AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Polyoxometalates coupled covalent organic frameworks as highly active photothermal nanoreactor for CO2 cycloaddition

Tian Wang1,2Yunqing Zhu1( )Wei Wang2Junfeng Niu1,3Zhiyi Lu2,4Peilei He2,4( )
School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
University of Chinese Academy of Sciences, Beijing 100049, China
Show Author Information

Graphical Abstract

This study introduces a photothermal nanoreactor based on polyoxometalates coupled covalent organic frameworks, which exhibits excellent catalytic activity in CO2 cycloaddition reaction (CCR) with ~ 97.63% conversion and ~ 100% selectivity under visible light irradiation. This platform offers a unique approach to achieve the uniform dispersion of polyoxometalates in covalent organic frameworks as nanoreactors for different catalytic reactions.

Abstract

Covalent organic frameworks (COFs)-based nanoreactors have attracted broad interest in many fields due to their void-confinement effects. However, the inherent drawback of conventional nanoreactors is the lack of internal active sites, which limits their widespread utilization. Herein, we report the construction of hierarchical COF (EB-TFP) nanoreactor with pre-synthesized polyoxometalates (POM, [PV2W10O40]5– (PV2W10)) clusters encapsulated inside of COF (POM@COF). PV2W10@EB-TFP anchors nucleophilic-group (Br ions) and PV2W10 anion cluster within the COF framework via electrostatic interactions, which not only simplifies the reaction system but also enhances catalytic efficiency. The reaction performance of the PV2W10@EB-TFP nanoreactor can be tuned to achieve excellent catalytic activity in CO2 cycloaddition reaction (CCR) for ~ 97.63% conversion and ~ 100% selectivity under visible light irradiation. A mechanistic study based on density functional theory (DFT) calculations and in-situ characterization was also carried out. In summary, we have reported a method for achieving the uniform dispersion of POM single clusters into COF nanoreactor, demonstrating the potential of POM@COF nanoreactor for synergistic photothermal catalytic CO2 cycloaddition.

Electronic Supplementary Material

Download File(s)
6626_ESM.pdf (4.9 MB)

References

[1]

Bayardon, J.; Holz, J.; Schäffner, B.; Andrushko, V.; Verevkin, S.; Preetz, A.; Börner, A. Propylene carbonate as a solvent for asymmetric hydrogenations. Angew. Chem., Int. Ed. 2007, 46, 5971–5974.

[2]

Chai, J. C.; Liu, Z. H.; Zhang, J. J.; Sun, J. R.; Tian, Z. Y.; Ji, Y. Y.; Tang, K.; Zhou, X. H.; Cui, G. L. A superior polymer electrolyte with rigid cyclic carbonate backbone for rechargeable lithium ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 17897–17905.

[3]

Cai, A. J.; Guo, W. S.; Martínez-Rodríguez, L.; Kleij, A. W. Palladium-catalyzed regio- and enantioselective synthesis of allylic amines featuring tetrasubstituted tertiary carbons. J. Am. Chem. Soc. 2016, 138, 14194–14197.

[4]

Bobbink, F. D.; Dyson, P. J. Synthesis of carbonates and related compounds incorporating CO2 using ionic liquid-type catalysts: State-of-the-art and beyond. J. Catal. 2016, 343, 52–61.

[5]

Li, G. Q.; Dong, S.; Fu, P.; Yue, Q. H.; Zhou, Y.; Wang, J. Synthesis of porous poly(ionic liquid)s for chemical CO2 fixation with epoxides. Green Chem. 2022, 24, 3433–3460.

[6]

Wu, H.; Kong, X. Y.; Wen, X. M.; Chai, S. P.; Lovell, E. C.; Tang, J. W.; Ng, Y. H. Metal-organic framework decorated cuprous oxide nanowires for long-lived charges applied in selective photocatalytic CO2 reduction to CH4. Angew. Chem., Int. Ed. 2021, 60, 8455–8459.

[7]

Li, X. X.; Ji, T.; Gao, J. Y.; Chen, W. C.; Yuan, Y.; Sha, H. Y.; Faller, R.; Shan, G. G.; Shao, K. Z.; Wang, X. L. et al. An unprecedented fully reduced {MoV60} polyoxometalate: From an all-inorganic molecular light-absorber model to improved photoelectronic performance. Chem. Sci. 2022, 13, 4573–4580.

