Journal Home > Online First

Hydrogen peroxide (H2O2) photoproduction in seawater with metal-free photocatalysts derived from biomass materials is a green, sustainable, and ultra environmentally friendly way. However, most photocatalysts are always corroded or poisoned in seawater, resulting in a significantly reduced catalytic performance. Here, we report the metal-free photocatalysts (RUT-1 to RUT-5) with in-situ generated carbon dots (CDs) from biomass materials (Rutin) by a simple microwave-assisted pyrolysis method. Under visible light (λ ≥ 420 nm, 81.6 mW/cm2), the optimized catalyst of RUT-4 is stable and can achieve a high H2O2 yield of 330.36 μmol/L in seawater, 1.78 times higher than that in normal water. New transient potential scanning (TPS) tests are developed and operated to in-situ study the H2O2 photoproduction of RUT-4 under operation condition. RUT-4 has strong oxygen (O2) absorption capacity, and the O2 reduction rate in seawater is higher than that in water. Metal cations in seawater further promote the photo-charge separation and facilitate the photo-reduction reaction. For RUT-4, the conduction band level under operating conditions only satisfies the requirement of O2 reduction but not for hydrogen (H2) evolution. This work provides new insights for the in-situ study of photocatalyst under operation condition, and gives a green and sustainable path for the H2O2 photoproduction with metal-free catalysts in seawater.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

In-situ study of the hydrogen peroxide photoproduction in seawater on carbon dot-based metal-free catalyst under operation condition

Show Author's information Jiaxuan Wang1Jiacheng Li1Zenan Li1Jie Wu1Honglin Si1Yangbo Wu2Zhiyong Guo3Xuepeng Wang2Fan Liao1( )Hui Huang1( )Mingwang Shao1( )Yang Liu1( )Zhenhui Kang1,4( )
Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China
State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa 999078, Macao, China

Abstract

Hydrogen peroxide (H2O2) photoproduction in seawater with metal-free photocatalysts derived from biomass materials is a green, sustainable, and ultra environmentally friendly way. However, most photocatalysts are always corroded or poisoned in seawater, resulting in a significantly reduced catalytic performance. Here, we report the metal-free photocatalysts (RUT-1 to RUT-5) with in-situ generated carbon dots (CDs) from biomass materials (Rutin) by a simple microwave-assisted pyrolysis method. Under visible light (λ ≥ 420 nm, 81.6 mW/cm2), the optimized catalyst of RUT-4 is stable and can achieve a high H2O2 yield of 330.36 μmol/L in seawater, 1.78 times higher than that in normal water. New transient potential scanning (TPS) tests are developed and operated to in-situ study the H2O2 photoproduction of RUT-4 under operation condition. RUT-4 has strong oxygen (O2) absorption capacity, and the O2 reduction rate in seawater is higher than that in water. Metal cations in seawater further promote the photo-charge separation and facilitate the photo-reduction reaction. For RUT-4, the conduction band level under operating conditions only satisfies the requirement of O2 reduction but not for hydrogen (H2) evolution. This work provides new insights for the in-situ study of photocatalyst under operation condition, and gives a green and sustainable path for the H2O2 photoproduction with metal-free catalysts in seawater.

Keywords: photocatalysis, carbon dots, hydrogen peroxide, transient potential scanning, operation condition, in-situ study

References(43)

[1]

Lu, Z. Y.; Chen, G. X.; Siahrostami, S.; Chen, Z. H.; Liu, K.; Xie, J.; Liao, L.; Wu, T.; Lin, D. C.; Liu, Y. Y. et al. High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. Nat. Catal. 2018, 1, 156–162.

[2]

Wei, Z.; Liu, M. L.; Zhang, Z. J.; Yao, W. Q.; Tan, H. W.; Zhu, Y. F. Efficient visible-light-driven selective oxygen reduction to hydrogen peroxide by oxygen-enriched graphitic carbon nitride polymers. Energy Environ. Sci. 2018, 11, 2581–2589.

[3]

Li, S. N.; Dong, G. H.; Hailili, R.; Yang, L. P.; Li, Y. X.; Wang, F.; Zeng, Y. B.; Wang, C. Y. Effective photocatalytic H2O2 production under visible light irradiation at g-C3N4 modulated by carbon vacancies. Appl. Catal. B: Environ. 2016, 190, 26–35.

[4]

Shiraishi, Y.; Kanazawa, S.; Kofuji, Y.; Sakamoto, H.; Ichikawa, S.; Tanaka, S.; Hirai, T. Sunlight-driven hydrogen peroxide production from water and molecular oxygen by metal-free photocatalysts. Angew. Chem., Int. Ed. 2014, 53, 13454–13459.

