AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Photocatalytic uranium extraction boosted by dual effective active sites of porphyrin metal-organic frameworks

Jianming Pan1Bentian Xiao1Wei Zhu2Yanan Yang1Hongliang Huang3,4( )Zichao Lian5Tao Zhang1Fengxian Qiu1Songlin Xue1( )Huan Pang6( )
School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
Institute of Smart Liquid Crystal Technologies, JITRI, 280 Huangpu Jiang Road, Changshu 215500, China
State key laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou 225002, China
Show Author Information

Graphical Abstract

The uranium uptake experiments and density functional theory (DFT) calculations reveal that the dual effective uranium active sites of porphyrin metal-organic frameworks (MOFs) demonstrate the superior uptake amount of uranium reaches 1590 mg/g under visible-light irradiation, a new higher uptake reported for uranium uptake MOF materials by photocatalytic reduction.

Abstract

Porphyrinoid metal-organic frameworks (MOFs) with dual effective uranium uptake sites were synthesized through combined in-situ and post-synthetic method. The MOF10@5 demonstrates the uptake amount of uranium reaches 1476 mg/g under visible-light irradiation. The PN-MOF10@5 with dual uranyl uptake sites yields the amount of extracting uranyl of 1590 mg/g under visible-light irradiation. The density functional theory (DFT) calculations reveal strong interaction between uranyl and dual uranyl effective active sites. These MOFs demonstrate a powerful synthesis strategy for uranium extraction materials with dual effective active sites.

Electronic Supplementary Material

Download File(s)
6654_ESM.pdf (2.7 MB)

References

[1]

Sholl, D. S.; Lively, R. P. Seven chemical separations to change the world. Nature 2016, 532, 435–437.

[2]

Abney, C. W.; Mayes, R. T.; Saito, T.; Dai, S. Materials for the recovery of uranium from seawater. Chem. Rev. 2017, 117, 13935–14013.

[3]

Li, S. J.; Hu, Y. Z.; Shen, Z. W.; Cai, Y. W.; Ji, Z. Y.; Tan, X. L.; Liu, Z. X.; Zhao, G. X.; Hu, S. X.; Wang, X. K. Rapid and selective uranium extraction from aqueous solution under visible light in the absence of solid photocatalyst. Sci. China Chem. 2021, 64, 1323–1331.

[4]

Feng, L. J.; Wang, H.; Feng, T. T.; Yan, B. J.; Yu, Q. H.; Zhang, J. C.; Guo, Z. H.; Yuan, Y. H.; Ma, C. X.; Liu, T. et al. In situ synthesis of uranyl-imprinted nanocage for selective uranium recovery from seawater. Angew. Chem., Int. Ed. 2022, 61, e202101015.

[5]

Xie, Y. H.; Wu, Y.; Liu, X. L.; Hao, M. J.; Chen, Z. S.; Waterhouse, G. I. N.; Wang, X. K.; Yang, H.; Ma, S. Q. Rational design of cooperative chelating sites on covalent organic frameworks for highly selective uranium extraction from seawater. Cell Rep. Phys. Sci. 2023, 4, 101220.

[6]

Zhu, W. C.; Li, X.; Wang, D. J.; Fu, F.; Liang, Y. C. Advanced photocatalytic uranium extraction strategies: Progress, challenges, and prospects. Nanomaterials 2023, 13, 2005.

[7]

Liu, P.; An, M. Y.; He, T.; Li, P.; Ma, F. Q. Recent advances in antibiofouling materials for seawater-uranium extraction: A review. Materials 2023, 16, 6451.

[8]

Li, Z. J.; Huang, Z. W.; Guo, W. L.; Wang, L.; Zheng, L. R.; Chai, Z. F.; Shi, W. Q. Enhanced photocatalytic removal of uranium(VI) from aqueous solution by magnetic TiO2/Fe3O4 and its graphene composite. Environ. Sci. Technol. 2017, 51, 5666–5674.

[9]

Dong, C. X.; Qiao, T. T.; Huang, Y. B.; Yuan, X.; Lian, J.; Duan, T.; Zhu, W. K.; He, R. Efficient photocatalytic extraction of uranium over ethylenediamine capped cadmium sulfide telluride nanobelts. ACS Appl. Mater. Interfaces 2021, 13, 11968–11976.

