Journal Home > Online First

The graphene-based microsupercapacitors (MSCs) suffer from graphene aggregation issue in electrodes. It reduces the electrolyte ions transportation in the electrodes to degrade the charge storage ability of MSCs, hampering their practical application. Increasing the electrolyte ions transportation in the electrodes can boost the charge storage ability of MSCs. Herein, we design and experimentally realize pillar array structure of graphene electrodes for MSCs by direct ink writing technology. The graphene electrodes with pillar array structure increase the contact area with electrolyte and short the electrolyte ions transport path, facilitating electrolyte ions transport in electrodes. The MSCs exhibit high areal capacitance of 25.67 mF·cm–2, high areal energy density of 20.54 μWh·cm–2, and high power density of 1.45 mW·cm–2. One single MSCs can power timer for 10 min and pressure sensor more than 160 min, showing high practical application possibility. This work provides a new avenue for developing high performance MSCs.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Enhancing electrolyte ion diffusion via direct ink writing pillar array structure of graphene electrodes for high-performance microsupercapacitors

Show Author's information Yan Zhang1Huandi Zhang1Xiaoxiao Wang2Cheng Tang1Xiaowei Shi1Zehua Zhao1Jiamei Liu3Guolong Wang1Jianfeng Shen4Lei Li1( )
State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi’an Jiaotong University, 28 Xianning West Road, Xi’an 710049, China
Center for Materials Chemistry, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
Instrument Analysis Center of Xi'an Jiaotong University, Xi’an Jiaotong University, 28 Xianning West Road, Xi’an 710049, China
Institute of special materials and technology, Fudan University, Shanghai 200433, China

Abstract

The graphene-based microsupercapacitors (MSCs) suffer from graphene aggregation issue in electrodes. It reduces the electrolyte ions transportation in the electrodes to degrade the charge storage ability of MSCs, hampering their practical application. Increasing the electrolyte ions transportation in the electrodes can boost the charge storage ability of MSCs. Herein, we design and experimentally realize pillar array structure of graphene electrodes for MSCs by direct ink writing technology. The graphene electrodes with pillar array structure increase the contact area with electrolyte and short the electrolyte ions transport path, facilitating electrolyte ions transport in electrodes. The MSCs exhibit high areal capacitance of 25.67 mF·cm–2, high areal energy density of 20.54 μWh·cm–2, and high power density of 1.45 mW·cm–2. One single MSCs can power timer for 10 min and pressure sensor more than 160 min, showing high practical application possibility. This work provides a new avenue for developing high performance MSCs.

Keywords: ion transport, microsupercapacitors, direct ink writing, pillar array structure, areal energy density

References(69)

[1]

Le, T. S. D.; Lee, Y. A.; Nam, H. K.; Jang, K. Y.; Yang, D.; Kim, B.; Yim, K.; Kim, S. W.; Yoon, H.; Kim, Y. J. Green flexible graphene-inorganic-hybrid micro-supercapacitors made of fallen leaves enabled by ultrafast laser pulses. Adv. Funct. Mater. 2022, 32, 2107768.

[2]

Khodabandehlo, A.; Noori, A.; Rahmanifar, M. S.; El-Kady, M. F.; Kaner, R. B.; Mousavi, M. F. Laser-scribed graphene-polyaniline microsupercapacitor for internet-of-things applications. Adv. Funct. Mater. 2022, 32, 2204555.

[3]

Li, L.; Meng, J.; Bao, X. R.; Huang, Y. P.; Yan, X. P.; Qian, H. L.; Zhang, C.; Liu, T. X. Direct-ink-write 3D printing of programmable micro-supercapacitors from MXene-regulating conducting polymer inks. Adv. Energy Mater. 2023, 13, 2203683.

[4]

Zhu, Y. Y.; Wang, S.; Ma, J. X.; Das, P.; Zheng, S. H.; Wu, Z. S. Recent status and future perspectives of 2D MXene for micro-supercapacitors and micro-batteries. Energy Storage Mater. 2022, 51, 500–526.

[5]

Liu, H. L.; Sun, Z. J.; Chen, Y.; Zhang, W. J.; Chen, X.; Wong, C. P. Laser processing of flexible in-plane micro-supercapacitors: Progresses in advanced manufacturing of nanostructured electrodes. ACS Nano 2022, 16, 10088–10129.

