Journal Home > Online First

Scalable deposition of high-efficiency perovskite solar cells (PSCs) is critical to accelerating their commercial applications. However, a significant number of defects are distributed at the buried interface of perovskite film fabricated by scalable deposition, exhibiting much negative influence on the efficiency and stability of PSCs. Herein, 2-(N-morpholino)ethanesulfonic acid potassium salt (MESK) is incorporated as the bridging layer between the tin oxide (SnO2) electron transport layer (ETL) and the perovskite film deposited via scalable two-step doctor blading. Both experiment and simulation results demonstrate that MESK can passivate the trap states of Sn suspension bonds, thereby enhancing the charge extraction and transport of the SnO2 ETL. Meanwhile, the strong interaction with uncoordinated Pb ions can modulate the crystal growth and crystallographic orientation of perovskite film and passivate buried defects. With employing MESK interface bridging, PSCs fabricated via scalable doctor blading in ambient condition achieve a power conversion efficiency (PCE) of 24.67%, which is one of the highest PCEs for doctor-bladed PSCs, and PSC modules with an active area of 11.35 cm2 achieve a PCE of 19.45%. Furthermore, PSCs exhibit excellent long-term stability, and the unpackaged target device with a storage of 1680 h in ambient condition (25 °C and humidity of 30% relative humidity (RH)) can maintain more than 90% of the initial PCE. The research provides a strategy for constructing a high-performance interface bridge between SnO2 ETL and perovskite film, and achieving efficient and stable large-area PSCs and modules fabricated via scalable doctor-blading process in ambient condition.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Bridging buried interface enable 24.67%-efficiency doctor-bladed perovskite solar cells in ambient condition

Show Author's information Jianhui Chang1,2,§Erming Feng1,2,§Xiangxiang Feng1,2Hengyue Li1,2Yang Ding1,2Caoyu Long1,2Siyuan Lu1,2Haixia Zhu2Wen Deng1Jiayan Shi3Yingguo Yang4Si Xiao2Yongbo Yuan1Junliang Yang1,2,5( )
Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics, Central South University, Changsha 410083, China
Hunan Key Laboratory of Nanophotonics and Devices, School of Physics, Central South University, Changsha 410083, China
Textile and Fashion Collage, Hunan Institute of Engineering, Xiangtan 411101, China
Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China

§ Jianhui Chang and Erming Feng contributed equally to this work.

Abstract

Scalable deposition of high-efficiency perovskite solar cells (PSCs) is critical to accelerating their commercial applications. However, a significant number of defects are distributed at the buried interface of perovskite film fabricated by scalable deposition, exhibiting much negative influence on the efficiency and stability of PSCs. Herein, 2-(N-morpholino)ethanesulfonic acid potassium salt (MESK) is incorporated as the bridging layer between the tin oxide (SnO2) electron transport layer (ETL) and the perovskite film deposited via scalable two-step doctor blading. Both experiment and simulation results demonstrate that MESK can passivate the trap states of Sn suspension bonds, thereby enhancing the charge extraction and transport of the SnO2 ETL. Meanwhile, the strong interaction with uncoordinated Pb ions can modulate the crystal growth and crystallographic orientation of perovskite film and passivate buried defects. With employing MESK interface bridging, PSCs fabricated via scalable doctor blading in ambient condition achieve a power conversion efficiency (PCE) of 24.67%, which is one of the highest PCEs for doctor-bladed PSCs, and PSC modules with an active area of 11.35 cm2 achieve a PCE of 19.45%. Furthermore, PSCs exhibit excellent long-term stability, and the unpackaged target device with a storage of 1680 h in ambient condition (25 °C and humidity of 30% relative humidity (RH)) can maintain more than 90% of the initial PCE. The research provides a strategy for constructing a high-performance interface bridge between SnO2 ETL and perovskite film, and achieving efficient and stable large-area PSCs and modules fabricated via scalable doctor-blading process in ambient condition.

