Journal Home > Online First

Reducing kinetic energy barriers and developing accessible active sites are critical to deliver high hydrogen evolution reaction (HER) efficiency. In this paper, we synthesized defect-modulated and heteroatom (boron)-functionalized three-dimensional (3D) bowl-shaped Ti3−xC2Ty MXene (B-TCT) nanocavities coupled with the vertical growth of MoSe2 nanoflakes. The B-TCT@MoSe2 nanohybrids catalyst delivers the overpotentials of 49.9, 52.7, and 67.8 mV to reach a HER current density of 10 mA·cm−2 under acidic, alkaline, and neutral conditions, respectively. Such outstanding HER activity is predominantly attributed to the heteroatom functionalization, self-adapting Ti vacancy (VTi) defect modulation, and spatial configuration design in the 3D B-TCT nanocavity, which synergistically regulate the electronic structure, activate the basal plane/edge unsaturated sites, and reduce the reaction energy barrier. Experimental and theoretical calculations demonstrate that strong heterogeneous interfacial bonding interactions between B-TCT and MoSe2 can dramatically reduce the free energy of hydrogen adsorption and facilitate efficient interfacial charge migration, thus essentially improving the HER kinetics. We used this 3D porous nanohybrid system assembled by defect-rich lamellar structures to elucidate the advantageous synergistic effects of multiple mechanisms among defect structure, heteroatom functionalization, and interfacial coupling, which provided important insights for the development of efficient hybrid-type catalysts.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Defect-modulated and heteroatom-functionalized Ti3−xC2Ty MXene 3D nanocavities induce growth of MoSe2 nanoflakes toward electrocatalytic hydrogen evolution in all pH electrolytes

Show Author's information Ming Du1Xianzhi Yang2Jian Zhang1,3( )Wei Chen4Huajie Huang5Xinbao Zhu6( )Xing’ao Li1,3( )
State Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications (NJUPT), Nanjing 210023, China
College of Electronic and Optical Engineering and College of Flexible Electronics Nanjing University of Posts and Telecommunications (NJUPT), Nanjing 210023, China
New Energy Technology Engineering Lab of Jiangsu Province, College of Science, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing 210023, China
College of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang 318000, China
College of Mechanics and Materials, Hohai University, Nanjing 210098, China
College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China

Abstract

Reducing kinetic energy barriers and developing accessible active sites are critical to deliver high hydrogen evolution reaction (HER) efficiency. In this paper, we synthesized defect-modulated and heteroatom (boron)-functionalized three-dimensional (3D) bowl-shaped Ti3−xC2Ty MXene (B-TCT) nanocavities coupled with the vertical growth of MoSe2 nanoflakes. The B-TCT@MoSe2 nanohybrids catalyst delivers the overpotentials of 49.9, 52.7, and 67.8 mV to reach a HER current density of 10 mA·cm−2 under acidic, alkaline, and neutral conditions, respectively. Such outstanding HER activity is predominantly attributed to the heteroatom functionalization, self-adapting Ti vacancy (VTi) defect modulation, and spatial configuration design in the 3D B-TCT nanocavity, which synergistically regulate the electronic structure, activate the basal plane/edge unsaturated sites, and reduce the reaction energy barrier. Experimental and theoretical calculations demonstrate that strong heterogeneous interfacial bonding interactions between B-TCT and MoSe2 can dramatically reduce the free energy of hydrogen adsorption and facilitate efficient interfacial charge migration, thus essentially improving the HER kinetics. We used this 3D porous nanohybrid system assembled by defect-rich lamellar structures to elucidate the advantageous synergistic effects of multiple mechanisms among defect structure, heteroatom functionalization, and interfacial coupling, which provided important insights for the development of efficient hybrid-type catalysts.

Keywords: interfacial interaction, electrocatalytic H2 evolution, MoSe2 nanoflake, self-adapting Ti vacancy defect, heteroatom-functionalized, three-dimensional (3D) MXene nanocavity

References(59)

[1]

Zhou, L. H.; Yang, C. M.; Zhu, W. C.; Li, R.; Pang, X. X.; Zhen, Y. Z.; Wang, C. T.; Gao, L. J.; Fu, F.; Gao, Z. W. et al. Boosting alkaline hydrogen evolution Reaction via an unexpected dynamic evolution of molybdenum and selenium on MoSe2 electrode. Adv. Energy Mater. 2022, 12, 2202367.