[8]

Yang, Q. H.; Peng, H. T.; Zhang, Q. J.; Qian, X.; Chen, X.; Tang, X.; Dai, S.; Zhao, J. J.; Jiang, K.; Yang, Q. et al. Atomically dispersed high-density Al–N4 sites in porous carbon for efficient photodriven CO2 cycloaddition. Adv. Mater. 2021, 33, e2103186.

[9]

Sarkar, S.; Ghosh, S.; Islam, S. M. A Zn(II)-functionalized COF as a recyclable catalyst for the sustainable synthesis of cyclic carbonates and cyclic carbamates from atmospheric CO2. Org. Biomol. Chem. 2022, 20, 1707–1722.

[10]

Yan, X. M.; Xu, J. B.; Zhang, T.; Si, C.; Jiao, J. C.; Li, J.; Han, Q. X. Designing polyoxometalate-based metal-organic framework for oxidation of styrene and cycloaddition of CO2 with epoxides. Chin. Chem. Lett. 2023, 34, 107851.

[11]

Domaille, P. J. The 1- and 2-dimensional tungsten-183 and vanadium-51 NMR characterization of isopolymetalates and heteropolymetalates. J. Am. Chem. Soc. 1984, 106, 7677–7687.

[12]

Liu, P.; Cai, K. X.; Tao, D. J.; Zhao, T. X. The mega-merger strategy: M@COF core-shell hybrid materials for facilitating CO2 capture and conversion to monocyclic and polycyclic carbonates. Appl. Catal. B Environ. 2023, 341, 123317.

[13]

Zhu, Q. S.; An, H. Y.; Xu, T. Q.; Chang, S. Z.; Chen, Y. H.; Luo, H. Y.; Huang, Y. H. PW12-M@COFs as efficient photocatalysts for visible-light-driven oxidation of various sulfides and degradation of chemical warfare agent simulant. Appl. Catal. A General 2023, 662, 119283.

[14]

Massart, R.; Contant, R.; Fruchart, J. M.; Ciabrini, J. P.; Fournier, M. 31P NMR studies on molybdic and tungstic heteropolyanions. Correlation between structure and chemical shift. Inorg. Chem. 1977, 16, 2916–2921.

[15]

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

[16]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

[17]

Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992, 46, 6671–6687.

[18]

Guo, C. X.; Tian, X.; Fu, X. Y.; Qin, G. Q.; Long, J.; Li, H.; Jing, H. J.; Zhou, Y. H.; Xiao, J. P. Computational design of spinel oxides through coverage-dependent screening on the reaction phase diagram. ACS Catal. 2022, 12, 6781–6793.

[19]

Mal, A.; Mishra, R. K.; Praveen, V. K.; Khayum, M. A.; Banerjee, R.; Ajayaghosh, A. Supramolecular reassembly of self-exfoliated ionic covalent organic nanosheets for label-free detection of double-stranded DNA. Angew. Chem., Int. Ed. 2018, 57, 8443–8447.

[20]

Ma, H. P.; Liu, B. L.; Li, B.; Zhang, L. M.; Li, Y. G.; Tan, H. Q.; Zang, H. Y.; Zhu, G. S. Cationic covalent organic frameworks: A simple platform of anionic exchange for porosity tuning and proton conduction. J. Am. Chem. Soc. 2016, 138, 5897–5903.

[21]

Farhadi, S.; Mahmoudi, F.; Kucerakova, M.; Rohlicek, J.; Dusek, M. New hybrid nanostructures based on Keggin-type 12-tungstophosphate and some metal-semicarbazone complexes: Synthesis, X-ray crystal structures and spectroscopic studies. J. Mol. Struct. 2020, 1217, 128385.

[22]

Kandambeth, S.; Mallick, A.; Lukose, B.; Mane, M. V.; Heine, T.; Banerjee, R. Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route. J. Am. Chem. Soc. 2012, 134, 19524–19527.

