Journal Home > Online First

Paclitaxel (PTX), methotrexate (MTX), and 5-fluorouracil (5-FU) are commonly-used small molecule anti-tumor drugs for breast cancer. Unfortunately, drug resistance occurs with long-term treatment or excessive use, and the high concentrations of PTX, MTX, and 5-FU in patients may lead to side effects with dose-limiting toxicities, such as myelosuppression, hepatotoxicity, and peripheral neuropathy. Therefore, concentration monitoring of PTX, MTX, and 5-FU in clinical treatment is very important. We prepared highly sensitive and specific monoclonal antibodies using several haptens, and established a multiple paper-based sensor utilizing optical signals of gold nanoparticles, which simultaneously detected PTX, MTX, and 5-FU in human plasma or urine with 10 min. A portable scanner for quantitative detection in plasma and urine samples was used, and the calculated limit of detection (cLOD) values were 0.002 and 0.142 μg/mL for PTX, 0.187 and 0.976 ng/mL for MTX, and 0.057 and 0.128 μg/mL for 5-FU, respectively. In the recovery test, the recovery rates and the coefficient of variation were 85.84%–108.81% and 1.23%–8.80%, respectively, indicating the reliability and accuracy of the multiple gold immunochromatographic strip (GIS). In addition, for the determination of collected clinical plasma samples, the correlation between the test data of the multiple GIS and liquid chromatography–tandem mass spectrometry (LC–MS/MS) was good. Therefore, the developed multiple GIS could be applied to the rapid detection of PTX, MTX, and 5-FU in different clinical samples.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

A gold-based multiplex immunochromatographic sensor for detecting paclitaxel, methotrexate, and 5-fluorouracil in clinical samples

Show Author's information Xiaoqian Jiang1,2Aihua Qu1,2( )Xinxin Xu1,2Hua Kuang1,2Liqiang Liu1,2Chuanlai Xu1,2( )
State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi 214122, China

Abstract

Paclitaxel (PTX), methotrexate (MTX), and 5-fluorouracil (5-FU) are commonly-used small molecule anti-tumor drugs for breast cancer. Unfortunately, drug resistance occurs with long-term treatment or excessive use, and the high concentrations of PTX, MTX, and 5-FU in patients may lead to side effects with dose-limiting toxicities, such as myelosuppression, hepatotoxicity, and peripheral neuropathy. Therefore, concentration monitoring of PTX, MTX, and 5-FU in clinical treatment is very important. We prepared highly sensitive and specific monoclonal antibodies using several haptens, and established a multiple paper-based sensor utilizing optical signals of gold nanoparticles, which simultaneously detected PTX, MTX, and 5-FU in human plasma or urine with 10 min. A portable scanner for quantitative detection in plasma and urine samples was used, and the calculated limit of detection (cLOD) values were 0.002 and 0.142 μg/mL for PTX, 0.187 and 0.976 ng/mL for MTX, and 0.057 and 0.128 μg/mL for 5-FU, respectively. In the recovery test, the recovery rates and the coefficient of variation were 85.84%–108.81% and 1.23%–8.80%, respectively, indicating the reliability and accuracy of the multiple gold immunochromatographic strip (GIS). In addition, for the determination of collected clinical plasma samples, the correlation between the test data of the multiple GIS and liquid chromatography–tandem mass spectrometry (LC–MS/MS) was good. Therefore, the developed multiple GIS could be applied to the rapid detection of PTX, MTX, and 5-FU in different clinical samples.

Keywords: paclitaxel, plasma, methotrexate, urine, immunochromatographic assay, 5-fluorouracil

References(66)

[1]

Anderson, J. E.; Trujillo, M.; McElroy, T.; Groves, T.; Alexander, T.; Kiffer, F.; Allen, A. R. Early effects of cyclophosphamide, methotrexate, and 5-fluorouracil on neuronal morphology and hippocampal-dependent behavior in a murine model. Toxicol. Sci. 2020, 173, 156–170.

[2]

Kunnuru, S. K. R.; Thiyagarajan, M.; Daniel, J. M.; Balaji, S. K. A study on clinical and pathological responses to neoadjuvant chemotherapy in breast carcinoma. Breast Cancer: Targets Ther. 2020, 12, 259–266.