Keywords: perovskite solar cells, defect passivation, buried interface, orientation regulation, doctor blading

References(67)

[1]

Huang, Z. J.; Bai, Y.; Huang, X. D.; Li, J. T.; Wu, Y. T.; Chen, Y. H.; Li, K. L.; Niu, X. X.; Li, N. X.; Liu, G. L. et al. Anion–π interactions suppress phase impurities in FAPbI3 solar cells. Nature 2023, 635, 531–537.

[2]

Park, J.; Kim, J.; Yun, H. S.; Paik, M. J.; Noh, E.; Mun, H. J.; Kim, M. G.; Shin, T. J.; Seok, S. I. Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature 2023, 616, 724–730.

[3]

Liang, Z.; Zhang, Y.; Xu, H. F.; Chen, W. J.; Liu, B. Y.; Zhang, J. Y.; Zhang, H.; Wang, Z. H.; Kang, D. H.; Zeng, J. R. et al. Homogenizing out-of-plane cation composition in perovskite solar cells. Nature 2023, 624, 557–563.

[4]
NREL. Best Research-Cell Efficiency Chart [Online]. https://www.nrel.gov/pv/cell-efficiency.html (accessed Nov 11, 2023).
[5]

Park, N. G.; Zhu, K. Scalable fabrication and coating methods for perovskite solar cells and solar modules. Nat. Rev. Mater. 2020, 5, 333–350.

[6]

Chang, J. H.; Liu, K.; Lin, S. Y.; Yuan, Y. B.; Zhou, C. H.; Yang, J. L. Solution-processed perovskite solar cells. J. Cent. South Univ. 2020, 27, 1104–1133.

[7]

Deng, Y. H.; Xu, S.; Chen, S. S.; Xiao, X.; Zhao, J. J.; Huang, J. S. Defect compensation in formamidinium-caesium perovskites for highly efficient solar mini-modules with improved photostability. Nat. Energy 2021, 6, 633–641.

[8]

Chen, R. H.; Yang, Y.; Dai, Z. Y.; Yuan, L.; Du, J. R.; Yang, P. H.; Yang, Y. Y.; Shen, H.; Liu, Z.; Wang, H. Q. Patch-healed grain boundary strategy to stabilize perovskite films for high-performance solar modules. Nano Energy 2023, 115, 108759.

[9]

Chang, J. H.; Feng, E. M.; Li, H. Y.; Ding, Y.; Long, C. Y.; Gao, Y. J.; Yang, Y. G.; Yi, C. Y.; Zheng, Z. J.; Yang, J. L. Crystallization and orientation modulation enable highly efficient doctor-bladed perovskite solar cells. Nano-Micro Lett. 2023, 15, 164.

[10]

Bu, T. L.; Li, J.; Li, H. Y.; Tian, C. C.; Su, J.; Tong, G. Q.; Ono, L. K.; Wang, C.; Lin, Z. P.; Chai, N. Y. et al. Lead halide-templated crystallization of methylamine-free perovskite for efficient photovoltaic modules. Science 2021, 372, 1327–1332.

[11]

Wang, L.; Zheng, D. X.; Li, Z. P.; Farhadi, B.; Peng, L.; Zhao, S.; Chang, Z.; Duan, L. J.; Cao, Y. X.; Wang, H. et al. Surfactant engineering for perovskite solar cells and submodules. Matter 2023, 6, 2987–3005.

[12]

Lee, D. K.; Jeong, D. N.; Ahn, T. K.; Park, N. G. Precursor Engineering for a large-area perovskite solar cell with >19% efficiency. ACS Energy Lett. 2019, 4, 2393–2401.

[13]

Yoo, J. W.; Jang, J.; Kim, U.; Lee, Y.; Ji, S. G.; Noh, E.; Hong, S.; Choi, M.; Seok, S. I. Efficient perovskite solar mini-modules fabricated via bar-coating using 2-methoxyethanol-based formamidinium lead tri-iodide precursor solution. Joule 2021, 5, 2420–2436.