[2]

Yu, Z. Y.; Duan, Y.; Feng, X. Y.; Yu, X. X.; Gao, M. R.; Yu, S. H. Clean and affordable hydrogen fuel from alkaline water splitting: Past, recent progress, and future prospects. Adv. Mater. 2021, 33, 2007100.

[3]

Zhang, J.; Li, L. T.; Du, M.; Cui, Y.; Li, Y. H.; Yan, W.; Huang, H. J.; Li, X. A.; Zhu, X. B. Single-atom phosphorus defects decorated cop cocatalyst boosts photocatalytic hydrogen generation performance of Cd0.5Zn0.5S by directed separating the photogenerated carriers. Small 2023, 19, 2300402.

[4]

Cui, Y.; Guo, X. Y.; Zhang, J.; Li, X. A.; Zhu, X. B.; Huang, W. Di-defects synergy boost electrocatalysis hydrogen evolution over two-dimensional heterojunctions. Nano Res. 2022, 15, 677–684.

[5]

Li, J.; Wu, N. T.; Zhang, J.; Wu, H. H.; Pan, K. M.; Wang, Y. X.; Liu, G. L.; Liu, X. M.; Yao, Z. P.; Zhang, Q. B. Machine learning-assisted low-dimensional electrocatalysts design for hydrogen evolution reaction. Nano-Micro Lett. 2023, 15, 227.

[6]

Tang, Y.; Yang, C. H.; Xu, X. T.; Kang, Y. Q.; Henzie, J.; Que, W. X.; Yamauchi, Y. MXene nanoarchitectonics: Defect-engineered 2D MXenes towards enhanced electrochemical water splitting. Adv. Energy Mater. 2022, 12, 2103867.

[7]

Wang, G. J.; Sun, Y. Z.; Zhao, Y. D.; Zhang, Y.; Li, X. H.; Fan, L. Z.; Li, Y. C. Phosphorus-induced electronic structure reformation of hollow NiCo2Se4 nanoneedle arrays enabling highly efficient and durable hydrogen evolution in all-pH media. Nano Res. 2022, 15, 8771–8782.

[8]

Du, M.; Ji, S. L.; Qian, C. H.; Li, L. T.; Chen, W.; Huang, H. J.; Yang, J. P.; Zhang, J.; Zhu, X. B.; Li, X. A. Anchoring 0D Cd0.5Zn0.5S nanoparticles on a 3D porous N-doped Ti3C2T x MXene matrix for efficient photocatalytic hydrogen evolution. J. Mater. Chem. C 2023, 11, 10973–10984.

[9]

Yang, R. J.; Fan, Y. Y.; Mei, L.; Shin, H. S.; Voiry, D.; Lu, Q. Y.; Li, J.; Zeng, Z. Y. Synthesis of atomically thin sheets by the intercalation-based exfoliation of layered materials. Nat. Synth. 2023, 2, 101–118.

[10]

Peng, W.; Han, J. H.; Lu, Y. R.; Luo, M.; Chan, T. S.; Peng, M.; Tan, Y. W. A general strategy for engineering single-metal sites on 3D porous N, P Co-doped Ti3C2T X MXene. ACS Nano 2022, 16, 4116–4125.

[11]

Zhang, J.; Zhou, N. N.; Du, M.; Li, Y. H.; Cui, Y.; Li, X. A.; Zhu, X. B.; Huang, W. Cobalt single-atom-decorated nickel thiophosphate nanosheets for overall water splitting. J. Mater. Chem. A 2022, 10, 296–303.

[12]

Fu, W. W.; Wan, J.; Zhang, H. J.; Li, J.; Chen, W. G.; Li, Y. K.; Guo, Z. P.; Wang, Y. Photoinduced loading of electron-rich Cu single atoms by moderate coordination for hydrogen evolution. Nat. Commun. 2022, 13, 5496.

[13]

Shi, Z. Y.; Zhang, X.; Lin, X. Q.; Liu, G. G.; Ling, C. Y.; Xi, S. B.; Chen, B.; Ge, Y. Y.; Tan, C. L.; Lai, Z. C. et al. Phase-dependent growth of Pt on MoS2 for highly efficient H2 evolution. Nature 2023, 621, 300–305.