[3]

Mariani, G.; Galli, G.; Cavalieri, S.; Valagussa, P.; Bianchi, G. V.; Capri, G.; Cresta, S.; Ferrari, L.; Damian, S.; Duca, M.; et al. Single institution trial of anthracycline- and taxane-based chemotherapy for operable breast cancer: The ASTER study. Breast J. 2019, 25, 237–242.

[4]

Li, Q.; Yang, Z.; Fan, J. H.; He, J. J.; Zhang, B.; Yang, H. J.; Xie, X. M.; Tang, Z. H.; Li, H.; Qiao, Y. L. et al. A nation-wide multicenter 10-year (1999-2008) retrospective study of chemotherapy in Chinese breast cancer patients. Oncotarget 2017, 8, 75864–75873.

[5]

Saloustros, E.; Malamos, N.; Boukovinas, I.; Kakolyris, S.; Kouroussis, C.; Athanasiadis, A.; Ziras, N.; Kentepozidis, N.; Makrantonakis, P.; Polyzos, A. et al. Dose-dense paclitaxel versus docetaxel following FEC as adjuvant chemotherapy in axillary node-positive early breast cancer: A multicenter randomized study of the Hellenic Oncology Research Group (HORG). Breast Cancer Res. Treat. 2014, 148, 591–597.

[6]
Mohammed, A. M.; Osman, S. K.; Saleh, K. I.; Samy, A. M. In vitro release of 5-fluorouracil and methotrexate from different thermosensitive chitosan hydrogel systems. AAPS PharmSciTech 2020 , 21, 11.
DOI
[7]

Almawash, S.; Mohammed, A. M.; El Hamd, M. A.; Osman, S. K. Injectable hydrogels based on cyclodextrin/cholesterol inclusion complexation and loaded with 5-fluorouracil/methotrexate for breast cancer treatment. Gels 2023, 9, 326.

[8]

Montero, P.; Sanz, C.; Pérez-Fidalgo, J. A.; Pérez-Leal, M.; Milara, J.; Cortijo, J. Paclitaxel alters melanogenesis and causes pigmentation in the skin of gynecological cancer patients. Fundam. Clin. Pharmacol. 2024, 38, 183–191.

[9]

Huong, N. T.; Hoi, N. T. N.; Hung, M. D.; Tri, L. M.; Hung, N. V.; Anh, L. D.; Dong, V. T.; Vuong, L. Q.; Thanh, V. M. A redox-responsive delivery system for paclitaxel based on heparin-pluronic F127 nanogel. J. Nanopart. Res. 2023, 25, 191.

[10]

Almalki, R. S.; Eweis, H.; Kamel, F.; Kutbi, D. Methotrexate toxicity: Molecular mechanisms and management. J. Pharm. Res. Int. 2021, 33, 204–217.

[11]

Verberne, E. A.; de Haan, E.; van Tintelen, J. P.; Lindhout, D.; van Haelst, M. M. Fetal methotrexate syndrome: A systematic review of case reports. Reprod. Toxicol. 2019, 87, 125–139.

[12]

Ramsey, L. B.; Balis, F. M.; O'Brien, M. M.; Schmiegelow, K.; Pauley, J. L.; Bleyer, A.; Widemann, B. C.; Askenazi, D.; Bergeron, S.; Shirali, A. et al. Consensus guideline for use of glucarpidase in patients with high-dose methotrexate induced acute kidney injury and delayed methotrexate clearance. Oncologist 2018, 23, 52–61.

[13]

Jahani, P. M.; Jafari, M.; Ravari, F. N. CuFe2O4 nanoparticles-based electrochemical sensor for sensitive determination of the anticancer drug 5-fluorouracil. Admet Dmpk 2023, 11, 201–210.

[14]

Dodevska, T.; Hadzhiev, D.; Shterev, I. Recent advances in electrochemical determination of anticancer drug 5-fluorouracil. Admet Dmpk 2023, 11, 135–150.

[15]

You, M.; Xing, H. Z.; Yan, M.; Zhang, J.; Chen, J. Y.; Chen, Y.; Liu, X. L.; Zhu, J. Schwann cell-derived exosomes ameliorate paclitaxel-induced peripheral neuropathy through the miR-21-mediated PTEN signaling pathway. Mol. Neurobiol. 2023, 60, 6840–6851.