[14]

Tan, L. G.; Zhou, J. J.; Zhao, X.; Wang, S. Y.; Li, M. H.; Jiang, C. F.; Li, H.; Zhang, Y.; Ye, Y. R.; Tress, W. et al. Combined vacuum evaporation and solution process for high-efficiency large-area perovskite solar cells with exceptional reproducibility. Adv. Mater. 2023, 35, 2205027.

[15]

Mali, S. S.; Patil, J. V.; Shao, J. Y.; Zhong, Y. W.; Rondiya, S. R.; Dzade, N. Y.; Hong, C. K. Phase-heterojunction all-inorganic perovskite solar cells surpassing 21.5% efficiency. Nat. Energy 2023, 8, 989–1001.

[16]

Deng, Y. H.; Zheng, X. P.; Bai, Y.; Wang, Q.; Zhao, J. J.; Huang, J. S. Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules. Nat. Energy 2018, 3, 560–566.

[17]

Li, H. Y.; Feng, X. X.; Huang, K. Q.; Lu, S. Y.; Wang, X. Y.; Feng, E. M.; Chang, J. H.; Long, C. Y.; Gao, Y. J.; Chen, Z. H. et al. Constructing additives synergy strategy to doctor-blade efficient CH3NH3PbI3 perovskite solar cells under a wide range of humidity from 45% to 82%. Small 2023, 19, 2300374.

[18]

Deng, Y. H.; Van Brackle, C. H.; Dai, X. Z.; Zhao, J. J.; Chen, B.; Huang, J. S. Tailoring solvent coordination for high-speed, room-temperature blading of perovskite photovoltaic films. Sci. Adv. 2019, 5, eaax7537.

[19]

Li, J. Z.; Dagar, J.; Shargaieva, O.; Maus, O.; Remec, M.; Emery, Q.; Khenkin, M.; Ulbrich, C.; Akhundova, F.; Márquez, J. A. et al. Ink design enabling slot-die coated perovskite solar cells with >22% power conversion efficiency, micro-modules, and 1 year of outdoor performance evaluation. Adv. Energy Mater. 2023, 13, 2203898.

[20]

Rana, P. J. S.; Febriansyah, B.; Koh, T. M.; Muhammad, B. T.; Salim, T.; Hooper, T. J. N.; Kanwat, A.; Ghosh, B.; Kajal, P.; Lew, J. H. et al. Alkali additives enable efficient large area (> 55 cm2) slot-die coated perovskite solar modules. Adv. Funct. Mater. 2022, 32, 2113026.

[21]

Feng, W. H.; Tao, J. L.; Liu, G. L.; Yang, G.; Zhong, J. X.; Fang, Y. X.; Gong, L.; Yang, S. P.; Wu, W. Q. Near-stoichiometric and homogenized perovskite films for solar cells with minimized performance variation. Angew. Chem. 2023, 135, e202300265.

[22]

Du, M. Y.; Zhu, X. J.; Wang, L. K.; Wang, H.; Feng, J. S.; Jiang, X.; Cao, Y. X.; Sun, Y. M.; Duan, L. J.; Jiao, Y. X. et al. High-pressure nitrogen-extraction and effective passivation to attain highest large-area perovskite solar module efficiency. Adv. Mater. 2020, 32, 2004979.

[23]

Ding, J.; Han, Q. W.; Ge, Q. Q.; Xue, D. J.; Ma, J. Y.; Zhao, B. Y.; Chen, Y. X.; Liu, J.; Mitzi, D. B.; Hu, J. S. Fully air-bladed high-efficiency perovskite photovoltaics. Joule 2019, 3, 402–416.

[24]

Yang, F.; Dong, L. R.; Jang, D.; Saparov, B.; Tam, K. C.; Zhang, K. C.; Li, N.; Brabec, C. J.; Egelhaaf, H. J. Low temperature processed fully printed efficient planar structure carbon electrode perovskite solar cells and modules. Adv. Energy Mater. 2021, 11, 2101219.

