Journal Home > Online First

With the increasing emphasis on ecological safety and physical health, the detection and treatment of harmful substances and diseases are becoming more and more prevalent. Therefore, efficiently monitoring these biological behaviors with high accuracy and sensitivity in real-time has shown prominent research significance. The use of fluorescent probes to analyze organisms has gained momentum in recent years, especially in the field of organ imaging and assisted cancer therapy, where fluorescent bioanalysis demonstrates significant advantageous. In this review, we explored the latest advancements in fluorescent molecular probes (e.g., small-molecule, macro-molecule, supramolecule) and fluorescent nanoparticle probes (e.g., quantum dots or nanoclusters, metal-organic frameworks, polymers, complexes) used as bioanalytical tools in various assays over the last three years. We also delved into their detective mechanisms, specific application areas, and characterization tools for responsive behavior. This review aims to showcase the most recent and comprehensive research progress in fluorescent bioanalysis based on molecular and nanoparticle probes, offering guidance for future developments in the design and fabrication of fluorescent probes and their potential applications.


menu
Abstract
Full text
Outline
About this article

Recent advances in molecular and nanoparticle probes for fluorescent bioanalysis

Show Author's information Haowen Luo1,§Lejie Tian1,§Yaoming Zhang1Yang Wu2,3Bin Li2,3( )Jianxi Liu1( )
State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China
Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Shandong Laboratory of Advanced Materials and Green Manufacturing, Yantai 264006, China
State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China

§ Haowen Luo and Lejie Tian contributed equally to this work.

Abstract

With the increasing emphasis on ecological safety and physical health, the detection and treatment of harmful substances and diseases are becoming more and more prevalent. Therefore, efficiently monitoring these biological behaviors with high accuracy and sensitivity in real-time has shown prominent research significance. The use of fluorescent probes to analyze organisms has gained momentum in recent years, especially in the field of organ imaging and assisted cancer therapy, where fluorescent bioanalysis demonstrates significant advantageous. In this review, we explored the latest advancements in fluorescent molecular probes (e.g., small-molecule, macro-molecule, supramolecule) and fluorescent nanoparticle probes (e.g., quantum dots or nanoclusters, metal-organic frameworks, polymers, complexes) used as bioanalytical tools in various assays over the last three years. We also delved into their detective mechanisms, specific application areas, and characterization tools for responsive behavior. This review aims to showcase the most recent and comprehensive research progress in fluorescent bioanalysis based on molecular and nanoparticle probes, offering guidance for future developments in the design and fabrication of fluorescent probes and their potential applications.

Keywords: bioimaging, fluorescent, biosensing, disease diagnosis, tumor detection and treatment

References(197)

[1]

Fan, V. Y.; Bloom, D. E.; Ogbuoji, O.; Prettner, K.; Yamey, G. Valuing health as development: Going beyond gross domestic product. BMJ 2018, 363, k4371.

[2]

Kumar, V.; Kukkar, D.; Hashemi, B.; Kim, K. H.; Deep, A. Advanced functional structure-based sensing and imaging strategies for cancer detection: Possibilities, opportunities, challenges, and prospects. Adv. Funct. Mater. 2019, 29, 1807859.

[3]

Zhang, L.; Wang, X. C.; Dzakpasu, M.; Cao, T.; Zhang, H. F.; Liu, Y.; Zheng, Y. C. Integrated environmental influences quantification of pilot-scale constructed wetlands based on modified ecological footprint assessment. Sci. Total Environ. 2022, 843, 157039.

[4]

Wang, T.; Zhou, Y.; Lei, C.; Luo, J.; Xie, S. R.; Pu, H. Y. Magnetic impedance biosensor: A review. Biosens. Bioelectron. 2017, 90, 418–435.

[5]

Cheng, X. K.; Li, Y. R.; Kou, J.; Liao, D.; Zhang, W. L.; Yin, L. J.; Man, S. L.; Ma, L. Novel non-nucleic acid targets detection strategies based on CRISPR/Cas toolboxes: A review. Biosens. Bioelectron. 2022, 215, 114559.

[6]

Webb, B. A.; Chimenti, M.; Jacobson, M. P.; Barber, D. L. Dysregulated pH: A perfect storm for cancer progression. Nat. Rev. Cancer 2011, 11, 671–677.

[7]

Lee, C.; Nam, J. S.; Lee, C. G.; Park, M.; Yoo, C. M.; Rhee, H. W.; Seo, J. K.; Kwon, T. H. Analysing the mechanism of mitochondrial oxidation-induced cell death using a multifunctional iridium(III) photosensitiser. Nat. Commun. 2021, 12, 26.

[8]

Chen, Y.; Wang, S. F.; Zhang, F. Near-infrared luminescence high-contrast in vivo biomedical imaging. Nat. Rev. Bioeng. 2023, 1, 60–78.

[9]

Zhu, X. Y.; Zhang, H. X.; Zhang, F. Expanding NIR-II lanthanide toolboxes for improved biomedical imaging and detection. Acc. Mater. Res. 2023, 4, 536–547.

[10]

Xu, Y.; Yu, J. Y.; Hu, J. Z.; Sun, K.; Lu, W. J.; Zeng, F. L.; Chen, J.; Liu, M.; Cai, Z. E.; He, X. F. et al. Tumor-targeting near-infrared dimeric heptamethine cyanine photosensitizers with an aromatic diphenol linker for imaging-guided cancer phototherapy. Adv. Healthc. Mater. 2023, 12, 2203080.

[11]

Duan, Q. J.; Zhao, Z. Y.; Zhang, Y. J.; Fu, L. B.; Yuan, Y. Y.; Du, J. Z.; Wang, J. Activatable fluorescent probes for real-time imaging-guided tumor therapy. Adv. Drug Deliv. Rev. 2023, 196, 114793.

[12]

Xavier, R. J.; Podolsky, D. K. Unravelling the pathogenesis of inflammatory bowel disease. Nature 2007, 448, 427–434.

[13]

Naha, P. C.; Hsu, J. C.; Kim, J.; Shah, S.; Bouché, M.; Si-Mohamed, S.; Rosario-Berrios, D. N.; Douek, P.; Hajfathalian, M.; Yasini, P. et al. Dextran-coated cerium oxide nanoparticles: A computed tomography contrast agent for imaging the gastrointestinal tract and inflammatory bowel disease. ACS Nano 2020, 14, 10187–10197.

[14]

Loos, B.; du Toit, A.; Hofmeyr, J. H. S. Non-invasive monitoring of autophagy. Nat. Biomed. Eng. 2022, 6, 1015–1016.

[15]

Dong, J.; Chen, H. Cardiotoxicity of anticancer therapeutics. Front. Cardiovasc. Med. 2018, 5, 9.

[16]

Borisov, S. M.; Wolfbeis, O. S. Optical biosensors. Chem. Rev. 2008, 108, 423–461.

[17]

Zhang, K. Y.; Yu, Q.; Wei, H. J.; Liu, S. J.; Zhao, Q.; Huang, W. Long-lived emissive probes for time-resolved photoluminescence bioimaging and biosensing. Chem. Rev. 2018, 118, 1770–1839.

[18]

Rosi, N. L.; Mirkin, C. A. Nanostructures in biodiagnostics. Chem. Rev. 2005, 105, 1547–1562.

[19]

Jamali, A. A.; Pourhassan-Moghaddam, M.; Dolatabadi, J. E. N.; Omidi, Y. Nanomaterials on the road to microRNA detection with optical and electrochemical nanobiosensors. TrAC Trends Anal. Chem. 2014, 55, 24–42.

[20]

van Dam, G. M.; Themelis, G.; Crane, L. M. A.; Harlaar, N. J.; Pleijhuis, R. G.; Kelder, W.; Sarantopoulos, A.; de Jong, J. S.; Arts, H. J. G.; van der Zee, A. G. J. et al. Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: First in-human results. Nat. Med. 2011, 17, 1315–1319.