[16]

Noguchi, Y.; Kawashima, Y.; Maruyama, M.; Kawara, H.; Tokuyama, Y.; Uchiyama, K.; Shimizu, Y. Risk factors for eye disorders caused by paclitaxel: A retrospective study. Biol. Pharm. Bull. 2018, 41, 1694–1700.

[17]

Bernstein, B. J. Docetaxel as an alternative to paclitaxel after acute hypersensitivity reactions. Ann. Pharmacother. 2000, 34, 1332–1335.

[18]

Sandhu, A.; Dhir, V.; Ahmad, S.; Dhawan, V.; Kaur, J.; Bhatnagar, A. Clinico-genetic model to predict methotrexate intolerance in rheumatoid arthritis. Clin. Rheumatol. 2020, 39, 201–206.

[19]

García-González, C. M.; Baker, J. Treatment of early rheumatoid arthritis: Methotrexate and beyond. Curr. Opin. Pharmacol. 2022, 64, 102227.

[20]

Sajith, M.; Pawar, A.; Bafna, V.; Bartakke, S.; Subramanian, K.; Vaidya, N. Serum methotrexate level and side effects of high dose methotrexate infusion in pediatric patients with Acute Lymphoblastic Leukaemia (ALL). Indian J. Hematol. Blood Transfus. 2020, 36, 51–58.

[21]
Yang, Y. C.; Zhang, M. Q.; Zhang, Y. D.; Liu, K. B.; Lu, C. W. 5-fluorouracil suppresses colon tumor through activating the p53-fas pathway to sensitize myeloid-derived suppressor cells to FasL+ cytotoxic T lymphocyte cytotoxicity. Cancers 2023 , 15, 1563.
DOI
[22]

Staff, N. P.; Hrstka, S. C.; Dasari, S.; Capobianco, E.; Rieger, S. Skin extracellular matrix breakdown following paclitaxel therapy in patients with chemotherapy-induced peripheral neuropathy. Cancers 2023, 15, 4191.

[23]

Paci, A.; Veal, G.; Bardin, C.; Levêque, D.; Widmer, N.; Beijnen, J.; Astier, A.; Chatelut, E. Review of therapeutic drug monitoring of anticancer drugs part 1-Cytotoxics. Eur. J. Cancer 2014, 50, 2010–2019.

[24]

Tan, T. T.; Feng, Y. X.; Wang, W. M.; Wang, R. R.; Yin, L. Y.; Zeng, Y. Y.; Zeng, Z. W.; Xie, T. Cabazitaxel-loaded human serum albumin nanoparticles combined with TGFβ-1 siRNA lipid nanoparticles for the treatment of paclitaxel-resistant non-small cell lung cancer. Cancer Nanotechnol. 2023, 14, 70.

[25]

Pei, Q.; Hu, X. L.; Zheng, X. H.; Xia, R.; Liu, S.; Xie, Z. G.; Jing, X. B. Albumin-bound paclitaxel dimeric prodrug nanoparticles with tumor redox heterogeneity-triggered drug release for synergistic photothermal/chemotherapy. Nano Res. 2019, 12, 877–887.

[26]

Muth, M.; Ojara, F. W.; Kloft, C.; Joerger, M. Role of TDM-based dose adjustments for taxane anticancer drugs. Br. J. Clin. Pharmacol. 2021, 87, 306–316.

[27]

Salman, B.; Al-Khabori, M. Applications and challenges in therapeutic drug monitoring of cancer treatment: A review. J. Oncol. Pharm. Pract. 2021, 27, 693–701.

[28]

Friedman, B.; Cronstein, B. Methotrexate mechanism in treatment of rheumatoid arthritis. Joint Bone Spine 2019, 86, 301–307.

[29]

Akyol, E.; Ulusoy, H. İ.; Yilmaz, E.; Polat, Ü.; Soylak, M. Application of magnetic solid-phase extraction for sensitive determination of anticancer drugs in urine by means of diamino benzidine tetrachlorohydrate modified magnetic nanoparticles. Pharmacol. Rep. 2023, 75, 456–464.