[14]

Yuan, Q. X.; Fan, M. M.; Zhao, Y. Y.; Wu, J. J.; Raj, J.; Wang, Z. M.; Wang, A.; Sun, H.; Xu, X.; Wu, Y. H. et al. Facile fabrication of carbon dots containing abundant h-BN/graphite heterostructures as efficient electrocatalyst for hydrogen peroxide synthesis. Appl. Catal. B: Environ. 2023, 324, 122195.

[15]

Murali, G.; Reddy Modigunta, J. K.; Park, Y. H.; Lee, J. H.; Rawal, J.; Lee, S. Y.; In, I.; Park, S. J. A review on MXene synthesis, stability, and photocatalytic applications. ACS Nano 2022, 16, 13370–13429.

[16]

Liu, G. L.; Zhang, T.; Li, X. J.; Li, J.; Wu, N. T.; Cao, A.; Yuan, W. W.; Pan, K. M.; Guo, D. L.; Liu, X. M. MoS2@C with S vacancies vertically anchored on V2C-MXene for efficient lithium and sodium storage. Inorg. Chem. Front. 2023, 10, 1587–1602.

[17]

Pan, Z. H.; Kang, L. X.; Li, T.; Waqar, M.; Yang, J.; Gu, Q. L.; Liu, X. M.; Kou, Z. K.; Wang, Z.; Zheng, L. R. et al. Black phosphorus@Ti3C2T x MXene composites with engineered chemical bonds for commercial-level capacitive energy storage. ACS Nano 2021, 15, 12975–12987.

[18]

Yang, X.; Yao, Y. W.; Wang, Q.; Zhu, K.; Ye, K.; Wang, G. L.; Cao, D. X.; Yan, J. 3D macroporous oxidation-resistant Ti3C2T x MXene hybrid hydrogels for enhanced supercapacitive performances with ultralong cycle life. Adv. Funct. Mater. 2022, 32, 2109479.

[19]

Chen, Y. F.; Meng, G.; Yang, T.; Chen, C.; Chang, Z. W.; Kong, F. T.; Tian, H.; Cui, X. Z.; Hou, X. M.; Shi, J. L. Interfacial engineering of Co-doped 1T-MoS2 coupled with V2C MXene for efficient electrocatalytic hydrogen evolution. Chem. Eng. J. 2022, 450, 138157.

[20]

Wang, H.; Xiao, X.; Liu, S. Y.; Chiang, C. L.; Kuai, X. X.; Peng, C. K.; Lin, Y. C.; Meng, X.; Zhao, J. Q.; Choi, J. et al. Structural and electronic optimization of MoS2 edges for hydrogen evolution. J. Am. Chem. Soc. 2019, 141, 18578–18584.

[21]

Lin, W. J.; Lu, Y. R.; Peng, W.; Luo, M.; Chan, T. S.; Tan, Y. W. Atomic bridging modulation of Ir-N, S co-doped MXene for accelerating hydrogen evolution. J. Mater. Chem. A 2022, 10, 9878–9885.

[22]

Du, M.; Li, L. T.; Ji, S. L.; Wang, T. M.; Wang, Y. L.; Zhang, J.; Li, X. A. In situ growth of 2D ZnIn2S4 nanosheets on sulfur-doped porous Ti3C2T x MXene 3D multi-functional architectures for photocatalytic H2 evolution. J. Mater. Chem. C 2022, 10, 10636–10644.

[23]

Kwon, N. H.; Park, J.; Jin, X. Y.; Kim, S. J.; Kim, H.; Hwang, S. J. Defect-regulated two-dimensional superlattice of holey g-C3N4-TiO2 nanohybrids: Contrasting influence of vacancy content on hybridization impact and photocatalyst performance. ACS Nano 2023, 17, 23732–23745.

[24]

Zhang, S. Q.; Si, Y. M.; Li, B.; Yang, L. X.; Dai, W. L.; Luo, S. L. Atomic-level and modulated interfaces of photocatalyst heterostructure constructed by external defect-induced strategy: A critical review. Small 2021, 17, 2004980.

[25]

Bai, X.; Guan, J. Q. Applications of MXene-based single-atom catalysts. Small Struct. 2023, 4, 2200354.

