Journal Home > Online First

Photo-excited holes usually migrate to the surface of the catalyst and rapidly recombine with electrons, reducing the photocatalytic reduction efficiency of uranium(VI) (U(VI)) in radioactive wastewater. Consequently, we employed a straightforward synthesis technique to meticulously shape and manipulate the morphology of CdS to precisely construct CdS-Ni dandelion-like composites with different aspect ratios. Briefly, the introduction of crystal facet homojunction with Ohmic contacts in this unique morphology siqnificantly improves the photocatalytic efficiency. Temperature-dependent photoluminescence spectroscopy (TD-PL) verifies that the composite material positively effects on the dissociation of excitons. Within 30 min, CdS(002)/(102)/Ni-4 removed 98% of the uranium content in solution and showed a rather high apparent rate constant (0.114 min−1), which was 4.8 times higher than that of CdS nanospheres (NSs) (0.024 min−1) and 3.7 times higher than that of CdS nanorods (NRs) (0.031 min−1). This is much higher the most reported photocatalysts for U(VI) reduction. Even after 5 consecutive cycles, the photocatalytic efficiency only decreased by 7%. This offers a fresh perspective on constructing a new perspective for building a green, efficient, and multi mechanism collaborative catalytic system to remediate environmental pollution.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Synergistic effect of homojunction and Ohmic junctions in CdS boosting spatial charge separation for U(VI) photoreduction

Show Author's information Haonan Pei,§Zhimin Dong,§Zifan LiJian HuangYuanping JiangZuojia LiLin XuXiaohong CaoYunhai Liu( )Zhibin Zhang( )Guoping Yang( )
State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China

§ Haonan Pei and Zhimin Dong contributed equally to this work.

Abstract

Photo-excited holes usually migrate to the surface of the catalyst and rapidly recombine with electrons, reducing the photocatalytic reduction efficiency of uranium(VI) (U(VI)) in radioactive wastewater. Consequently, we employed a straightforward synthesis technique to meticulously shape and manipulate the morphology of CdS to precisely construct CdS-Ni dandelion-like composites with different aspect ratios. Briefly, the introduction of crystal facet homojunction with Ohmic contacts in this unique morphology siqnificantly improves the photocatalytic efficiency. Temperature-dependent photoluminescence spectroscopy (TD-PL) verifies that the composite material positively effects on the dissociation of excitons. Within 30 min, CdS(002)/(102)/Ni-4 removed 98% of the uranium content in solution and showed a rather high apparent rate constant (0.114 min−1), which was 4.8 times higher than that of CdS nanospheres (NSs) (0.024 min−1) and 3.7 times higher than that of CdS nanorods (NRs) (0.031 min−1). This is much higher the most reported photocatalysts for U(VI) reduction. Even after 5 consecutive cycles, the photocatalytic efficiency only decreased by 7%. This offers a fresh perspective on constructing a new perspective for building a green, efficient, and multi mechanism collaborative catalytic system to remediate environmental pollution.

Keywords: uranium, ohmic contact, dandelion-shaped, axial size effect, crystal facet homojunction

References(53)

[1]

Li, Z. J.; Huang, Z. W.; Guo, W. L.; Wang, L.; Zheng, L. R.; Chai, Z. F.; Shi, W. Q. Enhanced photocatalytic removal of uranium(VI) from aqueous solution by magnetic TiO2/Fe3O4 and its graphene composite. Environ. Sci. Technol. 2017, 51, 5666–5674.

[2]

Li, Z. F.; Zhang, Z. B.; Zhu, X.; Meng, C.; Dong, Z. M.; Xiao, S. T.; Wang, Y. C.; Wang, Y. Q.; Cao, X. H.; Liu, Y. H. Exciton dissociation and transfer behavior and surface reaction mechanism in donor–acceptor organic semiconductor photocatalytic separation of uranium. Appl. Catal. B: Environ. 2023, 332, 122751.

[3]

Ma, M. Y.; Ye, Z. X.; Zhang, J.; Wang, Y. B.; Ning, S. Y.; Yin, X. B.; Fujita, T.; Chen, Y. L.; Wu, H. Y.; Wang, X. P. Synthesis and fabrication of segregative and durable MnO2@chitosan composite aerogel beads for uranium(VI) removal from wastewater. Water Res. 2023, 247, 120819.