[25]

Guo, F.; Qiu, S. D.; Hu, J. L.; Wang, H. H.; Cai, B. Y.; Li, J. J.; Yuan, X. C.; Liu, X. H.; Forberich, K.; Brabec, C. J. et al. A generalized crystallization protocol for scalable deposition of high-quality perovskite thin films for photovoltaic applications. Adv. Sci. 2019, 6, 1901067.

[26]

Hu, H.; Ritzer, D. B.; Diercks, A.; Li, Y.; Singh, R.; Fassl, P.; Jin, Q. H.; Schackmar, F.; Paetzold, U. W.; Nejand, B. A. Void-free buried interface for scalable processing of P-I-N-based FAPbI3 perovskite solar modules. Joule 2023, 7, 1574–1592.

[27]

Min, H.; Chang, J.; Tong, Y. F.; Wang, J. Q.; Zhang, F.; Feng, Z. Q.; Bi, X. Y.; Chen, N. N.; Kuang, Z. Y.; Wang, S. X. et al. Additive treatment yields high-performance lead-free perovskite light-emitting diodes. Nat. Photonics 2023, 17, 755–760.

[28]

Zhu, M. F.; Xia, Y. R.; Qin, L. N.; Zhang, K. Q.; Liang, J. C.; Zhao, C.; Hong, D. C.; Jiang, M. H.; Song, X. M.; Wei, J. et al. Reducing surficial and interfacial defects by thiocyanate ionic liquid additive and ammonium formate passivator for efficient and stable perovskite solar cells. Nano Res. 2023, 16, 6849–6858.

[29]

Xia, Y. R.; Zhu, M. F.; Qin, L. N.; Zhao, C.; Hong, D. C.; Tian, Y. X.; Yan, W. S.; Jin, Z. Organic-inorganic hybrid quasi-2D perovskites incorporated with fluorinated additives for efficient and stable four-terminal tandem solar cells. Energy Mater. 2023, 3, 300004.

[30]

Zhu, M. F.; Qin, L. N.; Xia, Y. R.; Liang, J. C.; Wang, Y. D.; Hong, D. C.; Tian, Y. X.; Tie, Z. X.; Jin, Z. Antimony doped CsPbI2Br for high-stability all-inorganic perovskite solar cells. Nano Res. 2024, 17, 1508–1515.

[31]

Zhu, M. F.; Qin, L. N.; Xia, Y. R.; Mao, L. Y.; Zhao, P. Y.; Zhao, C.; Hu, Y.; Hong, D. C.; Tian, Y. X.; Tie, Z. X. et al. Indium-doped CsPbI2.5Br0.5 with a tunable band structure and improved crystallinity for thermo-stable all-inorganic perovskite solar cells. ACS Appl. Energy Mater. 2023, 6, 8237–8244.

[32]

Bu, T. L.; Ono, L. K.; Li, J.; Su, J.; Tong, G. Q.; Zhang, W.; Liu, Y. Q.; Zhang, J. H.; Chang, J. J.; Kazaoui, S. et al. Modulating crystal growth of formamidinium-caesium perovskites for over 200 cm2 photovoltaic sub-modules. Nat. Energy 2022, 7, 528–536.

[33]

Chung, J.; Kim, S. W.; Li, Y.; Mariam, T.; Wang, X. M.; Rajakaruna, M.; Saeed, M. M.; Abudulimu, A.; Shin, S. S.; Guye, K. N. et al. Engineering perovskite precursor inks for scalable production of high-efficiency perovskite photovoltaic modules. Adv. Energy Mater. 2023, 13, 2300595.

[34]

Ni, Z. Y.; Xu, S.; Jiao, H. Y.; Gu, H. Y.; Fei, C. B.; Huang, J. S. High grain boundary recombination velocity in polycrystalline metal halide perovskites. Sci. Adv. 2022, 8, eabq8345.