[21]
Ma, G. C.; Ding, Q. H.; Zhang, Y. D.; Wang, Y.; Xiang, J. J.; Li, M. L.; Zhao, Q.; Huang, S. P.; Gong, P.; Kim, J. S. Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chin. Chem. Lett., in press, DOI: 10.1016/j.cclet.2023.109293.
DOI
[22]

Frangioni, J. V. In vivo near-infrared fluorescence imaging. Curr. Opin. Chem. Biol. 2003, 7, 626–634.

[23]

Lee, D. E.; Koo, H.; Sun, I. C.; Ryu, J. H.; Kim, K.; Kwon, I. C. Multifunctional nanoparticles for multimodal imaging and theragnosis. Chem. Soc. Rev. 2012, 41, 2656–2672.

[24]

Ma, F.; Zhang, X. Y. Single-molecule/particle counting for microRNA detection and imaging. TrAC Trends Anal. Chem. 2023, 164, 117085.

[25]

Krämer, J.; Kang, R.; Grimm, L. M.; De Cola, L.; Picchetti, P.; Biedermann, F. Molecular probes, chemosensors, and nanosensors for optical detection of biorelevant molecules and ions in aqueous media and biofluids. Chem. Rev. 2022, 122, 3459–3636.

[26]

Zhu, B. T.; Sheng, R. L.; Chen, T. H.; Rodrigues, J.; Song, Q. H.; Hu, X. C.; Zeng, L. T. Molecular engineered optical probes for chemical warfare agents and their mimics: Advances, challenges and perspectives. Coord. Chem. Rev. 2022, 463, 214527.

[27]

Nie, S. M.; Xing, Y.; Kim, G. J.; Simons, J. W. Nanotechnology applications in cancer. Annu. Rev. Biomed. Eng. 2007, 9, 257–288.

[28]

Fan, Z.; Sun, L. M.; Huang, Y. J.; Wang, Y. Z.; Zhang, M. J. Bioinspired fluorescent dipeptide nanoparticles for targeted cancer cell imaging and real-time monitoring of drug release. Nat. Nanotechnol. 2016, 11, 388–394.

[29]

Mochida, A.; Ogata, F.; Nagaya, T.; Choyke, P. L.; Kobayashi, H. Activatable fluorescent probes in fluorescence-guided surgery: Practical considerations. Bioorg. Med. Chem. 2018, 26, 925–930.

[30]

Pan, S. J.; Ding, A. X.; Li, Y. S.; Sun, Y. X.; Zhan, Y. Q.; Ye, Z. K.; Song, N.; Peng, B.; Li, L.; Huang, W. et al. Small-molecule probes from bench to bedside: Advancing molecular analysis of drug-target interactions toward precision medicine. Chem. Soc. Rev. 2023, 52, 5706–5743.

[31]

Han, H. H.; Tian, H.; Zang, Y.; Sedgwick, A. C.; Li, J.; Sessler, J. L.; He, X. P.; James, T. D. Small-molecule fluorescence-based probes for interrogating major organ diseases. Chem. Soc. Rev. 2021, 50, 9391–9429.

[32]

Cwalinski, T.; Polom, W.; Marano, L.; Roviello, G.; D’Angelo, A.; Cwalina, N.; Matuszewski, M.; Roviello, F.; Jaskiewicz, J.; Polom, K. Methylene blue-current knowledge, fluorescent properties, and its future use. J. Clin. Med. 2020, 9, 3538.

[33]

Lu, C. H.; Hsiao, J. K. Indocyanine green: An old drug with novel applications. Tzu Chi Med. J. 2021, 33, 317–322.

[34]

Liu, J.; Xu, Z. Y.; Meng, C.; Wusiman, S.; Xie, X. D.; Wang, Y. C.; Xiao, F.; Gu, C. Y.; Chen, J.; Ling, C. C. et al. Acidic tumor microenvironment-activatable fluorescent diagnostic probe for the rapid identification and resection of human tumors via spraying. Biosens. Bioelectron. 2023, 234, 115343.

[35]

Fu, Y. H.; Finney, N. S. Small-molecule fluorescent probes and their design. RSC Adv. 2018, 8, 29051–29061.

[36]

Fan, Y. Y.; Liu, H. L.; Han, R. C.; Huang, L.; Shi, H.; Sha, Y. L.; Jiang, Y. Q. Extremely high brightness from polymer-encapsulated quantum dots for two-photon cellular and deep-tissue imaging. Sci. Rep. 2015, 5, 9908.

[37]

Mao, L. W.; Han, Y. J.; Zhang, Q. W.; Tian, Y. Two-photon fluorescence imaging and specifically biosensing of norepinephrine on a 100-ms timescale. Nat. Commun. 2023, 14, 1419.

[38]

Jakubowski, H. V.; Spinali, K. Cell signaling: Principles and mechanisms. Biochem. Mol. Biol. Educ. 2017, 45, 365–367.

[39]

Halabi, E. A.; Weissleder, R. Light-deactivated fluorescent probes (FLASH-Off) for multiplexed imaging. J. Am. Chem. Soc. 2023, 145, 8455–8463.

[40]

Liu, Y. C.; Teng, L. L.; Lou, X. F.; Zhang, X. B.; Song, G. S. "Four-in-one" design of a hemicyanine-based modular scaffold for high-contrast activatable molecular afterglow imaging. J. Am. Chem. Soc. 2023, 145, 5134–5144.

[41]

Li, H. D.; Kim, H.; Xu, F.; Han, J. J.; Yao, Q. C.; Wang, J. Y.; Pu, K. Y.; Peng, X. J.; Yoon, J. Activity-based NIR fluorescent probes based on the versatile hemicyanine scaffold: Design strategy, biomedical applications, and outlook. Chem. Soc. Rev. 2022, 51, 1795–1835.

[42]

Huang, K. T.; Poganik, J. R.; Parvez, S.; Raja, S.; Miller, B.; Long, M. J. C.; Fetcho, J. R.; Aye, Y. Z-REX: Shepherding reactive electrophiles to specific proteins expressed tissue specifically or ubiquitously, and recording the resultant functional electrophile-induced redox responses in larval fish. Nat. Protoc. 2023, 18, 1379–1415.

[43]

Zuo, C.; Shi, W. W.; Chen, X. X.; Glatz, M.; Riedl, B.; Flamme, I.; Pook, E.; Wang, J. W.; Fang, G. M.; Bierer, D. et al. Chimeric protein probes for C5a receptors through fusion of the anaphylatoxin C5a core region with a small-molecule antagonist. Sci. China Chem. 2019, 62, 1371–1378.

[44]

Li, J.; Qiao, Q. L.; Ruan, Y. Y.; Xu, N.; Zhou, W.; Zhang, G. X.; Yuan, J. L.; Xu, Z. C. A fluorogenic probe for SNAP-tag protein based on ESPT ratiometric signals. Chin. Chem. Lett. 2023, 34, 108266.

[45]

Yan, J.; Liang, X.; Zhang, Q.; Wang, L. L.; Lin, W. Y. Evaluating the tumor stratification with a lysosomal pH sensitive-probe by fluorescence lifetime imaging. Chin. Chem. Lett. 2024, 35, 108408.

[46]

Xing, J.; Gong, Q. Y.; Zou, R. F.; Yao, J. L.; Xiang, L. C.; Wu, A. G. GSH responsive traditional clinical drugs probe for cancer cell fluorescence imaging and therapy. Chin. Chem. Lett. 2023, 34, 107786.

[47]

Tao, M. L.; Mao, J.; Bao, Y.; Liu, F.; Mai, Y.; Guan, S. J.; Luo, S. H.; Huang, Y. F.; Li, Z. X.; Zhong, Y. et al. A blood-responsive AIE bioprobe for the ultrasensitive detection and assessment of subarachnoid hemorrhage. Adv. Sci. 2023, 10, 2205435.

[48]

Cheng, J.; Li, Z. H.; Nong, L.; Huang, P.; Lin, W. Y. Detecting inflammation in the diabetic mice with a fluorescence lifetime-based probe. Anal. Chim. Acta 2022, 1221, 340104.

[49]

Garcia-Calvo, J.; López-Andarias, J.; Maillard, J.; Mercier, V.; Roffay, C.; Roux, A.; Fürstenberg, A.; Sakai, N.; Matile, S. HydroFlipper membrane tension probes: Imaging membrane hydration and mechanical compression simultaneously in living cells. Chem. Sci. 2022, 13, 2086–2093.