[4]

Wang, B.; He, S.; Feng, W. H.; Zhang, L. L.; Huang, X. Y.; Wang, K. Q.; Zhang, S. Y.; Liu, P. Rational design and facile in situ coupling non-noble metal Cd nanoparticles and CdS nanorods for efficient visible-light-driven photocatalytic H2 evolution. Appl. Catal. B: Environ. 2018, 236, 233–239.

[5]

Peng, Z. Y.; Su, Y. L.; Siaj, M. Encapsulation of tin oxide layers on gold nanoparticles decorated one-dimensional CdS nanoarrays for pure Z-scheme photoanodes towards solar hydrogen evolution. Appl. Catal. B: Environ. 2023, 330, 122614.

[6]

Zhang, X. L.; Wu, F.; Li, G. C.; Wang, L.; Huang, J. F.; Meng, A. L.; Li, Z. J. Modulating electronic structure and sulfur p-band center by anchoring amorphous Ni@NiS x on crystalline CdS for expediting photocatalytic H2 evolution. Appl. Catal. B: Environ. 2024, 342, 123398.

[7]

Movlarooy, T. Study of quantum confinement effects in ZnO nanostructures. Mater. Res. Express 2018, 5, 035032.

[8]

Kim, D.; Lee, Y. K.; Lee, D.; Kim, W. D.; Bae, W. K.; Lee, D. C. Colloidal dual-diameter and core-position-controlled core/shell cadmium chalcogenide nanorods. ACS Nano 2017, 11, 12461–12472.

[9]

Wu, K. F.; Rodríguez-Córdoba, W.; Lian, T. Q. Exciton localization and dissociation dynamics in CdS and CdS-Pt quantum confined nanorods: Effect of nonuniform rod diameters. J. Phys. Chem. B 2014, 118, 14062–14069.

[10]

Dong, Z. M.; Hu, S. X.; Li, Z. F.; Xu, J. H.; Gao, D. L.; Yu, F. T.; Li, X. Y.; Cao, X. H.; Wang, Y. Q.; Zhang, Z. B. et al. Biomimetic photocatalytic system designed by spatially separated cocatalysts on Z-scheme heterojunction with identified charge-transfer processes for boosting removal of U(VI). Small 2023, 19, 2300003.

[11]

Jin, J.; Yu, J. G.; Liu, G.; Wong, P. K. Single crystal CdS nanowires with high visible-light photocatalytic H2-production performance. J. Mater. Chem. A 2013, 1, 10927–10934.

[12]

Yang, H. G.; Sun, C. H.; Qiao, S. Z.; Zou, J.; Liu, G.; Smith, S. C.; Cheng, H. M.; Lu, G. Q. Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 2008, 453, 638–641.

[13]

Wang, R.; Shen, J.; Sun, K. H.; Tang, H.; Liu, Q. Q. Enhancement in photocatalytic activity of CO2 reduction to CH4 by 0D/2D Au/TiO2 plasmon heterojunction. Appl. Surf. Sci. 2019, 493, 1142–1149.

[14]

Smith, A. M.; Nie, S. M. Semiconductor nanocrystals: Structure, properties, and band gap engineering. Acc. Chem. Res. 2010, 43, 190–200.

[15]

Zhang, A. Y.; Wang, W. Y.; Chen, J. J.; Liu, C.; Li, Q. X.; Zhang, X.; Li, W. W.; Si, Y.; Yu, H. Q. Epitaxial facet junctions on TiO2 single crystals for efficient photocatalytic water splitting. Energy Environ. Sci. 2018, 11, 1444–1448.

[16]

Hu, X. L.; Lu, S. C.; Tian, J.; Wei, N.; Song, X. J.; Wang, X. Z.; Cui, H. Z. The selective deposition of MoS2 nanosheets onto (101) facets of TiO2 nanosheets with exposed (001) facets and their enhanced photocatalytic H2 production. Appl. Catal. B: Environ. 2019, 241, 329–337.