[6]

Tagliaferri, S.; Nagaraju, G.; Panagiotopoulos, A.; Och, M.; Cheng, G.; Iacoviello, F.; Mattevi, C. Aqueous inks of pristine graphene for 3D printed microsupercapacitors with high capacitance. ACS Nano 2021, 15, 15342–15353.

[7]

Meng, C. X.; Zhou, F.; Liu, H. Q.; Zhu, Y. Y.; Fu, Q.; Wu, Z. S. Water-in-salt ambipolar redox electrolyte extraordinarily boosting high pseudocapacitive performance of micro-supercapacitors. ACS Energy Lett. 2022, 7, 1706–1711.

[8]

Pan, Z. H.; Yang, J.; Zhang, Q. C.; Liu, M. N.; Hu, Y. T.; Kou, Z. K.; Liu, N.; Yang, X.; Ding, X. Y.; Chen, H. et al. All-solid-state fiber supercapacitors with ultrahigh volumetric energy density and outstanding flexibility. Adv. Energy Mater. 2019, 9, 1802753.

[9]

Zhang, X. Y.; Fu, Q. G.; Huang, H. M.; Wei, L.; Guo, X. Silver-quantum-dot-modified MoO3 and MnO2 paper-like freestanding films for flexible solid-state asymmetric supercapacitors. Small 2019, 15, 1805235.

[10]

Sun, G. Z.; Zhang, X.; Lin, R. Z.; Yang, J.; Zhang, H.; Chen, P. Hybrid fibers made of molybdenum disulfide, reduced graphene oxide, and multi-walled carbon nanotubes for solid-state, flexible, asymmetric supercapacitors. Angew. Chem., Int. Ed. 2015, 54, 4651–4656.

[11]

Da, Y. M.; Liu, J. X.; Zhou, L.; Zhu, X. H.; Chen, X. D.; Fu, L. Engineering 2D architectures toward high-performance micro-supercapacitors. Adv. Mater. 2019, 31, 1802793.

[12]

Kyeremateng, N. A.; Brousse, T.; Pech, D. Microsupercapacitors as miniaturized energy-storage components for on-chip electronics. Nat. Nanotechnol. 2017, 12, 7–15.

[13]

Lin, J.; Peng, Z. W.; Liu, Y. Y.; Ruiz-Zepeda, F.; Ye, R. Q.; Samuel, E. L. G.; Yacaman, M. J.; Yakobson, B. I.; Tour, J. M. Laser-induced porous graphene films from commercial polymers. Nat. Commun. 2014, 5, 5714.

[14]

Wang, Y. L.; Zhang, Y.; Wang, G. L.; Shi, X. W.; Qiao, Y. D.; Liu, J. M.; Liu, H. G.; Ganesh, A.; Li, L. Direct graphene-carbon nanotube composite ink writing all-solid-state flexible microsupercapacitors with high areal energy density. Adv. Funct. Mater. 2020, 30, 1907284.

[15]

Xu, Y. X.; Lin, Z. Y.; Zhong, X.; Huang, X. Q.; Weiss, N. O.; Huang, Y.; Duan, X. F. Holey graphene frameworks for highly efficient capacitive energy storage. Nat. Commun. 2014, 5, 4554.

[16]

Zhang, P. P.; Yang, S.; Xie, H. G.; Li, Y.; Wang, F. X.; Gao, M. M.; Guo, K.; Wang, R. H.; Lu, X. Advanced three-dimensional microelectrode architecture design for high-performance on-chip micro-supercapacitors. ACS Nano 2022, 16, 17593–17612.

[17]

Qiu, J. J.; Zhao, H. P.; Lei, Y. Emerging smart design of electrodes for micro-supercapacitors: A review. SmartMat 2022, 3, 447–473.

[18]

Chu, T. K.; Park, S.; Fu, K. 3D printing-enabled advanced electrode architecture design. Carbon Energy 2021, 3, 424–439.