[26]

Shi, L. T.; Wu, C. C.; Wang, Y.; Dou, Y. H.; Yuan, D.; Li, H.; Huang, H. W.; Zhang, Y.; Gates, I. D.; Sun, X. D. et al. Rational design of coordination bond connected metal organic frameworks/MXene hybrids for efficient solar water splitting. Adv. Funct. Mater. 2022, 32, 2202571.

[27]

Zhao, D.; Chen, Z.; Yang, W. J.; Liu, S. J.; Zhang, X.; Yu, Y.; Cheong, W. C.; Zheng, L. R.; Ren, F. Q.; Ying, G. B. et al. MXene (Ti3C2) vacancy-confined single-atom catalyst for efficient functionalization of CO2. J. Am. Chem. Soc. 2019, 141, 4086–4093.

[28]

Niu, H. J.; Yan, Y.; Jiang, S. S.; Liu, T.; Sun, T.; Zhou, W.; Guo, L.; Li, J. H. Interfaces decrease the alkaline hydrogen-evolution kinetics energy barrier on NiCoP/Ti3C2T x MXene. ACS Nano 2022, 16, 11049–11058.

[29]

Yang, X. P.; Biswas, S. K.; Han, J. Q.; Tanpichai, S.; Li, M. C.; Chen, C. C.; Zhu, S. L.; Das, A. K.; Yano, H. Surface and interface engineering for nanocellulosic advanced materials. Adv. Mater. 2021, 33, 2002264.

[30]

Liu, Y. H.; Ding, J.; Li, F. H.; Su, X. Z.; Zhang, Q. T.; Guan, G. J.; Hu, F. X.; Zhang, J. C.; Wang, Q. L.; Jiang, Y. C. et al. Modulating hydrogen adsorption via charge transfer at the semiconductor–metal heterointerface for highly efficient hydrogen evolution catalysis. Adv. Mater. 2023, 35, 2207114.

[31]

Kwon, N. H.; Jin, X. Y.; Kim, S. J.; Kim, H.; Hwang, S. J. Multilayer conductive hybrid nanosheets as versatile hybridization matrices for optimizing the defect structure, structural ordering, and energy-functionality of nanostructured materials. Adv. Sci. 2022, 9, 2103042.

[32]

Kwon, I. S.; Kwak, I. H.; Kim, J. Y.; Debela, T. T.; Park, Y. C.; Park, J.; Kang, H. S. Concurrent vacancy and adatom defects of Mo1− x Nb x Se2 alloy nanosheets enhance electrochemical performance of hydrogen evolution reaction. ACS Nano 2021, 15, 5467–5477.

[33]

Sang, X. H.; Xie, Y.; Lin, M. W.; Alhabeb, M.; Van Aken, K. L.; Gogotsi, Y.; Kent, P. R. C.; Xiao, K.; Unocic, R. R. Atomic defects in monolayer titanium carbide (Ti3C2T x ) MXene. ACS Nano 2016, 10, 9193–9200.

[34]

Zhao, X.; Xu, H.; Hui, Z. Y.; Sun, Y.; Yu, C. Y.; Xue, J. L.; Zhou, R. C.; Wang, L. M.; Dai, H. H.; Zhao, Y. et al. Electrostatically assembling 2D nanosheets of MXene and MOF-derivatives into 3D hollow frameworks for enhanced lithium storage. Small 2019, 15, 1904255.

[35]

Deng, B. W.; Liu, Z. C.; Pan, F.; Xiang, Z.; Zhang, X.; Lu, W. Electrostatically self-assembled two-dimensional magnetized MXene/hollow Fe3O4 nanoparticle hybrids with high electromagnetic absorption performance and improved impendence matching. J. Mater. Chem. A 2021, 9, 3500–3510.

[36]

Bao, C. Y.; Wang, J. H.; Wang, B.; Sun, J. G.; He, L. C.; Pan, Z. H.; Jiang, Y. P.; Wang, D. L.; Liu, X. M.; Dou, S. X. et al. 3D sodiophilic Ti3C2 MXene@g-C3N4 hetero-interphase raises the stability of sodium metal anodes. ACS Nano 2022, 16, 17197–17209

[37]

Shi, N. X.; Liu, G. Z.; Xi, B. J.; An, X. G.; Sun, C. H.; Xiong, S. L. Heterostructure of 2D MoSe2 nanosheets vertically grown on bowl-like carbon for high-performance sodium storage. Nano Res. 2024, 17, 4023–4030.

