Journal Home > Online First

Zirconium terephthalate UiO-66 has aroused great interest in catalysis since it exhibits significant flexibility and compatibility for accommodating a high number of defects as well as exceptional thermal and chemical stability. Until now, many works have focused on the modulations of the Zr6-oxo clusters in UiO-66 in terms of diverse synthesis, advanced characterizations, and their catalytic applications. To achieve high catalytic efficiency, it is still highly desired for rationally constructing and modulating the Zr6-oxo clusters with exposed catalytic sites and diverse microenvironments for advanced catalysis. In this review, we provide a comprehensive summary of recent progress on the synthesis of defective UiO-66, qualitative and quantitative characterizations, as well as a logical overview of heterogeneous catalytic applications over the past few years. Finally, the outlooks for the research paradigm of defective UiO-66 are discussed.


menu
Abstract
Full text
Outline
About this article

Recent progress on the synthesis of defective UiO-66 for thermal catalysis

Show Author's information Qing Feng1,2,§Caoyu Yang1,2,§Lin Chang1,2Guodong Li1,2( )Zhiyong Tang1,2( )
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

§ Qing Feng and Caoyu Yang contributed equally to this work.

Abstract

Zirconium terephthalate UiO-66 has aroused great interest in catalysis since it exhibits significant flexibility and compatibility for accommodating a high number of defects as well as exceptional thermal and chemical stability. Until now, many works have focused on the modulations of the Zr6-oxo clusters in UiO-66 in terms of diverse synthesis, advanced characterizations, and their catalytic applications. To achieve high catalytic efficiency, it is still highly desired for rationally constructing and modulating the Zr6-oxo clusters with exposed catalytic sites and diverse microenvironments for advanced catalysis. In this review, we provide a comprehensive summary of recent progress on the synthesis of defective UiO-66, qualitative and quantitative characterizations, as well as a logical overview of heterogeneous catalytic applications over the past few years. Finally, the outlooks for the research paradigm of defective UiO-66 are discussed.

Keywords: characterization, de novo synthesis, defective UiO-66, post-synthetic treatment, thermal catalysis

References(149)

[1]

Campos, K. R.; Coleman, P. J.; Alvarez, J. C.; Dreher, S. D.; Garbaccio, R. M.; Terrett, N. K.; Tillyer, R. D.; Truppo, M. D.; Parmee, E. R. The importance of synthetic chemistry in the pharmaceutical industry. Science 2019, 363, eaat0805.

[2]

Ni, L.; Yu, C.; Wei, Q. B.; Liu, D. M.; Qiu, J. S. Pickering emulsion catalysis: Interfacial chemistry, catalyst design, challenges, and perspectives. Angew. Chem., Int. Ed. 2022, 61, e202115885.

[3]

Klankermayer, J.; Wesselbaum, S.; Beydoun, K.; Leitner, W. Selective catalytic synthesis using the combination of carbon dioxide and hydrogen: Catalytic chess at the interface of energy and chemistry. Angew. Chem., Int. Ed. 2016, 55, 7296–7343.

[4]

Egorova, K. S.; Ananikov, V. P. Which metals are green for catalysis? Comparison of the toxicities of Ni, Cu, Fe, Pd, Pt, Rh, and Au salts. Angew. Chem., Int. Ed. 2016, 55, 12150–12162.

[5]

Zhao, Y. F.; Gao, W.; Li, S. W.; Williams, G. R.; Mahadi, A. H.; Ma, D. Solar- versus thermal-driven catalysis for energy conversion. Joule 2019, 3, 920–937.

[6]

Li, Y. J.; Ding, Y. J.; Zhang, B.; Huang, Y. C.; Qi, H. F.; Das, P.; Zhang, L. Z.; Wang, X.; Wu, Z. S.; Bao, X. H. N,O symmetric double coordination of an unsaturated Fe single-atom confined within a graphene framework for extraordinarily boosting oxygen reduction in Zn-air batteries. Energy Environ. Sci. 2023, 16, 2629–2636

[7]

Wang, Y. H.; Tong, C. Z.; Liu, Q. L.; Han, R.; Liu, C. X. Intergrowth zeolites, synthesis, characterization, and catalysis. Chem. Rev. 2023, 123, 11664–11721.

[8]

Yao, Y. G.; Dong, Q.; Brozena, A.; Luo, J.; Miao, J. W.; Chi, M. F.; Wang, C.; Kevrekidis, I. G.; Ren, Z. J.; Greeley, J. et al. High-entropy nanoparticles: Synthesis–structure–property relationships and data-driven discovery. Science 2022, 376, eabn3103.