[10]

Chen, B.; Zhang, G. K.; Chen, L.; Kang, J. Y.; Wang, Y. H.; Chen, S. Y.; Jin, Y. D.; Yan, H. J.; Xia, C. Q. Visible light driven photocatalytic removal of uranium(VI) in strongly acidic solution. J. Hazard. Mater. 2022, 426, 127851.

[11]

Chen, T.; Yu, K. F.; Dong, C. X.; Yuan, X.; Gong, X.; Lian, J.; Cao, X.; Li, M. Z.; Zhou, L.; Hu, B. W. et al. Advanced photocatalysts for uranium extraction: Elaborate design and future perspectives. Coord. Chem. Rev. 2022, 467, 214615.

[12]

Yang, H.; Hao, M. J.; Xie, Y. H.; Liu, X. L.; Liu, Y. F.; Chen, Z. S.; Wang, X. K.; Waterhouse, G. I. N.; Ma, S. Q. Tuning local charge distribution in multicomponent covalent organic frameworks for dramatically enhanced photocatalytic uranium extraction. Angew. Chem., Int. Ed. 2023, 62, e202303129.

[13]

Song, Y. T.; Li, A.; Li, P. J.; He, L. W.; Xu, D. Y.; Wu, F. Q.; Zhai, F. W.; Wu, Y. T.; Hu, K.; Wang, S. A. et al. Unassisted uranyl photoreduction and separation in a donor-acceptor covalent organic framework. Chem. Mater. 2022, 34, 2771–2778.

[14]

Li, H.; Zhai, F. W.; Gui, D. X.; Wang, X. X.; Wu, C. F.; Zhang, D.; Dai, X.; Deng, H.; Su, X. T.; Diwu, J. et al. Powerful uranium extraction strategy with combined ligand complexation and photocatalytic reduction by postsynthetically modified photoactive metal-organic frameworks. Appl. Catal. B: Environ. 2019, 254, 47–54.

[15]

Zhang, H. L.; Liu, W.; Li, A.; Zhang, D.; Li, X. Y.; Zhai, F. W.; Chen, L. H.; Chen, L.; Wang, Y. L.; Wang, S. A. Three mechanisms in one material: Uranium capture by a polyoxometalate-organic framework through combined complexation, chemical reduction, and photocatalytic reduction. Angew. Chem., Int. Ed. 2019, 58, 16110–16114.

[16]

Kumar, V.; Singh, V.; Kim, K. H.; Kwon, E. E.; Younis, S. A. Metal-organic frameworks for photocatalytic detoxification of chromium and uranium in water. Coord. Chem. Rev. 2021, 447, 214148.

[17]

Cui, W. R.; Zhang, C. R.; Jiang, W.; Li, F. F.; Liang, R. P.; Liu, J. W.; Qiu, J. D. Regenerable and stable sp2 carbon-conjugated covalent organic frameworks for selective detection and extraction of uranium. Nat. Commun. 2020, 11, 436.

[18]

Liu, H. J.; Fu, T. Y.; Mao, Y. B. Metal-organic framework-based materials for adsorption and detection of uranium(VI) from aqueous solution. ACS Omega 2022, 7, 14430–14456.

[19]

Zhang, Q.; Yang, H.; Zhou, T.; Chen, X. D.; Li, W. T.; Pang, H. Metal-organic frameworks and their composites for environmental applications. Adv. Sci. 2022, 9, 2204141.

[20]

Xue, S. L.; Lv, X. J.; Liu, N. C.; Zhang, Q. X.; Lei, H. T.; Cao, R.; Qiu, F. X. Electrocatalytic hydrogen evolution of bent bis(dipyrrin) Ni(II) complexes. Inorg. Chem. 2023, 62, 1679–1685.

[21]

He, M. Y.; Zhao, B. C.; Yue, X. J.; Chen, Y. F.; Qiu, F. X.; Zhang, T. Infrared radiative modulating textiles for personal thermal management: Principle, design and application. Nano Energy 2023, 116, 108821.

[22]

Zhang, S.; Chen, L. X.; Qu, Z. Y.; Zhai, F. W.; Yin, X. X.; Zhang, D.; Shen, Y. F.; Li, H.; Liu, W.; Mei, S. et al. Confining Ti-oxo clusters in covalent organic framework micropores for photocatalytic reduction of the dominant uranium species in seawater. Chem 2023, 9, 3172–3184.