[50]

Wu, Z. T.; Guo, Y.; Jiang, W. W.; Yang, Y. Q.; Wei, P.; Yi, T. Recent process in organic small molecular fluorescent probes for tracking markers of tumor redox balance. TrAC Trends Anal. Chem. 2024, 170, 117461.

[51]

Wu, L. L.; Sedgwick, A. C.; Sun, X. L.; Bull, S. D.; He, X. P.; James, T. D. Reaction-based fluorescent probes for the detection and imaging of reactive oxygen, nitrogen, and sulfur species. Acc. Chem. Res. 2019, 52, 2582–2597.

[52]

Fan, X. P.; Yang, W.; Ren, T. B.; Xu, S.; Gong, X. Y.; Zhang, X. B.; Yuan, L. Engineering a ratiometric photoacoustic probe with a hepatocyte-specific targeting ability for liver injury imaging. Anal. Chem. 2022, 94, 1474–1481.

[53]

Yan, L.; Gu, Q. S.; Jiang, W. L.; Tan, M.; Tan, Z. K.; Mao, G. J.; Xu, F.; Li, C. Y. Near-infrared fluorescent probe with large stokes shift for imaging of hydrogen sulfide in tumor-bearing mice. Anal. Chem. 2022, 94, 5514–5520.

[54]

Tamima, U.; Sarkar, S.; Islam, M. R.; Shil, A.; Kim, K. H.; Reo, Y. J.; Jun, Y. W.; Banna, H.; Lee, S.; Ahn, K. H. A small-molecule fluorescence probe for nuclear ATP. Angew. Chem., Int. Ed. 2023, 62, e202300580.

[55]

Shi, Y. L.; Zou, X. X.; Zheng, X. H.; Wu, Y. M.; Han, J. H.; Han, S. F. Sensitive imaging of Endoplasmic reticulum (ER) autophagy with an acidity-reporting ER-Tracker. Autophagy 2023, 19, 2015–2025.

[56]

Wang, Y. J.; Li, L.; Yu, J.; Hu, H. Y.; Liu, Z. X.; Jiang, W. J.; Xu, W.; Guo, X. P.; Wang, F. S.; Sheng, J. Z. Imaging of Escherichia coli K5 and glycosaminoglycan precursors via targeted metabolic labeling of capsular polysaccharides in bacteria. Sci. Adv. 2023, 17, eade4770.

[57]

Bersch, K. L.; DeMeester, K. E.; Zagani, R.; Chen, S. Y.; Wodzanowski, K. A.; Liu, S. Z.; Mashayekh, S.; Reinecker, H. C.; Grimes, C. L. Bacterial peptidoglycan fragments differentially regulate innate immune signaling. ACS Cent. Sci. 2021, 7, 688–696.

[58]

Dou, W. T.; Wang, X.; Liu, T. T.; Zhao, S. W.; Liu, J. J.; Yan, Y.; Li, J.; Zhang, C. Y.; Sedgwick, A. C.; Tian, H. et al. A homogeneous high-throughput array for the detection and discrimination of influenza A viruses. Chem 2022, 8, 1750–1761.

[59]

Hu, N.; Zeng, H.; Shi, S.; Yao, W.; Ji, D.; Guo, H.; Luo, L.; Jin, T.; Yu, Q.; Xu, K. et al. The preparation of a chitosan-based novel fluorescent macromolecular probe and its application in the detection of hypochlorite. Mater. Today Chem. 2023, 29, 101420.

[60]

Xu, T. Q.; Jia, F.; Cui, H.; Li, M.; Li, F.; Zhang, X. H.; Zuo, X. L. Engineering nucleic acid functional probes in neuroimaging. TrAC Trends Anal. Chem. 2022, 154, 116651.

[61]

Li, M.; Yin, F. F.; Song, L.; Mao, X. H.; Li, F.; Fan, C. H.; Zuo, X. L.; Xia, Q. Nucleic acid tests for clinical translation. Chem. Rev. 2021, 121, 10469–10558.

[62]

Yin, F. F.; Cao, N.; Xiang, X. L.; Feng, H.; Li, F.; Li, M.; Xia, Q.; Zuo, X. L. DNA framework-based topological aptamer for differentiating subtypes of hepatocellular carcinoma cells. Chem. Res. Chin. Univ. 2021, 37, 919–924.

[63]

Keyvani, F.; Zheng, H. J.; Kaysir, M. R.; Mantaila, D. F.; Ghavami Nejad, P.; Rahman, F. A.; Quadrilatero, J.; Ban, D. Y.; Poudineh, M. A hydrogel microneedle assay combined with nucleic acid probes for on-site detection of small molecules and proteins. Angew. Chem., Int. Ed. 2023, 62, e202301624.

[64]

Li, J. X.; Khan, S.; Gu, J.; Filipe, C. D. M.; Didar, T. F.; Li, Y. F. A simple colorimetric Au-on-Au tip sensor with a new functional nucleic acid probe for food-borne pathogen Salmonella typhimurium. Angew. Chem., Int. Ed. 2023, 62, e202300828.

[65]

Zhang, B. W.; Tian, T. R.; Xiao, D. X.; Gao, S. J. Y.; Cai, X. X.; Lin, Y. F. Facilitating in situ tumor imaging with a tetrahedral DNA framework-enhanced hybridization chain reaction probe. Adv. Funct. Mater. 2022, 32, 2109728.

[66]

Phillips, E. A.; Silverman, A. D.; Joneja, A.; Liu, M.; Brown, C.; Carlson, P.; Coticchia, C.; Shytle, K.; Larsen, A.; Goyal, N. et al. Detection of viral RNAs at ambient temperature via reporter proteins produced through the target-splinted ligation of DNA probes. Nat. Biomed. Eng. 2023, 7, 1571–1582.

[67]

Gu, J. Y.; Sun, J. F.; Tian, K.; Bian, J. L.; Peng, J. J.; Xu, S.; Zhao, L. Z. Reversal of hepatic fibrosis by the co-delivery of drug and ribonucleoprotein-based genome editor. Biomaterials 2023, 298, 122133.

[68]

Yao, C. Z.; Chen, Y.; Zhao, M. Y.; Wang, S. F.; Wu, B.; Yang, Y. W.; Yin, D. R.; Yu, P.; Zhang, H. X.; Zhang, F. A bright, renal-clearable NIR-II brush macromolecular probe with long blood circulation time for kidney disease bioimaging. Angew. Chem., Int. Ed. 2022, 61, e202114273.

[69]

Ren, H.; Zeng, X. Z.; Zhao, X. X.; Hou, D. Y.; Yao, H. D.; Yaseen, M.; Zhao, L. N.; Xu, W. H.; Wang, H.; Li, L. L. A bioactivated in vivo assembly nanotechnology fabricated NIR probe for small pancreatic tumor intraoperative imaging. Nat. Commun. 2022, 13, 418.

[70]

Cheng, Q.; Tian, Y. L.; Dang, H. P.; Teng, C. C.; Xie, K.; Yin, D. L.; Yan, L. F. Antiquenching macromolecular NIR-II probes with high-contrast brightness for imaging-guided photothermal therapy under 1064 nm irradiation. Adv. Healthc. Mater. 2022, 11, 2101697.

[71]

Huang, W.; Feng, S. Y.; Liu, J.; Liang, B. S.; Zhou, Y.; Yu, M. Y.; Liang, J. Y.; Huang, J. G.; Lü, X. J.; Huang, W. G. Configuration-induced multichromism of phenanthridine derivatives: A type of versatile fluorescent probe for microenvironmental monitoring. Angew. Chem., Int. Ed. 2023, 62, e202219337.

[72]

Fu, D. J.; Liu, D. C.; Zhang, L. B.; Sun, L. M. Self-assembled fluorescent tripeptide nanoparticles for bioimaging and drug delivery applications. Chin. Chem. Lett. 2020, 31, 3195–3199.