[30]

Fukuhara, K.; Ikawa, K.; Morikawa, N.; Kumagai, K. Population pharmacokinetics of high-dose methotrexate in Japanese adult patients with malignancies: A concurrent analysis of the serum and urine concentration data. J. Clin. Pharm. Ther. 2008, 33, 677–684.

[31]

Ganti, V.; Walker, E. A.; Nagar, S. Pharmacokinetic application of a bio-analytical LC-MS method developed for 5-fluorouracil and methotrexate in mouse plasma, brain and urine. Biomed. Chromatogr. 2013, 27, 994–1002.

[32]

Malhi, S.; Stesco, N.; Alrushaid, S.; Lakowski, T. M.; Davies, N. M.; Gu, X. C. Simultaneous quantification of reparixin and paclitaxel in plasma and urine using ultra performance liquid chromatography-tandem mass spectroscopy (UHPLC-MS/MS): Application to a preclinical pharmacokinetic study in rats. J. Chromatogr. B 2017, 1046, 165–171.

[33]

Mehdi-Alamdarlou, S.; Azadi, A.; Karbasian, M.; Ashrafi, H. Development and application of chitosan nanogel as a sorbent for methotrexate extraction. Curr. Pharm. Anal. 2023, 19, 258–265.

[34]

Liu, Y.; He, Z. C.; Liang, H.; Han, M. Z.; Wang, J. X. Y.; Liu, Q.; Guan, Y. P. A high-throughput UHPLC-MS/MS method for the determination of eight anti-tumor drugs in plasma. Anal. Biochem. 2023, 676, 115230.

[35]

Wei, Y. M.; Xue, Z. K.; Ye, Y.; Wang, P.; Huang, Y.; Zhao, L. Pharmacokinetic and tissue distribution of paclitaxel in rabbits assayed by LC-UV after intravenous administration of its novel liposomal formulation. Biomed. Chromatogr. 2014, 28, 204–212.

[36]

Panikar, S. S.; Ramírez-García, G.; Sidhik, S.; Lopez-Luke, T.; Rodriguez-Gonzalez, C.; Ciapara, I. H.; Castillo, P. S.; Camacho-Villegas, T.; De la Rosa, E. Ultrasensitive SERS substrate for label-free therapeutic-drug monitoring of paclitaxel and cyclophosphamide in blood serum. Anal. Chem. 2019, 91, 2100–2111.

[37]

Göksel, Y.; Zor, K.; Rindzevicius, T.; Als-Nielsen, B. E. T.; Schmiegelow, K.; Boisen, A. Quantification of methotrexate in human serum using surface-enhanced Raman scattering-toward therapeutic drug monitoring. ACS Sens. 2021, 6, 2664–2673.

[38]

Muthukumaran, M. K.; Govindaraj, M.; Raja, B. K.; Selvi, J. A. Crystal plane-integrated strontium oxide/hexagonal boron nitride nanohybrids for rapid electrochemical sensing of anticancer drugs in human blood serum samples. Anal. Methods 2023, 15, 5639–5654.

[39]

Adeniyi, K. O.; Osmanaj, B.; Manavalan, G.; Mikkola, J. P.; Berisha, A.; Tesfalidet, S. Reagentless impedimetric immunosensor for monitoring of methotrexate in human blood serum using multiwalled carbon nanotube@polypyrrole/polytyramine film electrode. Talanta 2024, 268, 125316.

[40]

Yu, J. T.; Bisceglia, K. J.; Bouwer, E. J.; Roberts, A. L.; Coelhan, M. Determination of pharmaceuticals and antiseptics in water by solid-phase extraction and gas chromatography/mass spectrometry: Analysis via pentafluorobenzylation and stable isotope dilution. Anal. Bioanal. Chem. 2012, 403, 583–591.

[41]

Li, J.; Li, Y. J.; Wu, K.; Deng, A. P.; Li, J. G. Ultra-sensitive detection of 5-fluorouracil by flow injection chemiluminescence immunoassay based on Fenton-like effect of single atom Co nanozyme. Talanta 2023, 265, 124870.