[38]

Liu, H. J.; Zhang, S.; Chai, Y. M.; Dong, B. Ligand modulation of active sites to promote cobalt-doped 1T-MoS2 electrocatalytic hydrogen evolution in alkaline media. Angew. Chem., Int. Ed. 2023, 62, e202313845.

[39]

Meng, Y.; Zeng, P.; Yang, X. Y.; Liu, Z.; Li, X. Y.; Ye, C. F.; Li, Y.; Liu, J. P.; Su, B. L.; Chen, L. H. et al. Simultaneously achieving enhanced water adsorption and rapid adsorbed hydroxyl transfer toward MXene-based materials for highly efficient alkaline electrocatalytic hydrogen evolution. Chem. Eng. J. 2023, 466, 143372.

[40]

Gao, D. Q.; Xia, B. R.; Wang, Y. Y.; Xiao, W.; Xi, P. X.; Xue, D. S.; Ding, J. Dual-native vacancy activated basal plane and conductivity of MoSe2 with high-efficiency hydrogen evolution reaction. Small 2018, 14, 1704150.

[41]

Xiu, L.; Wang, Z. Y.; Yu, M. Z.; Wu, X. H.; Qiu, J. S. Aggregation-resistant 3D MXene-based architecture as efficient bifunctional electrocatalyst for overall water splitting. ACS Nano 2018, 12, 8017–8028.

[42]

Shi, Y. Y.; Xiang, Z.; Cai, L.; Pan, F.; Dong, Y. Y.; Zhu, X. J.; Cheng, J.; Jiang, H. J.; Lu, W. Multi-interface assembled N-doped MXene/HCFG/AgNW films for wearable electromagnetic shielding devices with multimodal energy conversion and healthcare monitoring performances. ACS Nano 2022, 16, 7816–7833.

[43]

Lv, Z. P.; Wang, M.; Liu, D.; Jian, K. L.; Zhang, R.; Dang, J. Synergetic effect of Ni2P and MXene enhances catalytic activity in the hydrogen evolution reaction. Inorg. Chem. 2021, 60, 1604–1611.

[44]
Li, J.; Zhou, M. S.; Wu, H. H.; Wang, L. F.; Zhang, J.; Wu, N. T.; Pan, K. M.; Liu, G. L.; Zhang, Y. G.; Han, J. J. et al. Machine learning-assisted property prediction of solid-state electrolyte. Adv. Energy Mater., in press, https://doi.org/10.1002/aenm.202304480.
DOI
[45]

Cao, Z. Q.; Hu, H. B.; Wu, M. Z.; Tu, C. J.; Zhang, D. W.; Wu, Z. Q. Confined growth of MoSe2 nanosheets in N-doped carbon shell with hierarchical porous structure for efficient hydrogen evolution. Sustain. Energy Fuels 2019, 3, 2409–2416.

[46]

Zhang, J.; Li, J. D.; Huang, H. J.; Chen, W.; Cui, Y.; Li, Y. H.; Mao, W. W.; Zhu, X. B.; Li, X. A. Spatial relation controllable di-defects synergy boosts electrocatalytic hydrogen evolution reaction over VSe2 nanoflakes in all pH electrolytes. Small 2022, 18, 2204557.

[47]

Qian, X.; Ma, C. Q.; Shahid, U. B.; Sun, M. J.; Zhang, X. L.; Tian, J.; Shao, M. H. Synergistic enhancement of electrocatalytic nitrogen reduction over few-layer MoSe2-decorated Ti3C2T x MXene. ACS Catal. 2022, 12, 6385–6393.

[48]

Zhao, W.; Ma, W. H.; Chen, C. C.; Zhao, J. C.; Shuai, Z. G. Efficient degradation of toxic organic pollutants with Ni2O3/TiO2− x B x under visible irradiation. J. Am. Chem. Soc. 2004, 126, 4782–4783.

[49]

Bat-Erdene, M.; Batmunkh, M.; Sainbileg, B.; Hayashi, M.; Bati, A. S. R.; Qin, J. D.; Zhao, H. J.; Zhong, Y. L.; Shapter, J. G. Highly dispersed Ru nanoparticles on boron-doped Ti3C2T x (MXene) nanosheets for synergistic enhancement of electrocatalytic hydrogen evolution. Small 2021, 17, 2102218.