[19]

Dousti, B.; Choi, Y. I.; Cogan, S. F.; Lee, G. S. A high energy density 2D microsupercapacitor based on an interconnected network of a horizontally aligned carbon nanotube sheet. ACS Appl. Mater. Interfaces 2020, 12, 50011–50023.

[20]

Lin, J.; Zhang, C. G.; Yan, Z.; Zhu, Y.; Peng, Z. W.; Hauge, R. H.; Natelson, D.; Tour, J. M. 3-Dimensional graphene carbon nanotube carpet-based microsupercapacitors with high electrochemical performance. Nano Lett. 2013, 13, 72–78.

[21]

Eustache, E.; Douard, C.; Demortière, A.; De Andrade, V.; Brachet, M.; Le Bideau, J.; Brousse, T.; Lethien, C. High areal energy 3D-interdigitated micro-supercapacitors in aqueous and ionic liquid electrolytes. Adv. Mater. Technol. 2017, 2, 1700126.

[22]

Guillemin, T.; Douard, C.; Robert, K.; Asbani, B.; Lethien, C.; Brousse, T.; Le Bideau, J. Solid-state 3D micro-supercapacitors based on ionogel electrolyte: Influence of adding lithium and sodium salts to the ionic liquid. Energy Storage Mater. 2022, 50, 606–617.

[23]

Dinh, T. M.; Achour, A.; Vizireanu, S.; Dinescu, G.; Nistor, L.; Armstrong, K.; Guay, D.; Pech, D. Hydrous RuO2/carbon nanowalls hierarchical structures for all-solid-state ultrahigh-energy-density micro-supercapacitors. Nano Energy 2014, 10, 288–294.

[24]

Létiche, M.; Eustache, E.; Freixas, J.; Demortière, A.; De Andrade, V.; Morgenroth, L.; Tilmant, P.; Vaurette, F.; Troadec, D.; Roussel, P. et al. Atomic layer deposition of functional layers for on chip 3D Li-Ion all solid state microbattery. Adv. Energy Mater. 2017, 7, 1601402.

[25]

Huang, T.; Liu, W. F.; Su, C. L.; Li, Y. Y.; Sun, J. Y. Direct ink writing of conductive materials for emerging energy storage systems. Nano Res. 2022, 15, 6091–6111.

[26]

Li, Q.; Dong, Q.; Wang, J. N.; Xue, Z. C.; Li, J.; Yu, M. F.; Zhang, T. Y.; Wan, Y.; Sun, H. Direct ink writing (DIW) of graphene aerogel composite electrode for vanadium redox flow battery. J. Power Sources 2022, 542, 231810.

[27]

Liu, L.; Zhao, H. P.; Lei, Y. Advances on three-dimensional electrodes for micro-supercapacitors: A mini-review. InfoMat 2019, 1, 74–84.

[28]

Zheng, S. H.; Shi, X. Y.; Das, P.; Wu, Z. S.; Bao, X. H. The road towards planar microbatteries and micro-supercapacitors: From 2D to 3D device geometries. Adv. Mater. 2019, 31, 1900583.

[29]

Liu, Y. Q.; Zhang, B. B.; Xu, Q.; Hou, Y. Y.; Seyedin, S.; Qin, S.; Wallace, G. G.; Beirne, S.; Razal, J. M.; Chen, J. Development of graphene oxide/polyaniline inks for high performance flexible microsupercapacitors via extrusion printing. Adv. Funct. Mater. 2018, 28, 1706592.

[30]

Shi, G.; Zhu, Y. X.; Batmunkh, M.; Ingram, M.; Huang, Y. F.; Chen, Z. H.; Wei, Y. J.; Zhong, L. X.; Peng, X. W.; Zhong, Y. L. Cytomembrane-inspired MXene ink with amphiphilic surfactant for 3D printed microsupercapacitors. ACS Nano 2022, 16, 14723–14736.

[31]

Yuk, H.; Zhao, X. H. A new 3D printing strategy by harnessing deformation, instability, and fracture of viscoelastic inks. Adv. Mater. 2018, 30, 1704028.

[32]

Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z. Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M. Improved synthesis of graphene oxide. ACS Nano 2010, 4, 4806–4814.