[35]

Park, K.; Lee, J. H.; Lee, J. W. Surface defect engineering of metal halide perovskites for photovoltaic applications. ACS Energy Lett. 2022, 7, 1230–1239.

[36]

Li, X. D.; Zhang, W. X.; Guo, X. M.; Lu, C. Y.; Wei, J. Y.; Fang, J. F. Constructing heterojunctions by surface sulfidation for efficient inverted perovskite solar cells. Science 2022, 375, 434–437.

[37]

Park, S. M.; Wei, M. Y.; Xu, J.; Atapattu, H. R.; Eickemeyer, F. T.; Darabi, K.; Grater, L.; Yang, Y.; Liu, C.; Teale, S. et al. Engineering ligand reactivity enables high-temperature operation of stable perovskite solar cells. Science 2023, 381, 209–215.

[38]

Shen, L. N.; Song, P. Q.; Zheng, L. F.; Wang, L. P.; Zhang, X. G.; Liu, K. K.; Liang, Y. M.; Tian, W. J.; Luo, Y. J.; Qiu, J. H. et al. Ion-diffusion management enables all-interface defect passivation of perovskite solar cells. Adv. Mater. 2023, 35, 2301624.

[39]

Rana, P. J. S.; Febriansyah, B.; Koh, T. M.; Kanwat, A.; Xia, J. M.; Salim, T.; Hooper, T. J. N.; Kovalev, M.; Giovanni, D.; Aw, Y. C. et al. Molecular locking with all-organic surface modifiers enables stable and efficient slot-die-coated methyl-ammonium-free perovskite solar modules. Adv. Mater. 2023, 35, 2210176.

[40]

Sun, X. H.; Li, Y. H.; Liu, D. C.; Liu, R. C.; Zhang, B. Q.; Tian, Q. Y.; Fan, B.; Wang, X. Z.; Li, Z. P.; Shao, Z. P. et al. VOC of inverted perovskite solar cells based on N-doped PCBM exceeds 1.2 V: Interface energy alignment and synergistic passivation. Adv. Energy Mater. 2023, 13, 2302191

[41]

Yang, X. Y.; Luo, D. Y.; Xiang, Y. R.; Zhao, L. C.; Anaya, M.; Shen, Y. L.; Wu, J.; Yang, W. Q.; Chiang, Y. H.; Tu, Y. G. et al. Buried interfaces in halide perovskite photovoltaics. Adv. Mater. 2021, 33, 2006435.

[42]

Levine, I.; Al-Ashouri, A.; Musiienko, A.; Hempel, H.; Magomedov, A.; Drevilkauskaite, A.; Getautis, V.; Menzel, D.; Hinrichs, K.; Unold, T. et al. Charge transfer rates and electron trapping at buried interfaces of perovskite solar cells. Joule 2021, 5, 2915–2933.

[43]

Luo, C.; Zheng, G. H. J.; Gao, F.; Wang, X. J.; Zhan, C. L.; Gao, X. Y.; Zhao, Q. Engineering the buried interface in perovskite solar cells via lattice-matched electron transport layer. Nat. Photonics 2023, 17, 856–864.

[44]

Gao, Z. W.; Wang, Y.; Choy, W. C. H. Buried interface modification in perovskite solar cells: A materials perspective. Adv. Energy Mater. 2022, 12, 2104030.

[45]

Huang, L.; Lou, Y. H.; Wang, Z. K. Buried interface passivation: A key strategy to breakthrough the efficiency of perovskite photovoltaics. Small 2023, 19, 2302585.

[46]

Chen, S. S.; Dai, X. Z.; Xu, S.; Jiao, H. Y.; Zhao, L.; Huang, J. S. Stabilizing perovskite-substrate interfaces for high-performance perovskite modules. Science 2021, 373, 902–907.