[42]

Cui, Q.; Tanaka, H.; Shoyama, Y.; Ye, H. T.; Li, F.; Tian, E. W.; Wu, Y. S.; Chao, Z. Development of a competitive time-resolved fluoroimmunoassay for paclitaxel. Phytochem. Anal. 2018, 29, 284–289.

[43]

Zhou, T.; He, G. Z.; Hu, C. J.; Wu, K.; Liu, Y.; Li, J. G.; Deng, A. P. Development of a highly sensitive and specific monoclonal antibody-based ELISA coupled with immuno-affinity extraction for the detection of anticancer drug 5-fluorouracil in blood samples. Talanta 2022, 249, 123655.

[44]

Chao, Z.; Tan, M. M.; Paudel, M. K.; Sakamoto, S.; Ma, L. L.; Sasaki-Tabata, K.; Tanaka, H.; Shoyama, Y.; Xuan, L. J.; Morimoto, S. Development of an indirect competitive enzyme-linked immunosorbent assay (icELISA) using highly specific monoclonal antibody against paclitaxel. J. Nat. Med. 2013, 67, 512–518.

[45]

Zhang, Q.; Wu, A. H.; Li, J. Y.; Liu, L. Q.; Kuang, H.; Xu, C. L.; Guo, L. L. Development of an ic-ELISA and immunochromatographic assay strip for the rapid detection of chloridazon in oranges and celery. Analyst 2024, 149, 467–474.

[46]

Jiang, X. Q.; Qu, A. H.; Xu, X. X.; Kuang, H.; Liu, L. Q.; Xu, L. G.; Xu, C. L. A paper sensor for unbound valproic acid detection in human serum. New J. Chem. 2023, 47, 16675–16685.

[47]

Li, H. P.; Meng, F. P.; Li, A. F. Colloidal gold immunochromatographic assay for rapid on-site detection of tetracycline in seawater. J. Ocean Univ. China 2023, 22, 1129–1138.

[48]

Zeng, L.; Xu, X. X.; Guo, L. L.; Wang, Z. X.; Ding, H. L.; Song, S. S.; Xu, L. G.; Kuang, H.; Liu, L. Q.; Xu, C. L. An immunochromatographic sensor for ultrasensitive and direct detection of histamine in fish. J. Hazard. Mater. 2021, 419, 126533.

[49]

Wang, Z. X.; Zhao, J.; Xu, X. X.; Guo, L. L.; Xu, L. G.; Sun, M. Z.; Hu, S. D.; Kuang, H.; Xu, C. L.; Li, A. K. An overview for the nanoparticles-based quantitative lateral flow assay. Small Methods 2022, 6, 2101143.

[50]

Zeng, L.; Wu, X. L.; Liu, L. Q.; Xu, L. G.; Kuang, H.; Xu, C. L. Production of a monoclonal antibody for the detection of vitamin B1 and its use in an indirect enzyme-linked immunosorbent assay and immunochromatographic strip. J. Mater. Chem. B 2020, 8, 1935–1943.

[51]

Lei, X. L.; Xu, X. X.; Wang, L.; Zhou, W.; Liu, L. Q.; Xu, L. G.; Kuang, H.; Xu, C. L. A quadruplex immunochromatographic assay for the ultrasensitive detection of 11 anesthetics. Nano Res. 2023, 16, 11269–11277.

[52]

Lei, X. L.; Xu, X. X.; Liu, L. Q.; Xu, L. G.; Wang, L.; Kuang, H.; Xu, C. L. Gold-nanoparticle-based multiplex immuno-strip biosensor for simultaneous determination of 83 antibiotics. Nano Res. 2023, 16, 1259–1268.

[53]

Jiang, X. Q.; Xu, X. X.; Kuang, H.; Liu, L. Q.; Xu, L. G.; Qu, A. H.; Xu, C. L. A gold-based immunochromatographic strip for the specific detection of tacrolimus in whole blood. J. Mater. Chem. B 2023, 11, 4464–4474.

[54]

Chen, Y. N.; Liu, L. Q.; Xu, L. G.; Song, S. S.; Kuang, H.; Cui, G.; Xu, C. L. Gold immunochromatographic sensor for the rapid detection of twenty-six sulfonamides in foods. Nano Res. 2017, 10, 2833–2844.