[33]

Wang, X. Y.; Wan, F.; Zhang, L. L.; Zhao, Z. F.; Niu, Z. Q.; Chen, J. Large-area reduced graphene oxide composite films for flexible asymmetric sandwich and microsized supercapacitors. Adv. Funct. Mater. 2018, 28, 1707247.

[34]

Beidaghi, M.; Wang, C. L. Micro-supercapacitors based on interdigital electrodes of reduced graphene oxide and carbon nanotube composites with ultrahigh power handling performance. Adv. Funct. Mater. 2012, 22, 4501–4510.

[35]

Kim, M.; Ju, B. K.; Kang, J. G. Hierarchical multiscale engineered Fe3O4/Ni electrodes with ultrafast supercapacitive energy storage for alternate current line-filtering. Small Sci. 2023, 3, 2200074.

[36]

Mohamed, N. B.; El-Kady, M. F.; Kaner, R. B. Macroporous graphene frameworks for sensing and supercapacitor applications. Adv. Funct. Mater. 2022, 32, 2203101.

[37]

Jiang, Y. Q.; Zhang, Z. Y.; Chen, D.; Du, J. G.; Yang, Y. H.; Wang, S.; Guo, F.; Chen, X. Y.; Gao, C.; Wang, W. J. et al. Vertical growth of 2D covalent organic framework nanoplatelets on a macroporous scaffold for high-performance electrodes. Adv. Mater. 2022, 34, 2204250.

[38]

Liu, Z. Y.; Wang, L. D.; Ma, G. Z.; Yuan, Y. N.; Jia, H. N.; Fei, W. D. A supercapacitor with ultrahigh volumetric capacitance produced by self-assembly of reduced graphene oxide through phosphoric acid treatment. J. Mater. Chem. A 2020, 8, 18933–18944.

[39]

Zhuang, P. Y.; Sun, Y. Y.; Li, L.; Chee, M. O. L.; Dong, P.; Pei, L. Y.; Chu, H.; Sun, Z. Z.; Shen, J. F.; Ye, M. X. et al. FIB-patterned nano-supercapacitors: Minimized size with ultrahigh performances. Adv. Mater. 2020, 32, 1908072.

[40]

Beidaghi, M.; Gogotsi, Y. Capacitive energy storage in micro-scale devices: Recent advances in design and fabrication of micro-supercapacitors. Energy Environ. Sci. 2014, 7, 867–884.

[41]

Tang, C.; Li, M. N.; Yao, Y. Z.; Wang, Y. L.; Zhang, Y.; Wang, G. L.; Liu, J. M.; Li, L. High-performance environmental adaptive microsupercapacitors from multifunctional hydrogel via modulating ionic hydration and hydrogen bonds. Energy Storage Mater. 2023, 55, 527–537.

[42]

Liu, H. L.; Zheng, Y. X.; Moon, K. S.; Chen, Y.; Shi, D. C.; Chen, X.; Wong, C. P. Ambient-air in situ fabrication of high-surface-area, superhydrophilic, and microporous few-layer activated graphene films by ultrafast ultraviolet laser for enhanced energy storage. Nano Energy 2022, 94, 106902.

[43]

Rao, Y. F.; Yuan, M.; Gao, B.; Li, H.; Yu, J. B.; Chen, X. P. Laser-scribed phosphorus-doped graphene derived from Kevlar textile for enhanced wearable micro-supercapacitor. J. Colloid Interface Sci. 2023, 630, 586–594.

[44]

Jin, X. T.; Zhang, G. F.; Sun, G. Q.; Yang, H. S.; Xiao, Y. K.; Gao, J.; Zhang, Z. P.; Jiang, L.; Qu, L. T. Flexible and high-performance microsupercapacitors with wide temperature tolerance. Nano Energy 2019, 64, 103938.

[45]

Yuan, M.; Wang, Z. P.; Rao, Y. F.; Wang, Y.; Gao, B.; Yu, J. B.; Li, H.; Chen, X. P. Laser direct writing O/N/S Co-doped hierarchically porous graphene on carboxymethyl chitosan/lignin-reinforced wood for boosted microsupercapacitor. Carbon 2023, 202, 296–304.