[50]

Wang, S. Q.; Liu, S. L.; Wang, Z. Q.; Dai, Z. C.; Yu, H. J.; Xu, Y.; Li, X. N.; Wang, L.; Wang, H. J. Mesoporous Rh nanotubes for efficient electro-oxidation of methanol. J. Mater. Chem. A 2021, 9, 4744–4750.

[51]

Yi, W. J.; Du, X.; Zhang, M.; Yi, S. S.; Xia, R. H.; Li, C. Q.; Liu, Y.; Liu, Z. Y.; Zhang, W. L.; Yue, X. Z. Rational distribution of ru nanodots on 2D Ti3− x C2T y /g-C3N4 heterostructures for boosted photocatalytic H2 evolution. Nano Res. 2023, 16, 6652–6660.

[52]

Sun, L. Z.; Lv, H.; Feng, J.; Guselnikova, O.; Wang, Y. Z.; Yamauchi, Y.; Liu, B. Noble-metal-based hollow mesoporous nanoparticles: Synthesis strategies and applications. Adv. Mater. 2022, 34, 2201954.

[53]

Xiao, X.; Li, Z.; Xiong, Y.; Yang, Y. W. IrMo nanocluster-doped porous carbon electrocatalysts derived from cucurbit[6]uril boost efficient alkaline hydrogen evolution. J. Am. Chem. Soc. 2023, 145, 16548–16556.

[54]

Wang, K.; Zhou, J. H.; Sun, M. Z.; Lin, F. X.; Huang, B. L.; Lv, F.; Zeng, L. Y.; Zhang, Q. H.; Gu, L.; Luo, M. C. et al. Cu-doped heterointerfaced Ru/RuSe2 nanosheets with optimized H and H2O adsorption boost hydrogen evolution catalysis. Adv. Mater. 2023, 35, 2300980.

[55]

Lin, G. X.; Zhang, Z.; Ju, Q. J.; Wu, T.; Segre, C. U.; Chen, W.; Peng, H. R.; Zhang, H.; Liu, Q. N.; Liu, Z. et al. Bottom-up evolution of perovskite clusters into high-activity rhodium nanoparticles toward alkaline hydrogen evolution. Nat. Commun. 2023, 14, 280.

[56]

Jin, M. T.; Zhang, X.; Niu, S. Z.; Wang, Q.; Huang, R. Q.; Ling, R. H.; Huang, J. Q.; Shi, R.; Amini, A.; Cheng, C. Strategies for designing high-performance hydrogen evolution reaction electrocatalysts at large current densities above 1000 mA·cm–2. ACS Nano 2022, 16, 11577–11597.

[57]

Cheng, Z. H.; Xiao, Y. K.; Wu, W. P.; Zhang, X. Q.; Fu, Q.; Zhao, Y.; Qu, L. T. All-pH-tolerant in-plane heterostructures for efficient hydrogen evolution reaction. ACS Nano 2021, 15, 11417–11427.

[58]

Zhang, R.; Wang, X. X.; Yu, S. J.; Wen, T.; Zhu, X. W.; Yang, F. X.; Sun, X. N.; Wang, X. K.; Hu, W. P. Ternary NiCo2P x nanowires as pH-universal electrocatalysts for highly efficient hydrogen evolution reaction. Adv. Mater. 2017, 29, 1605502.

[59]

Cao, E. P.; Chen, Z. M.; Wu, H.; Yu, P.; Wang, Y.; Xiao, F.; Chen, S.; Du, S. C.; Xie, Y.; Wu, Y. Q. et al. Boron-induced electronic-structure reformation of CoP nanoparticles drives enhanced pH-universal hydrogen evolution. Angew. Chem., Int. Ed. 2020, 59, 4154–4160.

File
6645_ESM.pdf (4.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 23 January 2024
Revised: 05 March 2024
Accepted: 21 March 2024
Published: 19 April 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

This study was jointly supported by the National Natural Science Foundation of China (Nos. 52072182 and 51872145), Natural Science Foundation of Jiangsu Province (No. BK20211278), the China Postdoctoral Science Foundation (Nos. 2019M650120 and 2020M671554), the National Synergetic Innovation Center for Advanced Materials (SICAM), and Postgraduate Research Practice Innovation Program of Jiangsu Province (No. KYCX22_0977).

Return