[47]

Fan, B. J.; Xiong, J.; Zhang, Y. Y.; Gong, C. X.; Li, F.; Meng, X. C.; Hu, X. T.; Yuan, Z. Y.; Wang, F. Y.; Chen, Y. W. A bionic interface to suppress the coffee-ring effect for reliable and flexible perovskite modules with a near-90% yield rate. Adv. Mater. 2022, 34, 2201840.

[48]

Jiang, X. Q.; Zhang, B. Q.; Yang, G. Y.; Zhou, Z. M.; Guo, X.; Zhang, F. S.; Yu, S. T.; Liu, S. W.; Pang, S. P. Molecular dipole engineering of carbonyl additives for efficient and stable perovskite solar cells. Angew. Chem., Int. Ed. 2023, 62, e202302462.

[49]

Yang, L.; Zhou, H.; Duan, Y. W.; Wu, M. Z.; He, K.; Li, Y.; Xu, D. F.; Zou, H.; Yang, S. M.; Fang, Z. M. et al. 25.24%-efficiency FACsPbI3 perovskite solar cells enabled by intermolecular esterification reaction of DL-carnitine hydrochloride. Adv. Mater. 2023, 35, 2211545

[50]

Gong, C.; Zhang, C.; Zhuang, Q. X.; Li, H. Y.; Yang, H.; Chen, J. Z.; Zang, Z. G. Stabilizing buried interface via synergistic effect of fluorine and sulfonyl functional groups toward efficient and stable perovskite solar cells. Nano-Micro Lett. 2023, 15, 17.

[51]

Qin, Z. X.; Chen, Y. T.; Wang, X. T.; Wei, N.; Liu, X. M.; Chen, H. R.; Miao, Y. F.; Zhao, Y. X. Zwitterion-functionalized SnO2 substrate induced sequential deposition of black-phase FAPbI3 with rearranged PbI2 residue. Adv. Mater. 2022, 34, 2203143.

[52]

Fei, C. B.; Li, N. X.; Wang, M. R.; Wang, X. M.; Gu, H. Y.; Chen, B.; Zhang, Z.; Ni, Z. Y.; Jiao, H. Y.; Xu, W. Z. et al. Lead-chelating hole-transport layers for efficient and stable perovskite minimodules. Science 2023, 380, 823–829.

[53]

Zhu, P. C.; Gu, S.; Luo, X.; Gao, Y.; Li, S. L.; Zhu, J.; Tan, H. R. Simultaneous contact and grain-boundary passivation in planar perovskite solar cells using SnO2-KCl composite electron transport layer. Adv. Energy Mater. 2020, 10, 1903083.

[54]

Dong, Y.; Shen, W. J.; Dong, W.; Bai, C.; Zhao, J.; Zhou, Y. C.; Huang, F. Z.; Cheng, Y. B.; Zhong, J. Chlorobenzenesulfonic potassium salts as the efficient multifunctional passivator for the buried interface in regular perovskite solar cells. Adv. Energy Mater. 2022, 12, 2200417.

[55]

Zhang, Y. L.; Yu, R. N.; Li, M. H.; He, Z. W.; Dong, Y. M.; Xu, Z. Y.; Wang, R. Y.; Ma, Z. W.; Tan, Z. A. Amphoteric ion bridged buried interface for efficient and stable inverted perovskite solar cells. Adv. Mater. 2024, 36, 2310203.

[56]

Hui, W.; Chao, L. F.; Lu, H.; Xia, F.; Wei, Q.; Su, Z. H.; Niu, T. T.; Tao, L.; Du, B.; Li, D. L. et al. Stabilizing black-phase formamidinium perovskite Formation at room temperature and high humidity. Science 2021, 371, 1359–1364.