[46]

Wang, F. C.; Dong, X.; Wang, K. D.; Duan, W. Q.; Gao, M.; Zhai, Z. Y.; Zhu, C. G.; Wang, W. J. Laser-induced nitrogen-doped hierarchically porous graphene for advanced electrochemical energy storage. Carbon 2019, 150, 396–407.

[47]

Yuan, M.; Luo, F.; Wang, Z. P.; Yu, J. B.; Li, H.; Chen, X. P. Smart wearable band-aid integrated with high-performance micro-supercapacitor, humidity and pressure sensor for multifunctional monitoring. Chem. Eng. J. 2023, 453, 139898.

[48]

Khandelwal, M.; Tran, C. V.; Lee, J.; In, J. B. Nitrogen and boron co-doped densified laser-induced graphene for supercapacitor applications. Chem. Eng. J. 2022, 428, 131119.

[49]

Han, S.; Liu, C.; Li, N.; Zhang, S. D.; Song, Y. P.; Chen, L. Q.; Xi, M.; Yu, X. L.; Wang, W. B.; Kong, M. G. et al. One-step fabrication of nitrogen-doped laser-induced graphene derived from melamine/polyimide for enhanced flexible supercapacitors. CrystEngComm 2022, 24, 1866–1876.

[50]

Wang, Y. L.; Zhang, Y.; Liu, J. M.; Wang, G. L.; Pu, F. Z.; Ganesh, A.; Tang, C.; Shi, X. W.; Qiao, Y. D.; Chen, Y. Z. et al. Boosting areal energy density of 3D printed all-solid-state flexible microsupercapacitors via tailoring graphene composition. Energy Storage Mater. 2020, 30, 412–419.

[51]

Wu, Y.; Zhang, Y. X.; Liu, Y. P.; Cui, P.; Chen, S. B.; Zhang, Z. X.; Fu, J. C.; Xie, E. Q. Boosting the electrochemical performance of graphene-based on-chip micro-supercapacitors by regulating the functional groups. ACS Appl. Mater. Interfaces 2020, 12, 42933–42941.

[52]

Chen, H. Q.; Chen, S. B.; Zhang, Y. J.; Ren, H.; Hu, X. J.; Bai, Y. X. Sand-milling fabrication of screen-printable graphene composite inks for high-performance planar micro-supercapacitors. ACS Appl. Mater. Interfaces 2020, 12, 56319–56329.

[53]

Correia, R.; Deuermeier, J.; Correia, M. R.; Vaz Pinto, J.; Coelho, J.; Fortunato, E.; Martins, R. Biocompatible parylene-C laser-induced graphene electrodes for microsupercapacitor applications. ACS Appl. Mater. Interfaces 2022, 14, 46427–46438.

[54]

Song, L.; Dai, C. L.; Jin, X. T.; Xiao, Y. K.; Han, Y. Y.; Wang, Y.; Zhang, X. Q.; Li, X. Y.; Zhang, S. H.; Zhang, J. T. et al. Pure aqueous planar microsupercapacitors with ultrahigh energy density under wide temperature ranges. Adv. Funct. Mater. 2022, 32, 2203270.

[55]

Tyagi, A.; Myung, Y.; Tripathi, K. M.; Kim, T.; Gupta, R. K. High-performance hybrid microsupercapacitors based on Co-Mn layered double hydroxide nanosheets. Electrochim. Acta 2020, 334, 135590.

[56]

Ma, S.; Li, W. Y.; Cao, J. Q.; Wang, X. H.; Xie, Y. H.; Deng, L. Y.; Liu, H. C.; Huang, Z. Y.; Sun, L. M.; Cheng, S. Y. Flexible planar microsupercapacitors based on polypyrrole nanotubes. ACS Appl. Energy Mater. 2021, 4, 8857–8865.

[57]

Chen, H. Q.; Mao, Z.; Chen, S. B.; Zhang, Y. J.; Hu, X. J.; Xin, S. X.; Bai, Y. X. Rational formulation of graphene nanocomposite ink for 2D mutually embedded structure interdigital microsupercapacitors. ACS Appl. Energy Mater. 2021, 4, 10948–10957.

[58]

Zhu, C. G.; Dong, X.; Mei, X. S.; Gao, M.; Wang, K. D.; Zhao, D. M. Direct laser writing of MnO2 decorated graphene as flexible supercapacitor electrodes. J. Mater. Sci. 2020, 55, 17108–17119.