[73]

Yin, Y. F.; Sun, P. H.; Dong, H. Q.; Chen, Y.; Chen, S. G.; Wang, L. Supramolecular nanoparticles constructed by orthogonal assembly of pillar[5]arene-cyclodextrin dimacrocycle for chemo-photodynamic combination therapy. Chin. Chem. Lett. 2023, 34, 108594.

[74]

Zhang, S. Y.; Boussouar, I.; Li, H. B. Selective sensing and transport in bionic nanochannel based on macrocyclic host-guest chemistry. Chin. Chem. Lett. 2021, 32, 642–648.

[75]

Zhou, W. L.; Lin, W. J.; Chen, Y.; Liu, Y. Supramolecular assembly confined purely organic room temperature phosphorescence and its biological imaging. Chem. Sci. 2022, 13, 7976–7989.

[76]

Zhang, Y. F.; Su, Y.; Wu, H. W.; Wang, Z. H.; Wang, C.; Zheng, Y.; Zheng, X.; Gao, L.; Zhou, Q.; Yang, Y. et al. Large-area, flexible, transparent, and long-lived polymer-based phosphorescence films. J. Am. Chem. Soc. 2021, 143, 13675–13685.

[77]

Li, Y. L.; Su, Y. T.; Li, Z. X.; Chen, Y. Y. Supramolecular combination cancer therapy based on macrocyclic supramolecular materials. Polymers 2022, 14, 4855.

[78]

Wang, Z. Y.; Sun, C.; Yang, K. K.; Chen, X. Y.; Wang, R. B. Cucurbituril-based supramolecular polymers for biomedical applications. Angew. Chem., Int. Ed. 2022, 61, e202206763.

[79]

Ali, F.; Qanmber, G.; Li, F. G.; Wang, Z. Updated role of ABA in seed maturation, dormancy, and germination. J. Adv. Res. 2022, 35, 199–214.

[80]

Wu, M.; Yin, C. H.; Jiang, X. X.; Sun, Q. J.; Xu, X. Y.; Ma, Y. M.; Liu, X. J.; Niu, N.; Chen, L. G. Biocompatible abscisic acid-sensing supramolecular hybridization probe for spatiotemporal fluorescence imaging in plant tissues. Anal. Chem. 2022, 94, 8999–9008.

[81]

Qin, T. Y.; Zhao, X. F.; Song, C.; Lv, T. Y. Z.; Chen, S. H.; Xun, Z. Q.; Xu, Z. Y.; Zhang, Z. X.; Xu, H. H.; Zhao, C. et al. A ratiometric supramolecular fluorescent probe for on-site determination of cyfluthrin in real food samples. Chem. Eng. J. 2023, 451, 139022.

[82]

Zhang, M. Y.; Chen, Z. H.; Liu, X. H.; Song, C.; Zeng, C. H.; Lv, T. Y. Z.; Xu, Z. Y.; Chen, X. Q.; Wang, L.; Liu, B. et al. Dual-mode supramolecular fluorescent probe for rapid and on-site detection of chlorpyrifos in the environment. J. Hazard. Mater. 2023, 452, 131177.

[83]

Duan, X. C.; Zhang, G. Q.; Ji, S. L.; Zhang, Y. M.; Li, J.; Ou, H. L.; Gao, Z. Y.; Feng, G. X.; Ding, D. Activatable persistent luminescence from porphyrin derivatives and supramolecular probes with imaging-modality transformable characteristics for improved biological applications. Angew. Chem., Int. Ed. 2022, 61, e202116174.

[84]

Cen, R.; Liu, M.; Xiao, H.; Yang, H. P.; Chen, L. X.; Li, Q.; Wang, C. H.; Tao, Z.; Xiao, X. A double-cavity nor-seco-cucurbit[10]uril-based fluorescent probe for detection of ClO and its application in cell imaging. Sens. Actuators B: Chem. 2023, 378, 133126.

[85]

Mei, Y. X.; Zhang, Q. W.; Gu, Q. Y.; Liu, Z. C.; He, X.; Tian, Y. Pillar[5]arene-based fluorescent sensor array for biosensing of intracellular multi-neurotransmitters through host-guest recognitions. J. Am. Chem. Soc. 2022, 144, 2351–2359.

[86]

Gao, R. H.; Chen, L. X.; Chen, K.; Tao, Z.; Xiao, X. Development of hydroxylated cucurbit[ n]urils, their derivatives and potential applications. Coord. Chem. Rev. 2017, 348, 1–24.

[87]

Zhang, Y. H.; Wang, L. J.; Wang, J.; Xin, S. Q. T. N.; Sheng, X. L. Enzyme-responsive polysaccharide supramolecular nanoassembly for enhanced DNA encapsulation and controlled release. Chin. Chem. Lett. 2021, 32, 1902–1906.

[88]

Lai, W. F.; Rogach, A. L.; Wong, W. T. Chemistry and engineering of cyclodextrins for molecular imaging. Chem. Soc. Rev. 2017, 46, 6379–6419.

[89]

Zhang, X. Y.; Du, Y.; Feng, R.; Ren, X.; Wu, T. T.; Jia, Y.; Zhang, N.; Li, F. Y.; Wei, Q.; Ju, H. X. An electrochemiluminescence insulin sensing platform based on the molecular recognition properties of cucurbit[7]uril. Biosens. Bioelectron. 2023, 227, 115170.

[90]

Zhang, W.; Yang, L.; Luo, Y.; Xiao, H.; Yang, H. P.; Ni, X. L.; Tao, Z.; Xiao, X. AIE biofluorescent probe based on twisted cucurbit[14]uril for the detection of Fe(CN)63– anion in solutions and live kidney cells. Sens. Actuators B: Chem. 2023, 379, 133255.

[91]

d'Orchymont, F.; Holland, J. P. Supramolecular rotaxane-based multi-modal probes for cancer biomarker imaging. Angew. Chem., Int. Ed. 2022, 61, e202204072.

[92]

Drożdż, W.; Walczak, A.; Bessin, Y.; Gervais, V.; Cao, X. Y.; Lehn, J. M.; Ulrich, S.; Stefankiewicz, A. R. Multivalent metallosupramolecular assemblies as effective DNA binding agents. Chem. -Eur. J. 2018, 24, 10802–10811.

[93]

Bartolami, E.; Bessin, Y.; Gervais, V.; Dumy, P.; Ulrich, S. Dynamic expression of DNA complexation with self-assembled biomolecular clusters. Angew. Chem., Int. Ed. 2015, 54, 10183–10187.

[94]

Klaikherd, A.; Sandanaraj, B. S.; Vutukuri, D. R.; Thayumanavan, S. Comparison of facially amphiphilic biaryl dendrimers with classical amphiphilic ones using protein surface recognition as the tool. J. Am. Chem. Soc. 2006, 128, 9231–9237.

[95]

Cairo, C. W.; Gestwicki, J. E.; Kanai, M.; Kiessling, L. L. Control of multivalent interactions by binding epitope density. J. Am. Chem. Soc. 2002, 124, 1615–1619.

[96]

Biswas, R.; Banerjee, S. Luminescence sensing of biomacromolecules heparin and protamine in 100% human serum and plasma by supramolecular polymeric assemblies. Biomacromolecules 2023, 24, 766–774.

[97]

Feng, X.; Iliuk, A.; Zhang, X. Y.; Jia, S. N.; Shen, A.; Zhang, W. K.; Hu, L. H.; Tao, W. A. Supramolecular exosome array for efficient capture and in situ detection of protein biomarkers. Anal. Chem. 2023, 95, 2812–2821.

[98]

Nie, J. L.; Chen, Z. J. A generic method for fluorescence monitoring glycogen through patent blue V triggered supramolecular switching. Sens. Actuators B: Chem. 2022, 359, 131630.

[99]

Jiang, S. Y.; Yang, J. Y.; Ling, L.; Wang, S. Y.; Ma, D. Supramolecular fluorescent probes for the detection of reactive oxygen species discovered via high-throughput screening. Anal. Chem. 2022, 94, 5634–5641.