[5]

Shiraishi, Y.; Kanazawa, S.; Sugano, Y.; Tsukamoto, D.; Sakamoto, H.; Ichikawa, S.; Hirai, T. Highly selective production of hydrogen peroxide on graphitic carbon nitride (g-C3N4) photocatalyst activated by visible light. ACS Catal. 2014, 4, 774–780.

[6]

Ai, L. H.; Zhang, C. H.; Li, L. L.; Jiang, J. Iron terephthalate metal-organic framework: Revealing the effective activation of hydrogen peroxide for the degradation of organic dye under visible light irradiation. Appl. Catal. B: Environ. 2014, 148–149, 191–200

[7]

Yang, Y.; Zeng, Z. T.; Zeng, G. M.; Huang, D. L.; Xiao, R.; Zhang, C.; Zhou, C. Y.; Xiong, W. P.; Wang, W. J.; Cheng, M. et al. Ti3C2 Mxene/porous g-C3N4 interfacial schottky junction for boosting spatial charge separation in photocatalytic H2O2 production. Appl. Catal. B: Environ. 2019, 258, 117956.

[8]

Yang, Y.; Zhang, C.; Huang, D. L.; Zeng, G. M.; Huang, J. H.; Lai, C.; Zhou, C. Y.; Wang, W. J.; Guo, H.; Xue, W. J. et al. Boron nitride quantum dots decorated ultrathin porous g-C3N4: Intensified exciton dissociation and charge transfer for promoting visible-light-driven molecular oxygen activation. Appl. Catal. B: Environ. 2019, 245, 87–99.

[9]

Zhang, Z. J.; Tsuchimochi, T.; Ina, T.; Kumabe, Y.; Muto, S.; Ohara, K.; Yamada, H.; Ten-No, S. L.; Tachikawa, T. Binary dopant segregation enables hematite-based heterostructures for highly efficient solar H2O2 synthesis. Nat. Commun. 2022, 13, 1499.

[10]

He, X.; Zheng, N. C.; Hu, R. T.; Hu, Z. F.; Yu, J. C. Hydrothermal and pyrolytic conversion of biomasses into catalysts for advanced oxidation treatments. Adv. Funct. Mater. 2021, 31, 2006505.

[11]

Hu, B.; Wang, K.; Wu, L. H.; Yu, S. H.; Antonietti, M.; Titirici, M. M. Engineering carbon materials from the hydrothermal carbonization process of biomass. Adv. Mater. 2010, 22, 813–828.

[12]

Hu, Z. F.; Shen, Z. R.; Yu, J. C. Converting carbohydrates to carbon-based photocatalysts for environmental treatment. Environ. Sci. Technol. 2017, 51, 7076–7083.

[13]

Titirici, M. M.; White, R. J.; Falco, C.; Sevilla, M. Black perspectives for a green future: Hydrothermal carbons for environment protection and energy storage. Energy Environ. Sci. 2012, 5, 6796–6822.

[14]

Xu, L. P.; Liu, Y.; Hu, Z. F.; Yu, J. C. Converting cellulose waste into a high-efficiency photocatalyst for Cr(VI) reduction via molecular oxygen activation. Appl. Catal. B: Environ. 2021, 295, 120253.

[15]

Banu, S.; Yadav, P. P. Chlorophyll: The ubiquitous photocatalyst of nature and its potential as an organo-photocatalyst in organic syntheses. Org. Biomol. Chem. 2022, 20, 8584–8598.

[16]

Joshi, M.; Kamble, S. P.; Labhsetwar, N. K.; Parwate, D. V.; Rayalu, S. S. Chlorophyll-based photocatalysts and their evaluations for methyl orange photoreduction. J. Photochem. Photobiol. A: Chem. 2009, 204, 83–89.

[17]

Shi, M. J.; Wei, W.; Jiang, Z. F.; Han, H. K.; Gao, J. R.; Xie, J. M. Biomass-derived multifunctional TiO2/carbonaceous aerogel composite as a highly efficient photocatalyst. RSC Adv. 2016, 6, 25255–25266.

[18]

Liu, Y.; Wang, J. X.; Wu, J.; Zhao, Y. J.; Huang, H.; Liu, Y.; Kang, Z. H. Critical roles of H2O and O2 in H2O2 photoproduction over biomass derived metal-free catalyst. Appl. Catal. B: Environ. 2022, 319, 121944.