[9]

Zhao, S. L.; Wang, Y.; Dong, J. C.; He, C. T.; Yin, H. J.; An, P. F.; Zhao, K.; Zhang, X. F.; Gao, C.; Zhang, L. J. et al. Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution. Nat. Energy 2016, 1, 16184.

[10]

Zhao, S. L.; Tan, C. H.; He, C. T.; An, P. F.; Xie, F.; Jiang, S.; Zhu, Y. F.; Wu, K. H.; Zhang, B. W.; Li, H. J. et al. Structural transformation of highly active metal-organic framework electrocatalysts during the oxygen evolution reaction. Nat. Energy 2020, 5, 881–890.

[11]

Trickett, C. A.; Popp, T. M. O.; Su, J.; Yan, C.; Weisberg, J.; Huq, A.; Urban, P.; Jiang, J. C.; Kalmutzki, M. J.; Liu, Q. N. et al. Identification of the strong Brønsted acid site in a metal-organic framework solid acid catalyst. Nat. Chem. 2019, 11, 170–176.

[12]

Li, J.; Huang, H. L.; Xue, W. J.; Sun, K.; Song, X. H.; Wu, C. R.; Nie, L.; Li, Y.; Liu, C. Y.; Pan, Y. et al. Self-adaptive dual-metal-site pairs in metal-organic frameworks for selective CO2 photoreduction to CH4. Nat. Catal. 2021, 4, 719–729.

[13]

Pascanu, V.; Miera, G. G.; Inge, A. K.; Martín-Matute, B. Metal-organic frameworks as catalysts for organic synthesis: A critical perspective. J. Am. Chem. Soc. 2019, 141, 7223–7234.

[14]

Avci, C.; Imaz, I.; Carné-Sánchez, A.; Pariente, J. A.; Tasios, N.; Pérez-Carvajal, J.; Alonso, M. I.; Blanco, A.; Dijkstra, M.; López, C. et al. Self-assembly of polyhedral metal-organic framework particles into three-dimensional ordered superstructures. Nat. Chem. 2018, 10, 78–84.

[15]

Mallick, A.; El-Zohry, A. M.; Shekhah, O.; Yin, J.; Jia, J. T.; Aggarwal, H.; Emwas, A. H.; Mohammed, O. F.; Eddaoudi, M. Unprecedented ultralow detection limit of amines using a thiadiazole-functionalized Zr(IV)-based metal-organic framework. J. Am. Chem. Soc. 2019, 141, 7245–7249.

[16]

Han, Z. S.; Wang, K. Y.; Min, H.; Xu, J.; Shi, W.; Cheng, P. Bifunctionalized metal-organic frameworks for pore-size-dependent enantioselective sensing. Angew. Chem., Int. Ed. 2022, 61, e202204066.

[17]

Freund, R.; Zaremba, O.; Arnauts, G.; Ameloot, R.; Skorupskii, G.; Dincă, M.; Bavykina, A.; Gascon, J.; Ejsmont, A.; Goscianska, J. et al. The current status of MOF and COF applications. Angew. Chem., Int. Ed. 2021, 60, 23975–24001.

[18]

Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K. P. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 2008, 130, 13850–13851.

[19]

O’Keeffe, M.; Peskov, M. A.; Ramsden, S. J.; Yaghi, O. M. The reticular chemistry structure resource (RCSR) database of, and symbols for, crystal nets. Acc. Chem. Res. 2008, 41, 1782–1789.

[20]

Valenzano, L.; Civalleri, B.; Chavan, S.; Bordiga, S.; Nilsen, M. H.; Jakobsen, S.; Lillerud, K. P.; Lamberti, C. Disclosing the complex structure of UiO-66 metal organic framework: A synergic combination of experiment and theory. Chem. Mater. 2011, 23, 1700–1718.

[21]

Wu, H.; Chua, Y. S.; Krungleviciute, V.; Tyagi, M.; Chen, P.; Yildirim, T.; Zhou, W. Unusual and highly tunable missing-linker defects in zirconium metal-organic framework UiO-66 and their important effects on gas adsorption. J. Am. Chem. Soc. 2013, 135, 10525–10532.

[22]

Lv, X. L.; Yuan, S.; Xie, L. H.; Darke, H. F.; Chen, Y.; He, T.; Dong, C.; Wang, B.; Zhang, Y. Z.; Li, J. R. et al. Ligand rigidification for enhancing the stability of metal-organic frameworks. J. Am. Chem. Soc. 2019, 141, 10283–10293.

[23]

Yuan, S.; Peng, J. Y.; Zhang, Y. R.; Shao-Horn, Y. Stability trend of metal-organic frameworks with heterometal-modified hexanuclear Zr building units. J. Phys. Chem. C 2019, 123, 28266–28274.