[23]

Rajasree, S. S.; Li, X. L.; Deria, P. Physical properties of porphyrin-based crystalline metal-organic frameworks. Commun. Chem. 2021, 4, 47.

[24]

De, S.; Devic, T.; Fateeva, A. Porphyrin and phthalocyanine-based metal organic frameworks beyond metal-carboxylates. Dalton Trans. 2021, 50, 1166–1188.

[25]

Figueroa-Quintero, L.; Villalgordo-Hernández, D.; Delgado-Marín, J. J.; Narciso, J.; Velisoju, V. K.; Castaño, P.; Gascón, J.; Ramos-Fernández, E. V. Post-synthetic surface modification of metal-organic frameworks and their potential applications. Small Methods 2023, 7, 2201413.

[26]

Ding, M. L.; Cai, X. C.; Jiang, H. L. Improving MOF stability: Approaches and applications. Chem. Sci. 2019, 10, 10209–10230.

[27]

Liu, C.; Zeng, C. J.; Luo, T. Y.; Merg, A. D.; Jin, R. C.; Rosi, N. L. Establishing porosity gradients within metal-organic frameworks using partial postsynthetic ligand exchange. J. Am. Chem. Soc. 2016, 138, 12045–12048.

[28]

Blanchard, M. D.; Hughes, R. P.; Concolino, T. E.; Rheingold, A. L. π-Stacking between pentafluorophenyl and phenyl groups as a controlling feature of intra- and intermolecular crystal structure motifs in substituted ferrocenes. Observation of unexpected face-to-face stacking between pentafluorophenyl rings. Chem. Mater. 2000, 12, 1604–1610.

[29]

Eguchi, D.; Sakamoto, M.; Teranishi, T. Ligand effect on the catalytic activity of porphyrin-protected gold clusters in the electrochemical hydrogen evolution reaction. Chem. Sci. 2018, 9, 261–265.

[30]

Zhao, M.; Cui, Z. P.; Pan, D. Q.; Fan, F. Y.; Tang, J. H.; Hu, Y. M.; Xu, Y.; Zhang, P. C.; Li, P.; Kong, X. Y. et al. An efficient uranium adsorption magnetic platform based on amidoxime-functionalized flower-like Fe3O4@TiO2 core-shell microspheres. ACS Appl. Mater. Interfaces 2021, 13, 17931–17939.

[31]

Li, J.; Huang, H. L.; Xue, W. J.; Sun, K.; Song, X. H.; Wu, C. R.; Nie, L.; Li, Y.; Liu, C. Y.; Pan, Y. et al. Self-adaptive dual-metal-site pairs in metal-organic frameworks for selective CO2 photoreduction to CH4. Nat. Catal. 2021, 4, 719–729.

[32]

Niu, C. P.; Zhang, C. R.; Liu, X.; Liang, R. P.; Qiu, J. D. Synthesis of propenone-linked covalent organic frameworks via Claisen-Schmidt reaction for photocatalytic removal of uranium. Nat. Commun. 2023, 14, 4420.

[33]

Zhang, Y. F.; Zhu, M. Y.; Zhang, S.; Cai, Y. W.; Lv, Z. M.; Fang, M.; Tan, X. L.; Wang, X. K. Highly efficient removal of U(VI) by the photoreduction of SnO2/CdCO3/CdS nanocomposite under visible light irradiation. Appl. Catal. B: Environ. 2020, 279, 119390.

[34]

Gao, F. X.; Wang, Z.; Fang, M.; Tan, X. L.; Xu, S. H.; Liu, M.; Fei, G. T.; Zhang, L. D. Biological calcium phosphate nanorods for piezocatalytical extraction of U(VI) from water. Nano Res. 2023, 16, 12772–12780.

Nano Research
Pages 6713-6720
Cite this article:
Pan J, Xiao B, Zhu W, et al. Photocatalytic uranium extraction boosted by dual effective active sites of porphyrin metal-organic frameworks. Nano Research, 2024, 17(7): 6713-6720. https://doi.org/10.1007/s12274-024-6654-x
Topics:

552

Views

1

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 05 February 2024
Revised: 14 March 2024
Accepted: 24 March 2024
Published: 08 May 2024
© Tsinghua University Press 2024
Return