[100]

Yang, F.; Lin, D.; Pan, L.; Zhu, J. W.; Shen, J. J.; Yang, L.; Jiang, C. L. Portable smartphone platform based on a single dual-emissive ratiometric fluorescent probe for visual detection of isopropanol in exhaled breath. Anal. Chem. 2021, 93, 14506–14513.

[101]

Herrera-Ochoa, D.; Pacheco-Liñán, P. J.; Bravo, I.; Garzón-Ruiz, A. A novel quantum dot-based pH probe for long-term fluorescence lifetime imaging microscopy experiments in living cells. ACS Appl. Mater. Interfaces 2022, 14, 2578–2586.

[102]

Lesani, P.; Singh, G.; Lu, Z. F.; Mirkhalaf, M.; New, E. J.; Zreiqat, H. Two-photon ratiometric carbon dot-based probe for real-time intracellular pH monitoring in 3D environment. Chem. Eng. J. 2022, 433, 133668.

[103]

Li, J. Q.; Du, N.; Guan, R. F.; Zhao, S. F. Construction of a chiral fluorescent probe for tryptophan enantiomers/ascorbic acid identification. ACS Appl. Mater. Interfaces 2023, 15, 23642–23652.

[104]

Qu, S. H.; Jia, Q.; Li, Z.; Wang, Z. L.; Shang, L. Chiral NIR-II fluorescent Ag2S quantum dots with stereospecific biological interactions and tumor accumulation behaviors. Sci. Bull. 2022, 67, 1274–1283.

[105]

Ruan, F. X.; Fang, H.; Chen, F. M.; Xie, X. C.; He, M. M.; Wang, R.; Lu, J. N.; Wu, Z. P.; Liu, J. L.; Guo, F. et al. Leveraging radiation-triggered metal prodrug activation through nanosurface energy transfer for directed radio-chemo-immunotherapy. Angew. Chem., Int. Ed. 2024, 63, e202317943.

[106]

Zhang, L. N.; Xu, Y. R.; Xu, J.; Zhang, H. J.; Zhao, T. Q.; Jia, L. Intelligent multicolor nano-sensor based on nontoxic dual fluoroprobe and MOFs for colorful consecutive detection of Hg2+ and cysteine. J. Hazard. Mater. 2022, 430, 128478.

[107]

Chen, J.; Chen, H. Y.; Wang, T. S.; Li, J. F.; Wang, J.; Lu, X. Q. Copper ion fluorescent probe based on Zr-MOFs composite material. Anal. Chem. 2019, 91, 4331–4336.

[108]

Zhang, Z. J.; Liu, L. P.; Zhang, T.; Tang, H. X. Efficient Eu3+-integrated UiO-66 probe for ratiometric fluorescence sensing of styrene and cyclohexanone. ACS Appl. Mater. Interfaces 2023, 15, 18982–18991.

[109]

Yang, C.; Wang, K.; Li, Z. H.; Mo, L. T.; Lin, W. Y. A two-photon metal-organic framework nanoprobe with catalytic hairpin assembly for amplified MicroRNA imaging in living cells and tissues. Sens. Actuators B: Chem. 2022, 359, 131593.

[110]

Zhu, M. M.; Liu, Y. P.; Xia, C.; Zeng, H. R.; Hu, S.; Jiang, D. Y.; Zhou, G. H.; Li, H. L. A highly sensitive turn-off fluorescent probe based on 2D Eu(III)-MOFs nanosheets for glutathione in vitro and living cells. J. Am. Ceram. Soc. 2023, 106, 1848–1858.

[111]

Li, W. Q.; Dong, M. J.; Li, Y. C.; Dong, H. F. Macrophages-cancer membrane-encapsulated metal-organic frameworks with copper-depleting moiety for mitochondria-targeted therapeutics. Adv. Healthc. Mater. 2023, 12, 2202986.

[112]

Yudhistira, T.; Da Silva, E. C.; Combes, A.; Lehmann, M.; Reisch, A.; Klymchenko, A. S. Biotinylated fluorescent polymeric nanoparticles for enhanced immunostaining. Small Methods 2023, 7, 2201452.

[113]
Ren, L. Q.; Liu, Y.; Yao, T. F.; Nguyen, K. T.; Yuan, B. H. In vivo tumor ultrasound-switchable fluorescence imaging via intravenous injections of size-controlled thermosensitive nanoparticles. Nano Res. 2023 , 16, 1009–1020.
DOI
[114]

Ling, M. J.; Sun, R.; Li, G.; Syeda, M. Z.; Ma, W.; Mai, Z.; Shao, L. Q.; Tang, L. G.; Yu, Z. Q. NIR-II emissive dye based polymer nanoparticle targeting EGFR for oral cancer theranostics. Nano Res. 2022, 15, 6288–6296.

[115]

Xu, J.; Tan, J. J.; Song, C. Z.; Zhang, G. Y.; Hu, X. L.; Liu, S. Y. Self-immolative amphiphilic poly(ferrocenes) for synergistic amplification of oxidative stress in tumor therapy. Angew. Chem., Int. Ed. 2023, 62, e202303829.

[116]

Wang, W. Y.; Wu, Y.; Wang, Y. H.; Wang, R.; Deng, C.; Yi, L. Y.; Wang, L. F.; He, M. R.; Zhou, W. Q.; Xie, Y. J. et al. Orally administrable aggregation-induced emission-based bionic probe for imaging and ameliorating dextran sulfate sodium-induced inflammatory bowel diseases. Adv. Healthc. Mater. 2023, 12, 2202420.

[117]

Maingret, V.; Chartier, C.; Six, J. L.; Schmitt, V.; Héroguez, V. Pickering emulsions stabilized by biodegradable dextran-based nanoparticles featuring enzyme responsiveness and co-encapsulation of actives. Carbohydr. Polym. 2022, 284, 119146.

[118]

Xu, L. L.; Gao, H.; Zhan, W. J.; Deng, Y.; Liu, X. Y.; Jiang, Q. C.; Sun, X. B.; Xu, J. J.; Liang, G. L. Dual aggregations of a near-infrared aggregation-induced emission luminogen for enhanced imaging of Alzheimer’s disease. J. Am. Chem. Soc. 2023, 145, 27748–27756.

[119]

Song, Z. R.; Suo, Y. K.; Duan, S.; Zhang, S. S.; Liu, L. F.; Chen, B. T.; Cheng, Z. NIR-II fluorescent nanoprobe-labeled lateral flow biosensing platform: A high-performance point-of-care testing for carcinoembryonic antigen. Biosens. Bioelectron. 2023, 224, 115063.

[120]

Bonet-Aleta, J.; Sancho-Albero, M.; Calzada-Funes, J.; Irusta, S.; Martin-Duque, P.; Hueso, J. L.; Santamaria, J. Glutathione-Triggered catalytic response of Copper-Iron mixed oxide Nanoparticles. Leveraging tumor microenvironment conditions for chemodynamic therapy. J. Colloid Interface Sci. 2022, 617, 704–717.

[121]

Zhang, F. Y.; Hu, D. H.; Su, X. L.; Hong, Z. D.; Feng, W.; Xu, M.; Li, F. Y. Two birds with one stone: Amine-functionalized MSNs@Eu(OH)CO3 nanoprobe for efficient dissolution-enhanced afterglow bioassay. Nano Res. 2022, 15, 8360–8366.

[122]

Lin, P.; Shi, J. P.; Lin, Y.; Zhang, Q.; Yu, K. X.; Liu, L.; Song, L.; Kang, Y. L.; Hong, M. C.; Zhang, Y. Near-infrared persistent luminescence nanoprobe for ultrasensitive image-guided tumor resection. Adv. Sci. 2023, 10, 2207486.

[123]

Cao, B. J.; Zhang, H. Y.; Sun, M. Z.; Xu, C. L.; Kuang, H.; Xu, L. G. Chiral MoSe2 nanoparticles for ultrasensitive monitoring of reactive oxygen species in vivo. Adv. Mater. 2024, 36, 2208037.

[124]

Wang, F. F.; Qu, L. Q.; Ren, F. Q.; Baghdasaryan, A.; Jiang, Y. Y.; Hsu, R.; Liang, P.; Li, J. C.; Zhu, G. Z.; Ma, Z. R. et al. High-precision tumor resection down to few-cell level guided by NIR-IIb molecular fluorescence imaging. Proc. Natl. Acad. Sci. USA 2022, 119, e2123111119.