[24]

Wang, L. J.; Li, X. T.; Yang, B.; Xiao, K.; Duan, H. B.; Zhao, H. Z. The chemical stability of metal-organic frameworks in water treatments: Fundamentals, effect of water matrix and judging methods. Chem. Eng. J. 2022, 450, 138215.

[25]

Wu, H.; Yildirim, T.; Zhou, W. Exceptional mechanical stability of highly porous zirconium metal-organic framework UiO-66 and its important implications. J. Phys. Chem. Lett. 2013, 4, 925–930.

[26]

Shearer, G. C.; Chavan, S.; Ethiraj, J.; Vitillo, J. G.; Svelle, S.; Olsbye, U.; Lamberti, C.; Bordiga, S.; Lillerud, K. P. Tuned to perfection: Ironing out the defects in metal-organic framework UiO-66. Chem. Mater. 2014, 26, 4068–4071.

[27]

Furukawa, H.; Gándara, F.; Zhang, Y. B.; Jiang, J. C.; Queen, W. L.; Hudson, M. R.; Yaghi, O. M. Water adsorption in porous metal-organic frameworks and related materials. J. Am. Chem. Soc. 2014, 136, 4369–4381.

[28]

Kandiah, M.; Nilsen, M. H.; Usseglio, S.; Jakobsen, S.; Olsbye, U.; Tilset, M.; Larabi, C.; Quadrelli, E. A.; Bonino, F.; Lillerud, K. P. Synthesis and stability of tagged UiO-66 Zr-MOFs. Chem. Mater. 2010, 22, 6632–6640.

[29]

Bůžek, D.; Demel, J.; Lang, K. Zirconium metal-organic framework UiO-66: Stability in an aqueous environment and its relevance for organophosphate degradation. Inorg. Chem. 2018, 57, 14290–14297.

[30]

Howarth, A. J.; Liu, Y. Y.; Li, P.; Li, Z. Y.; Wang, T. C.; Hupp, J. T.; Farha, O. K. Chemical, thermal and mechanical stabilities of metal-organic frameworks. Nat. Rev. Mater. 2016, 1, 15018.

[31]

Fang, Z. L.; Bueken, B.; De Vos, D. E.; Fischer, R. A. Defect-engineered metal-organic frameworks. Angew. Chem., Int. Ed. 2015, 54, 7234–7254.

[32]

Dissegna, S.; Epp, K.; Heinz, W. R.; Kieslich, G.; Fischer, R. A. Defective metal-organic frameworks. Adv. Mater. 2018, 30, 1704501.

[33]

Cox, C. S.; Slavich, E.; Macreadie, L. K.; McKemmish, L. K.; Lessio, M. Understanding the role of synthetic parameters in the defect engineering of UiO-66: A review and meta-analysis. Chem. Mater. 2023, 35, 3057–3072.

[34]

Yuan, S.; Feng, L.; Wang, K. C.; Pang, J. D.; Bosch, M.; Lollar, C.; Sun, Y. J.; Qin, J. S.; Yang, X. Y.; Zhang, P. et al. Stable metal-organic frameworks: Design, synthesis, and applications. Adv. Mater. 2018, 30, 1704303.

[35]

Lázaro, I. A.; Forgan, R. S. Application of zirconium MOFs in drug delivery and biomedicine. Coord. Chem. Rev. 2019, 380, 230–259.

[36]

Xiao, J. D.; Shang, Q. C.; Xiong, Y. J.; Zhang, Q.; Luo, Y.; Yu, S. H.; Jiang, H. L. Boosting photocatalytic hydrogen production of a metal-organic framework decorated with platinum nanoparticles: The platinum location matters. Angew. Chem., Int. Ed. 2016, 55, 9389–9393.

[37]

Liu, X. L.; Demir, N. K.; Wu, Z. T.; Li, K. Highly water-stable zirconium metal organic framework UiO-66 membranes supported on alumina hollow fibers for desalination. J. Am. Chem. Soc. 2015, 137, 6999–7002.

[38]

Morris, W.; Briley, W. E.; Auyeung, E.; Cabezas, M. D.; Mirkin, C. A. Nucleic acid-metal organic framework (MOF) nanoparticle conjugates. J. Am. Chem. Soc. 2014, 136, 7261–7264.

[39]

Zheng, Z. L.; Nguyen, H. L.; Hanikel, N.; Li, K. K. Y.; Zhou, Z. H.; Ma, T. Q.; Yaghi, O. M. High-yield, green and scalable methods for producing MOF-303 for water harvesting from desert air. Nat. Protoc. 2023, 18, 136–156.

[40]

Stock, N.; Biswas, S. Synthesis of metal-organic frameworks (MOFs): Routes to various MOF topologies, morphologies, and composites. Chem. Rev. 2012, 112, 933–969.