[17]

De Corrado, J. M.; Fernando, J. F. S.; Shortell, M. P.; Poad, B. L. J.; Blanksby, S. J.; Waclawik, E. R. ZnO Colloid crystal facet-type determines both Au photodeposition and photocatalytic activity. ACS Appl. Nano Mater. 2019, 2, 7856–7869.

[18]

Zhang, J. J.; Zhang, Q. N.; Yue, Y. W.; Zhou, Y. G.; Shen, J. N.; Zhang, Z. Z.; Wang, X. X. The effect of excitation wavelength on the photodeposition of Pt on polyhedron BiVO4 with exposing {010} and {110} facets for photocatalytic performance. Catal. Commun. 2019, 123, 100–104.

[19]

Ma, J. Q.; Guo, X. H.; Zhang, Y. Y.; Ge, H. G. Catalytic performance of TiO2@Ag composites prepared by modified photodeposition method. Chem. Eng. J. 2014, 258, 247–253.

[20]

Peng, S. N.; Jiang, Y. H.; Wang, Z. M.; Luo, X. D.; Lu, J. L.; Han, L.; Ding, Y. H. Introducing a porous container and a defect-rich cocatalyst coating over CdS nanoparticles for promotion of photocatalytic hydrogen evolution. Catal. Lett. 2020, 150, 3533–3541.

[21]

Cheng, C. C.; Zhang, J. W.; Zeng, R. Y.; Xing, F. S.; Huang, C. J. Schottky barrier tuning via surface plasmon and vacancies for enhanced photocatalytic H2 evolution in seawater. Appl. Catal. B: Environ. 2022, 310, 121321.

[22]

Li, Z.; Huang, F.; Xu, Y. F.; Yan, A. H.; Dong, H. M.; Xiong, X.; Zhao, X. H. Electron-extracting system with enhanced photocatalytic hydrogen production performance: Synergistic utilization of Z-scheme and Ohmic heterojunctions. Chem. Eng. J. 2022, 429, 132476.

[23]

Wang, Z. Q.; Qi, Z. L.; Fan, X. J.; Leung, D. Y. C.; Long, J. L.; Zhang, Z. Z.; Miao, T. F.; Meng, S. G.; Chen, S. F.; Fu, X. L. Intimately contacted Ni2P on CdS nanorods for highly efficient photocatalytic H2 evolution: New phosphidation route and the interfacial separation mechanism of charge carriers. Appl. Catal. B: Environ. 2021, 281, 119443.

[24]

Fang, X.; Chen, L.; Cheng, H. R.; Bian, X. Q.; Sun, W. H.; Ding, K. N.; Xia, X. H.; Chen, X.; Zhu, J. F.; Zheng, Y. H. Homojunction and ohmic contact coexisting carbon nitride for efficient photocatalytic hydrogen evolution. Nano Res. 2023, 16, 8782–8792.

[25]

Wang, S. M.; Guan, Y.; Lu, L.; Shi, Z.; Yan, S. C.; Zou, Z. G. Effective separation and transfer of carriers into the redox sites on Ta3N5/Bi photocatalyst for promoting conversion of CO2 into CH4. Appl. Catal. B: Environ. 2018, 224, 10–16.

[26]

Zhang, Z. B.; Li, Z. F.; Dong, Z. M.; Yu, F. T.; Wang, Y. C.; Wang, Y. Q.; Cao, X. H.; Liu, Y. H.; Liu, Y. H. Synergy of photocatalytic reduction and adsorption for boosting uranium removal with PMo12/UiO-66 heterojunction. Chin. Chem. Lett. 2022, 33, 3577–3580.

[27]

Pan, J. Q.; Li, H. L.; Li, S.; Ou, W.; Liu, Y. Y.; Wang, J. J.; Song, C. S.; Zheng, Y. Y.; Li, C. R. The enhanced photocatalytic hydrogen production of nickel-cobalt bimetals sulfide synergistic modified CdS nanorods with active facets. Renew. Energy 2020, 156, 469–477.

[28]

Qiao, S. S.; Feng, C.; Guo, Y.; Chen, T. X.; Akram, N.; Zhang, Y.; Wang, W.; Yue, F.; Wang, J. D. CdS nanoparticles modified Ni@NiO spheres as photocatalyst for oxygen production in water oxidation system and hydrogen production in water reduction system. Chem. Eng. J. 2020, 395, 125068.