[23]

Li, C. L.; Zhang, Z. J.; Liu, R. In situ growth of 3D NiFe LDH-POM micro-flowers on nickel foam for overall water splitting. Small, 2020, 16, 2003777.

[24]

Wu, Y.; Wang, H.; Tu, W. G.; Wu, S. Y.; Chew, J. W. Effects of composition faults in ternary metal chalcogenides (Zn x In2S3+ x , x = 1–5) layered crystals for visible-light-driven catalytic hydrogen generation and carbon dioxide reduction. Appl. Catal. B Environ. 2019, 256, 117810.

[25]

Prajapati, P. K.; Kumar, A.; Jain, S. L. First photocatalytic synthesis of cyclic carbonates from CO2 and epoxides using CoPc/TiO2 hybrid under mild conditions. ACS Sustainable Chem. Eng. 2018, 6, 7799–7809.

[26]

Zhang, M. Y.; Li, J. K.; Wang, R.; Zhao, S. N.; Zang, S. Q.; Mak, T. C. W. Construction of core-shell MOF@COF hybrids with controllable morphology adjustment of COF shell as a novel platform for photocatalytic cascade reactions. Adv. Sci. (Weinh.) 2021, 8, 2101884.

[27]

Xu, M. R.; Zhang, H.; Guégan, F.; Frapper, G.; Corbet, M.; Marion, P.; Richard, F.; Clacens, J. M. Activated charcoal grafted with phenyl imidazole groups for Knœvenagel condensation of furfural with malononitrile. Catal. Commun. 2020, 147, 106151.

[28]

Shafiei, H.; Hassaninejad-Darzi, S. K. Electroanalytical application of Ag@POM@rGO nanocomposite and ionic liquid modified carbon paste electrode for the quantification of ciprofloxacin antibiotic. J. Electroanal. Chem. 2023, 935, 117321.

[29]

Akram, B.; Ni, B.; Wang, X. Van Der Waals integrated hybrid POM-zirconia flexible belt-Like superstructures. Adv. Mater. 2020, 32, 1906794.

[30]

Zhang, Y. H.; Yuan, M. N.; Wang, Z.; Liu, Y.; Yang, G. H. High-efficiency components separation of corncob catalyzed by vanadium-substituted polyoxometalate in choline chloride-lactic acid reaction system. Appl. Catal. A Gen. 2022, 641, 118680.

[31]

Zhang, M.; Liu, J. Q.; Li, H. P.; Wei, Y. C.; Fu, Y. J.; Liao, W. Y.; Zhu, L. H.; Chen, G. Y.; Zhu, W. S.; Li, H. M. Tuning the electrophilicity of vanadium-substituted polyoxometalate based ionic liquids for high-efficiency aerobic oxidative desulfurization. Appl. Catal. B Environ. 2020, 271, 118936.

[32]

Yu, K.; Puthiaraj, P.; Ahn, W. S. One-pot catalytic transformation of olefins into cyclic carbonates over an imidazolium bromide-functionalized Mn(III)-porphyrin metal-organic framework. Appl. Catal. B Environ. 2020, 273, 119059.

[33]

Kumar, A.; Samanta, S.; Srivastava, R. Graphitic carbon nitride modified with Zr-thiamine complex for efficient photocatalytic CO2 insertion to epoxide: Comparison with traditional thermal catalysis. ACS Appl. Nano Mater. 2021, 4, 6805–6820.

[34]

Qin, Z.; Li, H.; Yang, X. F.; Chen, L. Y.; Li, Y. W.; Shen, K. Heterogenizing homogeneous cocatalysts by well-designed hollow MOF-based nanoreactors for efficient and size-selective CO2 fixation. Appl. Catal. B Environ. 2022, 307, 121163.

[35]

Liu, C. Y.; Niu, H. H.; Wang, D. X.; Gao, C.; Said, A.; Liu, Y. S.; Wang, G.; Tung, C. H.; Wang, Y. F. S-scheme Bi-oxide/Ti-oxide molecular hybrid for photocatalytic cycloaddition of carbon dioxide to epoxides. ACS Catal. 2022, 12, 8202–8213.