[125]

Resch-Genger, U.; Grabolle, M.; Cavaliere-Jaricot, S.; Nitschke, R.; Nann, T. Quantum dots versus organic dyes as fluorescent labels. Nat. Methods 2008, 5, 763–775.

[126]

Gao, J. C.; Song, Q. X.; Gu, X.; Jiang, G.; Huang, J. L.; Tang, Y. Y.; Yu, R. H.; Wang, A. T.; Huang, Y. K.; Zheng, G. et al. Intracerebral fate of organic and inorganic nanoparticles is dependent on microglial extracellular vesicle function. Nat. Nanotechnol. 2024, 19, 376–386.

[127]

Liu, H. L.; Hong, G. S.; Luo, Z. T.; Chen, J. C.; Chang, J. L.; Gong, M.; He, H.; Yang, J.; Yuan, X.; Li, L. L. et al. Atomic-precision gold clusters for NIR-II imaging. Adv. Mater. 2019, 31, 1901015.

[128]

Kang, X.; Zhu, M. Z. Tailoring the photoluminescence of atomically precise nanoclusters. Chem. Soc. Rev. 2019, 48, 2422–2457.

[129]

Crawford, S. E.; Hartmann, M. J.; Millstone, J. E. Surface chemistry-mediated near-infrared emission of small coinage metal nanoparticles. Acc. Chem. Res. 2019, 52, 695–703.

[130]

Liang, M.; Hu, Q.; Yi, S. X.; Chi, Y. J.; Xiao, Y. Development of an Au nanoclusters based activatable nanoprobe for NIR-II fluorescence imaging of gastric acid. Biosens. Bioelectron. 2023, 224, 115062.

[131]

Li, Y. X.; Qu, S. H.; Xue, Y. M.; Zhang, L. B.; Shang, L. Cationic antibacterial metal nanoclusters with traceable capability for fluorescent imaging the nano-bio interactions. Nano Res. 2023, 16, 999–1008.

[132]

Mazzone, P. J.; Hammel, J.; Dweik, R.; Na, J.; Czich, C.; Laskowski, D.; Mekhail, T. Diagnosis of lung cancer by the analysis of exhaled breath with a colorimetric sensor array. Thorax 2007, 62, 565–568.

[133]

Schäferling, M. Nanoparticle-based luminescent probes for intracellular sensing and imaging of pH. WIREs Nanomed. Nanobiotechnol. 2016, 8, 378–413.

[134]

Casey, J. R.; Grinstein, S.; Orlowski, J. Sensors and regulators of intracellular pH. Nat. Rev. Mol. Cell Biol. 2010, 11, 50–61.

[135]

Zhao, X. L.; Zang, S. Q.; Chen, X. Y. Stereospecific interactions between chiral inorganic nanomaterials and biological systems. Chem. Soc. Rev. 2020, 49, 2481–2503.

[136]

Wang, S. Y.; Qin, A. L.; Chau, L. Y.; Fok, E. W. T.; Choy, M. Y.; Brackman, C. J.; Siu, G. K. H.; Huang, C. L.; Yip, S. P.; Lee, T. M. H. Amine-functionalized quantum dots as a universal fluorescent nanoprobe for a one-step loop-mediated isothermal amplification assay with single-copy sensitivity. ACS Appl. Mater. Interfaces 2022, 14, 35299–35308.

[137]

Gray, J. D.; Shiner, M. Influence of gastric pH on gastric and jejunal flora. Gut 1967, 8, 574–581.

[138]

Ghosh, T.; Lewis, D. I.; Axon, A. T. R.; Everett, S. M. Review article: Methods of measuring gastric acid secretion. Aliment. Pharmacol. Ther. 2011, 33, 768–781.

[139]

Ci, Q.; Wang, Y. Y.; Wu, B.; Coy, E.; Li, J. J.; Jiang, D. Y.; Zhang, P. F.; Wang, G. C. Fe-doped carbon dots as NIR-II fluorescence probe for in vivo gastric imaging and pH detection. Adv. Sci. 2023, 10, 2206271.

[140]

Robb, M. A.; McInnes, P. M.; Califf, R. M. Biomarkers and surrogate endpoints: Developing common terminology and definitions. JAMA 2016, 315, 1107–1108.

[141]

Gao, H. M.; Qin, Z. J.; Wang, Y. H.; Xiong, H. J.; Wang, X. M.; Jiang, H. Hydrophilic cyclodextrin derivative directed lateral recombination of 1-D Dipeptide protected gold nanoclusters assembly for lysosomal localization. ACS Mater. Lett. 2022, 4, 2244–2251.

[142]

Jiang, L.; Cai, H.; Zhou, W. W.; Li, Z. J.; Zhang, L.; Bi, H. RNA-targeting carbon dots for live-cell imaging of granule dynamics. Adv. Mater. 2023, 35, 2210776.

[143]

Yue, J.; Mei, Q.; Wang, P. Y.; Miao, P.; Dong, W. F.; Li, L. A yellow fluorescence probe for the detection of oxidized glutathione and biological imaging. ACS Appl. Mater. Interfaces 2022, 14, 17119–17127.

[144]

Wang, S. Z.; McGuirk, C. M.; d'Aquino, A.; Mason, J. A.; Mirkin, C. A. Metal-organic framework nanoparticles. Adv. Mater. 2018, 30, 1800202.

[145]

Wang, K. Y.; Zhang, J. Q.; Hsu, Y. C.; Lin, H. Y.; Han, Z. S.; Pang, J. D.; Yang, Z. T.; Liang, R. R.; Shi, W.; Zhou, H. C. Bioinspired framework catalysts: From enzyme immobilization to biomimetic catalysis. Chem. Rev. 2023, 123, 5347–5420.

[146]

Li, Z. H.; Liu, J. X.; Wu, H. Z.; Tang, J.; Li, Z. Y.; Xu, Y. D.; Zhou, F.; Liu, W. M. Photonic crystals constructed by isostructural metal-organic framework films. Nano Res. 2023, 16, 9569–9576.

[147]

Li, Z. H.; Liu, J. X.; Feng, L.; Liu, X.; Xu, Y. D.; Zhou, F.; Liu, W. M. Coupling tandem MOFs in metal-insulator-metal resonator advanced chemo-sieving sensing. Nano Today 2023, 48, 101726.

[148]

Hong, C. N.; Crom, A. B.; Feldblyum, J. I.; Lukatskaya, M. R. Metal-organic frameworks for fast electrochemical energy storage: Mechanisms and opportunities. Chem 2023, 9, 798–822.

[149]

Hua, Y.; Li, X. X.; Chen, C. Y.; Pang, H. Cobalt based metal-organic frameworks and their derivatives for electrochemical energy conversion and storage. Chem. Eng. J. 2019, 370, 37–59.

[150]

Snyder, B. E. R.; Turkiewicz, A. B.; Furukawa, H.; Paley, M. V.; Velasquez, E. O.; Dods, M. N.; Long, J. R. A ligand insertion mechanism for cooperative NH3 capture in metal-organic frameworks. Nature 2023, 613, 287–291.

[151]

Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444.

[152]

Dai, D. H.; Yang, J.; Wang, Y.; Yang, Y. W. Recent progress in functional materials for selective detection and removal of mercury(II) ions. Adv. Funct. Mater. 2021, 31, 2006168.

[153]
Scheiber, I.; Dringen, R.; Mercer, J. F. B. Copper: Effects of deficiency and overload. In Interrelations between Essential Metal Ions and Human Diseases. Sigel, A.; Sigel, H.; Sigel, R. K. O., Eds.; Springer: Dordrecht, 2013; pp 359–387.
DOI
[154]

Zhang, Z. J.; Yan, X. Y.; Gao, F. L.; Thai, P.; Wang, H.; Chen, D.; Zhou, L.; Gong, D. C.; Li, Q. Q.; Morawska, L. et al. Emission and health risk assessment of volatile organic compounds in various processes of a petroleum refinery in the Pearl River Delta, China. Environ. Pollut. 2018, 238, 452–461.