[19]

Liu, Y.; Wang, X.; Zhao, Y. J.; Wu, Q. Y.; Nie, H. D.; Si, H. L.; Huang, H.; Liu, Y.; Shao, M. W.; Kang, Z. H. Highly efficient metal-free catalyst from cellulose for hydrogen peroxide photoproduction instructed by machine learning and transient photovoltage technology. Nano Res. 2022, 15, 4000–4007.

[20]

Dang, H. V.; Wang, Y. H.; Wu, J. C. S. Z-scheme photocatalyst Pt/GaP-TiO2-SiO2: Rh for the separated H2 evolution from photocatalytic seawater splitting. Appl. Catal. B: Environ. 2021, 296, 120339.

[21]

Gopakumar, A.; Ren, P.; Chen, J. H.; Manzolli Rodrigues, B. V.; Vincent Ching, H. Y.; Jaworski, A.; Doorslaer, S. V.; Rokicińska, A.; Kuśtrowski, P.; Barcaro, G. et al. Lignin-supported heterogeneous photocatalyst for the direct generation of H2O2 from seawater. J. Am. Chem. Soc. 2022, 144, 2603–2613.

[22]

Xu, W. M.; Zhao, X. D.; An, X. H.; Wang, S.; Zhang, J.; Li, Z. S.; Wu, W. T.; Wu, M. B. Alkali halide boost of carbon nitride for photocatalytic H2 evolution in seawater. ACS Appl. Mater. Interfaces 2020, 12, 48526–48532.

[23]

Zhang, J. N.; Hu, W. P.; Cao, S.; Piao, L. Recent progress for hydrogen production by photocatalytic natural or simulated seawater splitting. Nano Res. 2020, 13, 2313–2322.

[24]

Bao, K. L.; Liao, F.; Zhou, Y. J.; Wu, J.; Wang, J. X.; Yan, X.; Fan, Z. L.; Liu, Y.; Huang, H.; Kang, Z. H. Carbon dots regulate the multiple-proton-electron catalytic process and switch carbon dioxide reduction to hydrogen evolution reaction of PdCu alloy electrocatalyst. Appl. Surf. Sci. 2023, 619, 156784.

[25]

Du, X.; Zhang, M. L.; Ma, Y. R.; Wang, X. T.; Liu, Y.; Huang, H.; Kang, Z. H. Size-dependent antibacterial of carbon dots by selective absorption and differential oxidative stress of bacteria. J. Colloid Interface Sci. 2023, 634, 44–53.

[26]

Ma, Y. R.; Zhang, M. L.; Wu, J.; Zhao, Y. J.; Du, X.; Huang, H.; Zhou, Y. J.; Liu, Y.; Kang, Z. H. The key effect of carboxyl group and CuN2O2 coordinate structure for Cu, N co-doped carbon dots with peroxidase-like property. Small 2023, 19, 2300883.

[27]

Yu, K.; Li, Z. N.; Zhang, T. Y.; He, T. W.; Fan, Z. L.; Huang, H.; Liao, F.; Liu, Y.; Kang, Z. H. Carbon dots driven directional charge migration on sulfur vacancy enriched ZnIn2S4 nanosheets for enhanced photocatalytic hydrogen evolution. Appl. Surf. Sci. 2023, 635, 157762.

[28]

Zhang, T. Y.; Shen, J.; Shan Shen, W.; Fan, Z. L.; Yu, K.; Wang, Y. M.; Si, H. L.; Huang, H.; Liu, Y.; Liao, L. S. et al. A simple device-to-device transform for white light-emitting diode with monochromatic carbon dots. Adv. Opt. Mater. 2023, 11, 2301651.

[29]

Zhang, T. Y.; Wang, X.; Huang, H.; Liu, Y.; Kang, Z. H. Conventional and inverted light-emitting diodes with 386 nm emission wavelength based on metal-free carbon dots. ACS Appl. Mater. Interfaces 2023, 15, 18045–18054.

[30]

Zhou, Y. J.; Liao, F.; Liu, Y.; Kang, Z. H. The advanced multi-functional carbon dots in photoelectrochemistry based energy conversion. Int. J. Extrem. Manuf. 2022, 4, 042001.

[31]

Wu, Q. Y.; Cao, J. J.; Wang, X.; Liu, Y.; Zhao, Y. J.; Wang, H.; Liu, Y.; Huang, H.; Liao, F.; Shao, M. W. et al. A metal-free photocatalyst for highly efficient hydrogen peroxide photoproduction in real seawater. Nat. Commun. 2021, 12, 483.

[32]

Wu, Q. Y.; Zhu, M. M.; Cao, J. J.; Wang, X.; Liu, Y.; Xiang, C. S.; Shao, M. W.; Tian, H.; Kang, Z. H. Metal-free catalyst with large carbon defects for efficient direct overall water splitting in air at room pressure. ACS Appl. Mater. Interfaces 2020, 12, 30280–30288.

