Journal Home > Just Accepted

Reducing kinetic energy barriers and developing accessible active sites are critical to deliver high hydrogen evolution reaction (HER) efficiency. In this paper, we synthesized defect-modulated and heteroatom (boron)-functionalized 3D bowl-shaped Ti3-xC2Ty MXene (B-TCT) nanocavities coupled with the vertical growth of MoSe2 nanoflakes. The B-TCT@MoSe2 nanohybrids catalyst delivers the overpotentials of 49.9, 52.7, and 67.8 mV to reach a HER current density of 10 mA cm−2 under acidic, alkaline, and neutral conditions, respectively. Such outstanding HER activity is predominantly attributed to the heteroatom functionalization, self-adapting Ti vacancy (VTi) defect modulation, and spatial configuration design in the 3D B-TCT nanocavity, which synergistically regulate the electronic structure, activate the basal plane/edge unsaturated sites, and reduce the reaction energy barrier. Experimental and theoretical calculations demonstrate that strong heterogeneous interfacial bonding interactions between B-TCT and MoSe2 can dramatically reduce the free energy of hydrogen adsorption and facilitate efficient interfacial charge migration, thus essentially improving the HER kinetics. Using this 3D porous nanohybrid system assembled by defect-rich lamellar structures to elucidate the advantageous synergistic effects of multiple mechanisms among defect structure, heteroatom functionalization, and interfacial coupling, providing important insights for the development of efficient hybrid-type catalysts.

Publication history
Copyright
Rights and permissions

Publication history

Received: 23 January 2024
Revised: 05 March 2024
Accepted: 21 March 2024
Available online: 22 March 2024

Copyright

© Tsinghua University Press 2024

Rights and permissions

Reprints and Permission requests may be sought directly from editorial office.
Email: nanores@tup.tsinghua.edu.cn

Return