[29]

Li, Y. X.; Hu, Y. F.; Peng, S. Q.; Lu, G. X.; Li, S. B. Synthesis of CdS nanorods by an ethylenediamine assisted hydrothermal method for photocatalytic hydrogen evolution. J. Phys. Chem. C 2009, 113, 9352–9358.

[30]

Yang, H.; Jin, Z. L.; Fan, K.; Liu, D. D.; Lu, G. X. The roles of Ni nanoparticles over CdS nanorods for improved photocatalytic stability and activity. Superlattices Microstruct. 2017, 111, 687–695.

[31]

Zhao, G. X.; Sun, Y. B.; Zhou, W.; Wang, X. K.; Chang, K.; Liu, G. G.; Liu, H. M.; Kako, T.; Ye, J. H. Superior photocatalytic H2 production with cocatalytic Co/Ni species anchored on sulfide semiconductor. Adv. Mater. 2017, 29, 1703258.

[32]

Zhong, J.; Shen, Y. L.; Zhu, P.; Yao, S.; An, C. H. Size-effect on Ni electrocatalyst: The case of electrochemical benzyl alcohol oxidation. Nano Res. 2023, 16, 202–208.

[33]

Zhao, Y.; Shao, C. T.; Lin, Z. X.; Jiang, S. J.; Song, S. Q. Low-energy facets on CdS allomorph junctions with optimal phase ratio to boost charge directional transfer for photocatalytic H2 fuel evolution. Small 2020, 16, 2000944.

[34]

Deng, P. S.; Wang, P.; Wang, X. F.; Chen, F.; Yu, H. G. Oxygen-contained amorphous MoS x cocatalyst by one-step photodeposition to enhance H-adsorption affinity for efficient photocatalytic H2 generation. Nano Res. 2023, 16, 8977–8986.

[35]

She, H. D.; Sun, Y. D.; Li, S. P.; Huang, J. W.; Wang, L.; Zhu, G. Q.; Wang, Q. Z. Synthesis of non-noble metal nickel doped sulfide solid solution for improved photocatalytic performance. Appl. Catal. B: Environ. 2019, 245, 439–447.

[36]

Kuehnel, M. F.; Orchard, K. L.; Dalle, K. E.; Reisner, E. Selective photocatalytic CO2 reduction in water through anchoring of a molecular Ni catalyst on CdS nanocrystals. J. Am. Chem. Soc. 2017, 139, 7217–7223.

[37]

Zheng, S. Y.; Peng, S. N.; Wang, Z. M.; Huang, J. T.; Luo, X. D.; Han, L.; Li, X. B. Schottky-structured 0D/2D composites via electrostatic self-assembly for efficient photocatalytic hydrogen evolution. Ceram. Int. 2021, 47, 28304–28311.

[38]

Zhang, W. J.; Deng, Z. Z.; Deng, J. Y.; Au, C. T.; Liao, Y. F.; Yang, H.; Liu, Q. Q. Regulating the exciton binding energy of covalent triazine frameworks for enhancing photocatalysis. J. Mater. Chem. A 2022, 10, 22419–22427.

[39]

Simon, T.; Carlson, M. T.; Stolarczyk, J. K.; Feldmann, J. Electron transfer rate vs recombination losses in photocatalytic H2 generation on Pt-decorated CdS nanorods. ACS Energy Lett. 2016, 1, 1137–1142.

[40]

Wolff, C. M.; Frischmann, P. D.; Schulze, M.; Bohn, B. J.; Wein, R.; Livadas, P.; Carlson, M. T.; Jäckel, F.; Feldmann, J.; Würthner, F. et al. All-in-one visible-light-driven water splitting by combining nanoparticulate and molecular co-catalysts on CdS nanorods. Nat. Energy 2018, 3, 862–869.

[41]

Zhang, H. Z.; Dong, Y. M.; Zhao, S.; Wang, G. L.; Jiang, P. P.; Zhong, J.; Zhu, Y. F. Photochemical preparation of atomically dispersed nickel on cadmium sulfide for superior photocatalytic hydrogen evolution. Appl. Catal. B: Environ. 2020, 261, 118233.