[33]

Zhao, Y. J.; Liu, Y.; Wang, Z. Z.; Ma, Y. R.; Zhou, Y. J.; Shi, X. F.; Wu, Q. Y.; Wang, X.; Shao, M. W.; Huang, H. et al. Carbon nitride assisted 2D conductive metal-organic frameworks composite photocatalyst for efficient visible light-driven H2O2 production. Appl. Catal. B: Environ. 2021, 289, 120035.

[34]

Zhao, Y. J.; Xu, L. L.; Wang, X.; Wang, Z. Z.; Liu, Y.; Wang, Y.; Wang, Q. L.; Wang, Z. T.; Huang, H.; Liu, Y. et al. A comprehensive understanding on the roles of carbon dots in metallated graphyne based catalyst for photoinduced H2O2 production. Nano Today 2022, 43, 101428.

[35]

Li, Y.; Zhao, Y. J.; Nie, H. D.; Wei, K. Q.; Cao, J. J.; Huang, H.; Shao, M. W.; Liu, Y.; Kang, Z. H. Interface photo-charge kinetics regulation by carbon dots for efficient hydrogen peroxide production. J. Mater. Chem. A 2021, 9, 515–522.

[36]

Wang, J. X.; Liu, Y.; Han, Y. D.; Bao, K. L.; He, T. W.; Huang, H.; Liu, Y.; Kang, Z. H. A carbon dot-based metal-free photocatalyst enables O2 to serve as both a reactant and electron sink for enhancing H2O2 photoproduction. J. Mater. Chem. A 2022, 10, 15074–15079.

[37]

Shi, Y. X.; Zhao, Q.; Li, J. Y.; Gao, G. Y.; Zhi, J. F. Onion-liked carbon-embedded graphitic carbon nitride for enhanced photocatalytic hydrogen evolution and dye degradation. Appl. Catal. B: Environ. 2022, 308, 121216.

[38]

Xia, P. F.; Antonietti, M.; Zhu, B. C.; Heil, T.; Yu, J. G.; Cao, S. W. Designing defective crystalline carbon nitride to enable selective CO2 photoreduction in the gas phase. Adv. Funct. Mater. 2019, 29, 1900093.

[39]

Kang, Y. Y.; Yang, Y. Q.; Yin, L. C.; Kang, X. D.; Liu, G.; Cheng, H. M. An amorphous carbon nitride photocatalyst with greatly extended visible-light-responsive range for photocatalytic hydrogen generation. Adv. Mater. 2015, 27, 4572–4577.

[40]

Li, J. C.; Shi, H.; Li, Z. N.; Wang, J. X.; Si, H. L.; Liao, F.; Huang, H.; Liu, Y.; Kang, Z. H. Interaction of metal ions in high efficiency seawater hydrogen peroxide production by a carbon-based photocatalyst. Appl. Catal. B: Environ. 2024, 343, 123541.

[41]

Wrighton, M. S.; Wolczanski, P. T.; Ellis, A. B. Photoelectrolysis of water by irradiation of platinized n-type semiconducting metal oxides. J. Solid State Chem. 1977, 22, 17–29.

[42]

Radecka, M.; Rekas, M.; Trenczek-Zajac, A.; Zakrzewska, K. Importance of the band gap energy and flat band potential for application of modified TiO2 photoanodes in water photolysis. J. Power Sources 2008, 181, 46–55.

[43]

Cardon, F.; Gomes, W. P. On the determination of the flat-band potential of a semiconductor in contact with a metal or an electrolyte from the Mott-Schottky plot. J. Phys. D: Appl. Phys. 1978, 11, L63–L67.

File
6623_ESM.pdf (2.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 01 February 2024
Revised: 23 February 2024
Accepted: 08 March 2024
Published: 19 April 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

This work was supported by Natural Science Foundation of Jiangsu Province (No. BK20220028), the National Key Research and Development Program of China (Nos. 2020YFA0406104 and2020YFA0406101), the National Natural Science Foundation of China (Nos. 52272043, 52271223, 52202107, and 52201269), Natural Science Foundation of Jiangsu Province (Nos. BK20210735 and 21KJB430043), the Science and Technology Development Fund, Macau SAR (No. 0009/2022/ITP), Shenzhen Science and Technology Plan Project (Collaborative Innovation Special Project, SGDX20220530111203019), Collaborative Innovation Center of Suzhou Nano Science and Technology, the 111 Project, and Suzhou Key Laboratory of Functional Nano and Soft Materials.

Return