+-doped Cs3Cd2Cl7 perovskites with excellent stability. J. Phys. Chem. Lett. 2022, 13, 7177–7184.

[34]

Chang, T.; Dai, Y. R.; Wei, Q. L.; Xu, X.; Cao, S.; Zou, B. S.; Zhang, Q. L.; Zeng, R. S. Temperature-dependent reversible optical properties of Mn-based organic–inorganic hybrid (C8H20N)2MnCl4 metal halides. ACS Appl. Mater. Interfaces 2023, 15, 5487–5494.

[35]

Wei, Q. L.; Chang, T.; Zeng, R. S.; Cao, S.; Zhao, J. L.; Han, X. X.; Wang, L. S.; Zou, B. S. Self-trapped exciton emission in a zero-dimensional (TMA)2SbCl5·DMF single crystal and molecular dynamics simulation of structural stability. J. Phys. Chem. Lett. 2021, 12, 7091–7099.

[36]

Cheng, Z. L.; Meng, M. Z.; Wang, J. Y.; Li, Z. Y.; He, J.; Liang, H.; Qiao, X.; Liu, Y. L.; Ou, J. High-sensitivity NaYF4:Yb3+/Ho3+/Tm3+ phosphors for optical temperature sensing based on thermally coupled and non-thermally coupled energy levels. Nanoscale 2023, 15, 11179–11189.

[37]

Xiao, Z. W.; Meng, W. W.; Wang, J. B.; Mitzi, D. B.; Yan, Y. F. Searching for promising new perovskite-based photovoltaic absorbers: The importance of electronic dimensionality. Mater. Horiz. 2017, 4, 206–216.

File
6664_ESM.pdf (1.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 25 February 2024
Revised: 22 March 2024
Accepted: 26 March 2024
Published: 02 May 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22175043 and 52162021) and Guangxi Science and Technology Plan Project (No. Guike AA23073018). The calculation was supported by the high-performance computing platform of Guangxi University.

Return