[155]

Du, T. Y.; Shi, Z. W.; Qin, Z. J.; Hu, Y. W.; Zhu, Y. B.; Jiang, H.; Wang, X. M. Tailoring photothermally triggered phase transition of multimodal cascade theranostics platform by spherical nucleic acids. Adv. Funct. Mater. 2022, 32, 2207410.

[156]

Cheng, R. Y.; Jiang, L. X.; Gao, H.; Liu, Z. H.; Mäkilä, E.; Wang, S. Q.; Saiding, Q.; Xiang, L.; Tang, X. M.; Shi, M. M. et al. A pH-responsive cluster metal-organic framework nanoparticle for enhanced tumor accumulation and antitumor effect. Adv. Mater. 2022, 34, 2203915.

[157]

Jung, K.; Corrigan, N.; Wong, E. H. H.; Boyer, C. Bioactive synthetic polymers. Adv. Mater. 2022, 34, 2105063.

[158]

Yang, K.; Yu, B. W.; Liu, W.; Zhang, Z. Q.; Huang, L.; Zhao, S. J.; Wang, B. H.; Yi, J. N.; Yuan, J.; Zou, Y. P. et al. All-in-one phototheranostics based on BTP-4F-DMO nanoparticles for NIR-II fluorescence/photoacoustic dual-mode imaging and combinational therapy. Chin. Chem. Lett. 2023, 34, 107889.

[159]

Wang, Y. R.; Lei, Y.; Wang, J. Y.; Yang, H.; Sun, L. M. Tetrapeptide self-assembled multicolor fluorescent nanoparticles for bioimaging applications. Chin. Chem. Lett. 2023, 34, 107915.

[160]

Gao, J. S.; Ma, S. B.; Zhao, X. X.; Wen, J. P.; Hu, D. T.; Zhao, X. Y.; Shi, X. P.; Wang, K. Dual-labeled visual tracer system for topical drug delivery by nanoparticle-triggered P-glycoprotein silencing. Chin. Chem. Lett. 2021, 32, 3954–3961.

[161]
Yu, Z. Y.; Luo, X.; Zhang, C.; Lu, X.; Li, X. H.; Liao, P.; Liu, Z. Q.; Zhang, R.; Wang, S. T.; Yu, Z. Q. et al. Mitochondria-targeted carrier-free nanoparticles based on dihydroartemisinin against hepatocellular carcinoma. Chin. Chem. Lett., in press, DOI: 10.1016/j.cclet.2024.109519.
DOI
[162]

Zhu, H. Q.; Ren, F.; Wang, T. T.; Jiang, Z. L.; Sun, Q.; Li, Z. Targeted immunoimaging of tumor-associated macrophages in orthotopic glioblastoma by the NIR-IIb nanoprobes. Small 2022, 18, 2202201.

[163]

Zhang, Y. Q.; Liu, W. L.; Luo, X. J.; Shi, J. P.; Zeng, Y. Z.; Chen, W. L.; Huang, W. H.; Zhu, Y. Y.; Gao, W. L.; Li, R. H. et al. Novel self-assembled multifunctional nanoprobes for second-near-infrared-fluorescence-image-guided breast cancer surgery and enhanced radiotherapy efficacy. Adv. Sci. 2023, 10, 2205294.

[164]

Yang, R. Q.; Wang, P. Y.; Lou, K. L.; Dang, Y. Y.; Tian, H. N.; Li, Y.; Gao, Y. Y.; Huang, W. H.; Zhang, Y. Q.; Liu, X. L. et al. Biodegradable nanoprobe for NIR-II fluorescence image-guided surgery and enhanced breast cancer radiotherapy efficacy. Adv. Sci. 2022, 9, 2104728.

[165]

Yu, H. Y.; Yu, Y.; Lin, R. F.; Liu, M. C.; Zhou, Q. Y.; Liu, M. L.; Chen, L.; Wang, W. X.; Elzatahry, A. A.; Zhao, D. Y. et al. Camouflaged virus-like-nanocarrier with a transformable rough surface for boosting drug delivery. Angew. Chem., Int. Ed. 2023, 62, e202216188.

[166]

Jiang, M. L.; Wang, K. W.; Xiao, X.; Zong, Q. Y.; Zheng, R.; Yuan, Y. Y. Theranostic heterodimeric prodrug with dual-channel fluorescence turn-on and dual-prodrug activation for synergistic cancer therapy. Adv. Healthc. Mater. 2021, 10, 2101144.

[167]

Liang, P. P.; Zhang, Y. Y.; Schmidt, B. F.; Ballou, B.; Qian, W.; Dong, Z. Y.; Wu, J. H.; Wang, L. L.; Bruchez, M. P.; Dong, X. C. Esterase-activated, pH-responsive, and genetically targetable nano-prodrug for cancer cell photo-ablation. Small 2023, 19, 2207535.

[168]

Sun, R.; Liu, M. Z.; Xu, Z. J.; Song, B.; He, Y.; Wang, H. Y. Silicon-based nanoprobes cross the blood-brain barrier for photothermal therapy of glioblastoma. Nano Res. 2022, 15, 7392–7401.

[169]

Wang, J.; Jiang, C. X.; Jin, J. N.; Huang, L.; Yu, W. B.; Su, B.; Hu, J. Ratiometric fluorescent lateral flow immunoassay for point-of-care testing of acute myocardial infarction. Angew. Chem., Int. Ed. 2021, 60, 13042–13049.

[170]

Hong, G. S.; Antaris, A. L.; Dai, H. J. Near-infrared fluorophores for biomedical imaging. Nat. Biomed. Eng. 2017, 1, 0010.

[171]

Yan, C. X.; Zhang, Y. T.; Guo, Z. Q. Recent progress on molecularly near-infrared fluorescent probes for chemotherapy and phototherapy. Coord. Chem. Rev. 2021, 427, 213556.

[172]

Liu, G. F.; Wang, Z. X.; Sun, W.; Lin, X. H.; Wang, R.; Li, C. H.; Zong, L.; Fu, Z. L.; Liu, H. P.; Xu, S. C. Robust emission in near-infrared II of lanthanide nanoprobes conjugated with Au (LNPs-Au) for temperature sensing and controlled photothermal therapy. Chem. Eng. J. 2023, 452, 139504.

[173]

Zeng, Y.; Zhao, L. F.; Li, K.; Ma, J. W.; Chen, D.; Liu, C. H.; Zhan, W. H.; Zhan, Y. H. Aptamer-functionalized nanoplatforms overcoming temozolomide resistance in synergistic chemo/photothermal therapy through alleviating tumor hypoxia. Nano Res. 2023, 16, 9859–9872.

[174]

Jiang, H.; He, Y. L.; Zhao, J.; Chang, R. M.; He, H. L.; Li, T.; Zhang, X. Y.; Shu, B.; Zhang, W. X.; Wang, H. Y. et al. Immunostimulant nanomodulator boosts antitumor immune response in triple negative breast cancer by synergism of vessel normalization and photothermal therapy. Nano Res. 2023, 16, 11149–11163.

[175]

Luo, M. C.; Yukawa, H.; Sato, K.; Tozawa, M.; Tokunaga, M.; Kameyama, T.; Torimoto, T.; Baba, Y. Multifunctional magnetic CuS/Gd2O3 nanoparticles for fluorescence/magnetic resonance bimodal imaging-guided photothermal-intensified chemodynamic synergetic therapy of targeted tumors. ACS Appl. Mater. Interfaces 2022, 14, 34365–34376.

[176]

Chan, L.; Liu, Y. K.; Chen, M. H.; Su, Y. H.; Guo, J. X.; Zhu, L. W.; Zhan, M. X.; Chen, T. F.; Lu, L. G. Cuproptosis-driven enhancement of thermotherapy by sequentially response Cu2– x Se via copper chemical transition. Adv. Funct. Mater. 2023, 33, 2302054.

[177]

Hou, Z. Y.; Zhou, M.; Ma, Y. Y.; Xu, X. X.; Zhang, Z. Q.; Lai, S. W.; Fan, W. P.; Xie, J. B.; Ju, S. H. Size-changeable nanoprobes for the combined radiotherapy and photodynamic therapy of tumor. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 2655–2667.