[36]

Li, N.; Liu, J.; Liu, J. J.; Dong, L. Z.; Xin, Z. F.; Teng, Y. L.; Lan, Y. Q. Adenine components in biomimetic metal-organic frameworks for efficient CO2 photoconversion. Angew. Chem., Int. Ed. 2019, 58, 5226–5231.

[37]

Chen, L.; Zhang, J.; Cai, K. R.; Wang, L. K.; Zhu, X. J.; Yu, Z. P.; Zhong, F.; Zhou, H. P. Molecular engineering of covalent organic frameworks with elevated mitochondrial-targeting for cancer cell suppression. Sens. Actuat. B Chem. 2022, 350, 130861.

[38]

Gong, Y. N.; Zhong, W. H.; Li, Y.; Qiu, Y. Z.; Zheng, L. R.; Jiang, J.; Jiang, H. L. Regulating photocatalysis by spin-state manipulation of cobalt in covalent organic frameworks. J. Am. Chem. Soc. 2020, 142, 16723–16731.

[39]

Kurisingal, J. F.; Rachuri, Y.; Gu, Y.; Choe, Y.; Park, D. W. Multi-variate metal organic framework as efficient catalyst for the cycloaddition of CO2 and epoxides in a gas-liquid-solid reactor. Chem. Eng. J. 2020, 386, 121700.

[40]

Dai, W. L.; Zou, M. L.; Long, J. F.; Li, B.; Zhang, S. Q.; Yang, L. X.; Wang, D.; Mao, P.; Luo, S. L.; Luo, X. B. Nanoporous N-doped carbon/ZnO hybrid derived from zinc aspartate: An acid-base bifunctional catalyst for efficient fixation of carbon dioxide into cyclic carbonates. Appl. Surf. Sci. 2021, 540, 148311.

[41]

Chen, S. M.; Liu, Y.; Guo, J. P.; Li, P. Z.; Huo, Z. Y.; Ma, P. T.; Niu, J. Y.; Wang, J. P. A multi-component polyoxometalate and its catalytic performance for CO2 cycloaddition reactions. Dalton Trans. 2015, 44, 10152–10155.

[42]

Ge, W. L.; Wang, X. C.; Zhang, L. Y.; Du, L.; Zhou, Y.; Wang, J. Fully-occupied Keggin type polyoxometalate as solid base for catalyzing CO2 cycloaddition and Knoevenagel condensation. Catal. Sci. Technol. 2016, 6, 460–467.

[43]

Li, X. D.; Liang, L.; Sun, Y. F.; Xu, J. Q.; Jiao, X. C.; Xu, X. L.; Ju, H. X.; Pan, Y.; Zhu, J. F.; Xie, Y. Ultrathin conductor enabling efficient IR light CO2 reduction. J. Am. Chem. Soc. 2019, 141, 423–430.

[44]

He, Y. Z.; Xu, M. S.; Xia, J. H.; Zhang, C. H.; Song, X. T.; Zhao, X. F.; Fu, M.; Li, S. Q.; Liu, X. Y. Effect of exposed active sites of semi-amorphous Fe-BTC on photocatalytic CO2 cycloaddition reaction under ambient conditions. Mol. Catal. 2023, 542, 113134.

[45]

Zhai, G. Y.; Liu, Y. Y.; Mao, Y. Y.; Zhang, H. G.; Lin, L. T.; Li, Y. J.; Wang, Z. Y.; Cheng, H. F.; Wang, P.; Zheng, Z. K. et al. Improved photocatalytic CO2 and epoxides cycloaddition via the synergistic effect of Lewis acidity and charge separation over Zn modified UiO-bpydc. Appl. Catal. B Environ. 2022, 301, 120793.

Nano Research
Pages 5975-5984
Cite this article:
Wang T, Zhu Y, Wang W, et al. Polyoxometalates coupled covalent organic frameworks as highly active photothermal nanoreactor for CO2 cycloaddition. Nano Research, 2024, 17(7): 5975-5984. https://doi.org/10.1007/s12274-024-6626-1
Topics:

708

Views

6

Crossref

9

Web of Science

8

Scopus

0

CSCD

Altmetrics

Received: 05 February 2024
Revised: 06 March 2024
Accepted: 08 March 2024
Published: 30 April 2024
© Tsinghua University Press 2024
Return