[57]
Huang, J. Y. GIWAXS-Tools [Online]. GIWAXS-Tools, Version. https://gitee.com/swordshinehjy/giwaxs-script (accessed Aug 3, 2023).
[58]

Kim, D. H.; Park, J.; Li, Z.; Yang, M. J.; Park, J. S.; Park, I. J.; Kim, J. Y.; Berry, J. J.; Rumbles, G.; Zhu, K. 300% enhancement of carrier mobility in uniaxial-oriented perovskite films formed by topotactic-oriented attachment. Adv. Mater. 2017, 29, 1606831

[59]

Chen, W.; Wang, Y. F.; Pang, G. T.; Koh, C. W.; Djurišić, A. B.; Wu, Y. H.; Tu, B.; Liu, F. Z.; Chen, R.; Woo, H. Y. et al. Conjugated polymer-assisted grain boundary passivation for efficient inverted planar perovskite solar cells. Adv. Funct. Mater. 2019, 29, 1808855.

[60]

Cowan, S. R.; Roy, A.; Heeger, A. J. Recombination in polymer-fullerene bulk heterojunction solar cells. Phys. Rev. B 2010, 82, 245207.

[61]

Baumeler, T. P.; Alharbi, E. A.; Kakavelakis, G.; Fish, G. C.; Aldosari, M. T.; Albishi, M. S.; Pfeifer, L.; Carlsen, B. I.; Yum, J. H.; Alharbi, A. S. et al. Surface passivation of FAPbI3-rich perovskite with cesium iodide outperforms bulk incorporation. ACS Energy Lett. 2023, 8, 2456–2462.

[62]

Jang, Y. W.; Lee, S.; Yeom, K. M.; Jeong, K.; Choi, K.; Choi, M.; Noh, J. H. Intact 2D/3D halide junction perovskite solar cells via solid-phase in-plane growth. Nat. Energy 2021, 6, 63–71.

[63]

Gao, Y. J.; Feng, X. X.; Chang, J. H.; Long, C. Y.; Ding, Y.; Li, H. Y.; Huang, K. Q.; Liu, B.; Yang, J. L. Surface ion exchange and targeted passivation with cesium fluoride for enhancing the efficiency and stability of perovskite solar cells. Appl. Phys. Lett. 2022, 121, 073902.

[64]

Huang, K. Q.; Feng, X. X.; Li, H. Y.; Long, C. Y.; Liu, B.; Shi, J. J.; Meng, Q. B.; Weber, K.; Duong, T.; Yang, J. L. Manipulating the migration of iodine ions via reverse-biasing for boosting photovoltaic performance of perovskite solar cells. Adv. Sci. 2022, 9, 2204163.

[65]

Ghahremanirad, E.; Almora, O.; Suresh, S.; Drew, A. A.; Chowdhury, T. H.; Uhl, A. R. Beyond protocols: Understanding the electrical behavior of perovskite solar cells by impedance spectroscopy. Adv. Energy Mater. 2023, 13, 2204370.

[66]

Peng, W.; Aranda, C.; Bakr, O. M.; Garcia-Belmonte, G.; Bisquert, J.; Guerrero, A. Quantification of ionic diffusion in lead halide perovskite single crystals. ACS Energy Lett. 2018, 3, 1477–1481.

[67]

Yang, T. H.; Ma, C.; Cai, W. L.; Wang, S. Q.; Wu, Y.; Feng, J. S.; Wu, N.; Li, H. J.; Huang, W. L.; Ding, Z. C. et al. Amidino-based Dion-Jacobson 2D perovskite for efficient and stable 2D/3D heterostructure perovskite solar cells. Joule 2023, 7, 574–586.

File
6639_ESM.pdf (2.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 08 March 2024
Revised: 17 March 2024
Accepted: 17 March 2024
Published: 15 April 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

The authors acknowledge support from the National Natural Science Foundation of China (No. U23A20138) and the National Key Research and Development Program of China (No. 2022YFB3803300). This work was supported by the State Key Laboratory of Powder Metallurgy, Central South University, China and was also supported in part by the High-Performance Computing Center of Central South University.

Return