[59]

Zhou, H. J.; Zheng, S. S.; Guo, X. T.; Gao, Y. D.; Li, H. P.; Pang, H. Ordered porous and uniform electric-field-strength micro-supercapacitors by 3D printing based on liquid-crystal V2O5 nanowires compositing carbon nanomaterials. J. Colloid Interface Sci. 2022, 628, 24–32.

[60]

Esfahani, M. Z.; Khosravi, M. Stamp-assisted flexible graphene-based micro-supercapacitors. J. Power Sources 2020, 462, 228166.

[61]

Zhao, J. H.; Ma, Z. P.; Qiao, C. T.; Fan, Y. Q.; Qin, X. J.; Shao, G. J. Spectroscopic monitoring of the electrode process of MnO2@rGO nanospheres and its application in high-performance flexible micro-supercapacitors. ACS Appl. Mater. Interfaces 2022, 14, 34686–34696.

[62]

Xu, S. K.; Dall’Agnese, Y.; Wei, G. D.; Zhang, C.; Gogotsi, Y.; Han, W. Screen-printable microscale hybrid device based on MXene and layered double hydroxide electrodes for powering force sensors. Nano Energy 2018, 50, 479–488.

[63]

Li, X. X.; Ma, Y. N.; Shen, P. Z.; Zhang, C. K.; Cao, M. L.; Xiao, S. J.; Yan, F.; Luo, S. J.; Gao, Y. H. An ultrahigh energy density flexible asymmetric microsupercapacitor based on Ti3C2T x and PPy/MnO2 with wide voltage window. Adv. Mater. Technol. 2020, 5, 2000272.

[64]

Liu, W. W.; Yan, X. B.; Chen, J. T.; Feng, Y. Q.; Xue, Q. J. Novel and high-performance asymmetric micro-supercapacitors based on graphenequantum dots and polyaniline nanofibers. Nanoscale 2013, 5, 6053–6062.

[65]

Ding, M.; Li, S.; Guo, L.; Jing, L.; Gao, S. P.; Yang, H. T.; Little, J. M.; Dissanayake, T. U.; Li, K.; Yang, J. et al. Metal ion-induced assembly of MXene aerogels via biomimetic microtextures for electromagnetic interference shielding, capacitive deionization, and microsupercapacitors. Adv. Energy Mater. 2021, 11, 2101494.

[66]

Wang, G. X.; Zhang, R.; Zhang, H. Q.; Cheng, K. Aqueous MXene inks for inkjet-printing microsupercapacitors with ultrahigh energy densities. J. Colloid Interface Sci. 2023, 645, 359–370.

[67]

Li, S.; Chang, T. H.; Li, Y.; Ding, M.; Yang, J.; Chen, P. Y. Stretchable Ti3C2T x MXene microsupercapacitors with high areal capacitance and quasi-solid-state multivalent neutral electrolyte. J. Mater. Chem. A 2021, 9, 4664–4672.

[68]

Zhao, Y.; Zheng, J. H.; Yang, J.; Liu, W. J.; Qiao, F.; Lian, J. B.; Li, G. C.; Wang, T.; Zhang, J. W.; Wu, L. M. Hierarchical polypyrrole@cobalt sulfide-based flexible on-chip microsupercapacitors with ultrahigh energy density for self-charging system. Nano Res. 2023, 16, 555–563.

[69]

Shao, Y. L.; Li, J. M.; Li, Y. G.; Wang, H. Z.; Zhang, Q. H.; Kaner, R. B. Flexible quasi-solid-state planar micro-supercapacitor based on cellular graphene films. Mater. Horiz. 2017, 4, 1145–1150.

File
6647_ESM.pdf (1.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 29 January 2024
Revised: 13 March 2024
Accepted: 18 March 2024
Published: 02 May 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 52072297), Key R&D Plan of Shaanxi Province (No. 2021GXLH-Z-068), and Young Talent Support Plan of Xi’an Jiaotong University. The authors also thank Instrument Analysis Center of Xi’an Jiaotong University for their help in materials characterizations.

Return