[42]

Kim, Y. K.; Lee, S.; Ryu, J.; Park, H. Solar conversion of seawater uranium(VI) using TiO2 electrodes. Appl. Catal. B: Environ. 2015, 163, 584–590.

[43]

Cheng, L. L.; Zhang, S. F.; Wang, Y. J.; Ding, G. J.; Jiao, Z. Ternary P25-graphene-Fe3O4 nanocomposite as a magnetically recyclable hybrid for photodegradation of dyes. Mater. Res. Bull. 2016, 73, 77–83.

[44]

Jin, S.; Shao, W.; Luo, X.; Wang, H.; Sun, X. S.; He, X.; Zhang, X. D.; Xie, Y. Spatial band separation in a surface doped heterolayered structure for realizing efficient singlet oxygen generation. Adv. Mater. 2022, 34, 2206516.

[45]

Liu, C.; Hsu, P. C.; Xie, J.; Zhao, J.; Wu, T.; Wang, H. T.; Liu, W.; Zhang, J. S.; Chu, S.; Cui, Y. A half-wave rectified alternating current electrochemical method for uranium extraction from seawater. Nat. Energy 2017, 2, 17007.

[46]

Pointurier, F.; Marie, O. Use of micro-Raman spectrometry coupled with scanning electron microscopy to determine the chemical form of uranium compounds in micrometer-size particles. J. Raman Spectrosc. 2013, 44, 1753–1759.

[47]

Li, N.; Han, L.; Zhang, H. N.; Huang, J. T.; Luo, X. D.; Li, X. B.; Wang, Y. H.; Qian, W. Q.; Yang, Y. Polydopamine nanolayer assisted internal photo-deposition of CdS nanocrystals for stable cosensitized photoanode. Nano Res. 2022, 15, 8836–8845.

[48]

Chen, H. H.; Leng, W. H.; Xu, Y. M. Enhanced visible-light photoactivity of CuWO4 through a surface-deposited CuO. J. Phys. Chem. C 2014, 118, 9982–9989.

[49]

Mu, Y. F.; Zhang, W.; Dong, G. X.; Su, K.; Zhang, M.; Lu, T. B. Ultrathin and small-size graphene oxide as an electron mediator for perovskite-based Z-scheme system to significantly enhance photocatalytic CO2 reduction. Small 2020, 16, 2002140.

[50]

Guo, H. W.; Wan, S. P.; Wang, Y. N.; Ma, W. H.; Zhong, Q.; Ding, J. Enhanced photocatalytic CO2 reduction over direct Z-scheme NiTiO3/g-C3N4 nanocomposite promoted by efficient interfacial charge transfer. Chem. Eng. J. 2021, 412, 128646.

[51]

Gao, J. F.; Zhang, F. D.; Xue, H. Q.; Zhang, L. H.; Peng, Y.; Li, X. L.; Gao, Y. Q.; Li, N.; Lei, G. In-situ synthesis of novel ternary CdS/PdAg/g-C3N4 hybrid photocatalyst with significantly enhanced hydrogen production activity and catalytic mechanism exploration. Appl. Catal. B: Environ. 2021, 281, 119509.

[52]

Wang, J. F.; Wang, P. F.; Hou, J.; Qian, J.; Wang, C.; Ao, Y. H. In situ surface engineering of ultrafine Ni2P nanoparticles on cadmium sulfide for robust hydrogen evolution. Catal. Sci. Technol. 2018, 8, 5406–5415.

[53]

Qi, Z.; Chen, J. B.; Li, Q.; Wang, N.; Carabineiro, S. A. C.; Lv, K. L. Increasing the photocatalytic hydrogen generation activity of CdS nanorods by introducing interfacial and polarization electric fields. Small 2023, 19, 2303318.

File
6637_ESM.pdf (2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 02 February 2024
Revised: 03 March 2024
Accepted: 17 March 2024
Published: 18 April 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 22066003, U2167223, 22206024, 22076022, and 22006014), and the Natural Science Foundation of Jiangxi province (Nos. 20224ACB203005 and 20232BAB213034). This work was carried out at Shanxi Supercomputing Center of China, and the calculations were performed on TianHe-2.

Return