[178]

Liu, F. R.; Gong, S. L.; Shen, M. L.; He, T.; Liang, X. Q.; Shu, Y. Q.; Wang, X. X.; Ma, S.; Li, X. C.; Zhang, M. M. et al. A glutathione-activatable nanoplatform for enhanced photodynamic therapy with simultaneous hypoxia relief and glutathione depletion. Chem. Eng. J. 2021, 403, 126305.

[179]
Zhu, K. N.; Qian, S. Y.; Guo, H. W.; Wang, Q. Y.; Chu, X. Y.; Wang, X. Y.; Lu, S.; Peng, Y. O.; Guo, Y. S.; Zhu, Z. Q. et al. pH-activatable organic nanoparticles for efficient low-temperature photothermal therapy of ocular bacterial infection. ACS Nano 2022 , 16, 11136–11151.
DOI
[180]

Xiong, J. L.; Chu, J. C. H.; Fong, W. P.; Wong, C. T. T.; Ng, D. K. P. Specific activation of photosensitizer with extrinsic enzyme for precisive photodynamic therapy. J. Am. Chem. Soc. 2022, 144, 10647–10658.

[181]

Fan, Y.; Wang, P. Y.; Lu, Y. Q.; Wang, R.; Zhou, L.; Zheng, X. L.; Li, X. M.; Piper, J. A.; Zhang, F. Lifetime-engineered NIR-II nanoparticles unlock multiplexed in vivo imaging. Nat. Nanotechnol. 2018, 13, 941–946.

[182]

Huang, F. H.; Labrador-Páez, L.; Ågren, H.; Wang, L.; Zhang, J. L.; Pu, R.; Zhan, Q. Q.; Widengren, J.; Liu, H. C. Transient energy trapping as a size-conserving surface passivation strategy for producing bright ultrasmall upconversion nanoprobes. Nano Energy 2023, 105, 108015.

[183]

Erstling, J. A.; Naguib, N.; Hinckley, J. A.; Lee, R.; Feuer, G. B.; Tallman, J. F.; Tsaur, L.; Tang, D. N.; Wiesner, U. B. Antibody functionalization of ultrasmall fluorescent core-shell aluminosilicate nanoparticle probes for advanced intracellular labeling and optical super resolution microscopy. Chem. Mater. 2023, 35, 1047–1061.

[184]

Zhu, X. Y.; Liu, X.; Zhang, H. X.; Zhao, M. Y.; Pei, P.; Chen, Y.; Yang, Y. W.; Lu, L. F.; Yu, P.; Sun, C. X. et al. High-fidelity NIR-II multiplexed lifetime bioimaging with bright double interfaced lanthanide nanoparticles. Angew. Chem., Int. Ed. 2021, 60, 23545–23551.

[185]

Pei, P.; Chen, Y.; Sun, C. X.; Fan, Y.; Yang, Y. M.; Liu, X.; Lu, L. F.; Zhao, M. Y.; Zhang, H. X.; Zhao, D. Y. et al. X-ray-activated persistent luminescence nanomaterials for NIR-II imaging. Nat. Nanotechnol. 2021, 16, 1011–1018.

[186]

Liu, H.; Li, H. Y.; Xia, S. Y.; Yu, S. S.; Duan, Y. J.; Wang, L.; Zhu, H. X.; He, H. Design of a cellulose nanocrystal-based upconversion ratiometric flu orescent nanoprobe for pH monitoring and imaging. Chem. Eng. J. 2023, 454, 140456.

[187]

Chen, H.; Xu, J.; Wang, Y. P.; Wang, D.; Ferrer-Espada, R.; Wang, Y. T.; Zhou, J. J.; Pedrazo-Tardajos, A.; Yang, M.; Tan, J. H. et al. Color-switchable nanosilicon fluorescent probes. ACS Nano 2022, 16, 15450–15459.

[188]

Chen, T.; Chen, Z. L.; Zhou, Q. T.; Ding, H. Y.; Gong, P.; Wang, J.; Cai, H. L.; Ao, R. J.; Yu, M. L.; Song, J. B. et al. Microenvironment-tailored catalytic nanoprobe for ratiometric NIR-II fluorescence/photoacoustic imaging of H2O2 in tumor and lymphatic metastasis. Adv. Funct. Mater. 2022, 32, 2208720.

[189]

Song, F. Y.; Ou, X. W.; Chou, T. Y.; Liu, J. K.; Gao, H.; Zhang, R. Y.; Huang, X. L.; Zhao, Z. J.; Sun, J. W.; Chen, S. J. et al. Oxygen quenching-resistant nanoaggregates with aggregation-induced delayed fluorescence for time-resolved mapping of intracellular microviscosity. ACS Nano 2022, 16, 6176–6184.

[190]
Tao, Y. R.; Dai, C. L.; Xie, Z. X.; You, X. R.; Li, K. W.; Wu, J.; Huang, H. Redox responsive polymeric nanoparticles enhance the efficacy of cyclin dependent kinase 7 inhibitor for enhanced treatment of prostate cancer. Chin. Chem. Lett., in press, DOI: 10.1016/j.cclet.2023.109170.
DOI
[191]

Yang, Z. G.; Cao, J. F.; He, Y. X.; Yang, J. H.; Kim, T.; Peng, X. J.; Kim, J. S. Macro-/micro-environment-sensitive chemosensing and biological imaging. Chem. Soc. Rev. 2014, 43, 4563–4601.

[192]

Ansari, A.; Jones, C. M.; Henry, E. R.; Hofrichter, J.; Eaton, W. A. The role of solvent viscosity in the dynamics of protein conformational changes. Science 1992, 256, 1796–1798.

[193]

Benjamin, E. J.; Muntner, P.; Alonso, A.; Bittencourt, M. S.; Callaway, C. W.; Carson, A. P.; Chamberlain, A. M.; Chang, A. R.; Cheng, S.; Das, S. R. et al. Heart disease and stroke statistics-2019 update: A report from the American heart association. Circulation 2019, 139, e56–e528.

[194]

Roth, G. A.; Forouzanfar, M. H.; Moran, A. E.; Barber, R.; Nguyen, G.; Feigin, V. L.; Naghavi, M.; Mensah, G. A.; Murray, C. J. L. Demographic and epidemiologic drivers of global cardiovascular mortality. N. Engl. J. Med. 2015, 372, 1333–1341.

[195]

Wu, K. F.; Yao, C.; Yang, D. Y.; Liu, D. B. A functional DNA nanosensor for highly sensitive and selective imaging of ClO in atherosclerotic plaques. Biosens. Bioelectron. 2022, 209, 114273.

[196]

Chen, H. H.; Khatun, Z.; Wei, L.; Mekkaoui, C.; Patel, D.; Kim, S. J. W.; Boukhalfa, A.; Enoma, E.; Meng, L.; Chen, Y. I. et al. A nanoparticle probe for the imaging of autophagic flux in live mice via magnetic resonance and near-infrared fluorescence. Nat. Biomed. Eng. 2022, 6, 1045–1056.

[197]

Afrin, H.; Huda, M. N.; Islam, T.; Oropeza, B. P.; Alvidrez, E.; Abir, M. I.; Boland, T.; Turbay, D.; Nurunnabi, M. Detection of anticancer drug-induced cardiotoxicity using VCAM1-targeted nanoprobes. ACS Appl. Mater. Interfaces 2022, 14, 37566–37576.

Publication history
Copyright
Acknowledgements

Publication history

Received: 27 February 2024
Revised: 22 March 2024
Accepted: 25 March 2024
Published: 12 April 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

The authors thank for the financial support from the National Natural Science Foundation of China (No. 52071270), the Science Fund of Shandong Laboratory of Advanced Materials and Green Manufacturing (Yantai) (No. AMGM2023F03), the Natural Science Foundation of Shaanxi Province (No. 2024RS-CXTD-62), and the Research Fund of the State Key Laboratory of Solidification Processing (NPU) (No. 2022-QZ-04).

Return