[55]

Jiang, X. Q.; Song, S. S.; Liu, L. Q.; Xu, L. G.; Kuang, H.; Xu, C. L.; Guo, L. L. An immunochromatographic sensor for the detection of 5-fluorouracil in human plasma. Microchem. J. 2024, 199, 109936.

[56]

Zeng, L.; Xu, X. X.; Song, S. S.; Xu, L. G.; Liu, L. Q.; Xiao, J.; Xu, C. L.; Kuang, H. Synthesis of haptens and gold-based immunochromatographic paper sensor for vitamin B6 in energy drinks and dietary supplements. Nano Res. 2022, 15, 2479–2488.

[57]
Ye, L. Y.; Xu, X. X.; Qu, A. H.; Liu, L. Q.; Xu, C. L.; Kuang, H. Quantitative assessment of the breast cancer marker HER2 using a gold nanoparticle-based lateral flow immunoassay. Nano Res., in press, DOI: 10.1007/s12274-024-6471-2.
DOI
[58]

Peng, J.; Liu, L. Q.; Xu, L. G.; Song, S. S.; Kuang, H.; Cui, G.; Xu, C. L. Gold nanoparticle-based paper sensor for ultrasensitive and multiple detection of 32 (fluoro)quinolones by one monoclonal antibody. Nano Res. 2017, 10, 108–120.

[59]

Guo, X.; Wu, X. L.; Sun, M. Z.; Xu, L. G.; Kuang, H.; Xu, C. L. Tetrahedron probes for ultrasensitive in situ detection of telomerase and surface glycoprotein activity in living cells. Anal. Chem. 2020, 92, 2310–2315.

[60]

Qu, A. H.; Wu, X. L.; Li, S.; Sun, M. Z.; Xu, L. G.; Kuang, H.; Xu, C. L. An NIR-responsive DNA-mediated nanotetrahedron enhances the clearance of senescent cells. Adv. Mater. 2020, 32, 2000184.

[61]

Guo, L. L.; Xu, X. X.; Zhao, J.; Hu, S. D.; Xu, L. G.; Kuang, H.; Xu, C. L. Multiple detection of 15 triazine herbicides by gold nanoparticle based-paper sensor. Nano Res. 2022, 15, 5483–5491.

[62]

Kong, D. Z.; Liu, L. Q.; Song, S. S.; Suryoprabowo, S.; Li, A. K.; Kuang, H.; Wang, L. B.; Xu, C. L. A gold nanoparticle-based semi-quantitative and quantitative ultrasensitive paper sensor for the detection of twenty mycotoxins. Nanoscale 2016, 8, 5245–5253.

[63]

Cai, J. R.; Ma, W.; Xu, L. G.; Hao, C. L.; Sun, M. Z.; Wu, X. L.; Colombari, F. M.; de Moura, A. F.; Silva, M. C.; Carneiro‐Neto, E. B. et al. Self-assembled gold arrays that allow rectification by nanoscale selectivity. Angew. Chem., Int. Ed. 2019, 58, 17418–17424.

[64]

Yao, J. J.; Xu, X. X.; Liu, L. Q.; Kuang, H.; Xu, C. L. Gold nanoparticle-based immunoassay for the detection of bifenthrin in vegetables. Food Addit. Contam.: Part A 2022, 39, 531–541.

[65]

Lin, L.; Song, S. S.; Wu, X. L.; Liu, L. Q.; Kuang, H.; Xu, C. L. Ultrasensitive immunochromatographic strip for the detection of cyhalothrin in foods. Anal. Methods 2021, 13, 3040–3049.

[66]

Zeng, L.; Guo, L. L.; Wang, Z. X.; Xu, X. X.; Song, S. S.; Xu, L. G.; Kuang, H.; Li, A. K.; Xu, C. L. Immunoassays for the rapid detection of pantothenic acid in pharmaceutical and food products. Food Chem. 2021, 348, 129114.

File
6649_ESM.pdf (1.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 15 February 2024
Revised: 10 March 2024
Accepted: 21 March 2024
Published: 06 April 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (Nos. 22236002 and 21925402), and this work is also financially supported by National Key R&D Program (No. 2021YFA1200300).

Return