[41]

Solís, R. R.; Peñas-Garzón, M.; Belver, C.; Rodriguez, J. J.; Bedia, J. Highly stable UiO-66-NH2 by the microwave-assisted synthesis for solar photocatalytic water treatment. J. Environ. Chem. Eng. 2022, 10, 107122.

[42]

Wei, J. Z.; Gong, F. X.; Sun, X. J.; Li, Y.; Zhang, T.; Zhao, X. J.; Zhang, F. M. Rapid and low-cost electrochemical synthesis of UiO-66-NH2 with enhanced fluorescence detection performance. Inorg. Chem. 2019, 58, 6742–6747.

[43]

Zhang, J. T.; Shi, J. B.; Zhao, H.; Bai, J. B.; Li, X. L.; Leng, K. Y. Crystal growth blocking strategy enabling efficient solvent-free synthesis of hierarchical UiO-66 for large-molecule catalysis. Cryst. Growth Des. 2023, 23, 1205–1210.

[44]

Zhao, H. J.; Yi, B. L.; Si, X. M.; Bao, W. D.; Cao, L.; Su, L. X.; Wang, Y. L.; Chou, L. Y.; Xie, J. Insights into the solid-state synthesis of defect-rich Zr-UiO-66. Inorg. Chem. 2022, 61, 6829–6836.

[45]

Ye, G.; Wan, L. L.; Zhou, J.; Wu, L.; Zhang, Q. L. Solid-phase rapid synthesis of hierarchical UiO-type metal-organic frameworks as excellent solid acid catalysts for acetalization of benzaldehyde with alcohol. Dalton Trans. 2023, 52, 7695–7700.

[46]

Zhao, H. J.; Yi, B. L.; Si, X. M.; Cao, L.; Su, L. X.; Wang, Y. L.; Chou, L. Y.; Xie, J. Solid-state synthesis of defect-rich Zr-UiO-66 metal-organic framework nanoparticles for the catalytic ring opening of epoxides with alcohols. ACS Appl. Nano Mater. 2021, 4, 9752–9759.

[47]

Fu, Q. J.; Niu, W. J.; Yan, L. T.; Xie, W. P.; Jiang, H. M.; Zhang, S.; Yang, L. Z.; Wang, Y.; Xing, Y. L.; Zhao, X. B. A versatile microfluidic strategy using air–liquid segmented flow for continuous and efficient synthesis of metal-organic frameworks. Mater. Lett. 2023, 343, 134344.

[48]

Xu, H. L.; Chen, M. M.; Ji, M. Solid Lewis acid-base pair catalysts constructed by regulations on defects of UiO-66 for the catalytic hydrogenation of cinnamaldehyde. Catal. Today 2022, 402, 52–59.

[49]

Tatay, S.; Martínez-Giménez, S.; Rubio-Gaspar, A.; Gómez-Oliveira, E.; Castells-Gil, J.; Dong, Z. Y.; Mayoral, Á.; Almora-Barrios, N.; M Padial, N; Martí-Gastaldo, C. Synthetic control of correlated disorder in UiO-66 frameworks. Nat. Commun. 2023, 14, 6962.

[50]

Semivrazhskaya, O. O.; Salionov, D.; Clark, A. H.; Casati, N. P. M.; Nachtegaal, M.; Ranocchiari, M.; Bjelić, S.; Verel, R.; van Bokhoven, J. A.; Sushkevich, V. L. Deciphering the mechanism of crystallization of UiO-66 metal-organic framework. Small 2023, 19, 2305771.

[51]

Shan, B. H.; James, J. B.; Armstrong, M. R.; Close, E. C.; Letham, P. A.; Nikkhah, K.; Lin, Y. S.; Mu, B. Influences of deprotonation and modulation on nucleation and growth of UiO-66: Intergrowth and orientation. J. Phys. Chem. C 2018, 122, 2200–2206.

[52]

Chen, X.; Li, Y. J.; Fu, Q.; Qin, H. Y.; Lv, J. N.; Yang, K.; Zhang, Q. C.; Zhang, H.; Wang, M. An efficient modulated synthesis of zirconium metal-organic framework UiO-66. RSC Adv. 2022, 12, 6083–6092.

[53]

Ou, R.; Zhu, W. J.; Li, L. L.; Wang, X. Y.; Wang, Q.; Gao, Q.; Yuan, A. H.; Pan, J. M.; Yang, F. Boosted capture of volatile organic compounds in adsorption capacity and selectivity by rationally exploiting defect-engineering of UiO-66(Zr). Sep. Purif. Technol. 2021, 266, 118087.

[54]

Lee, T. H.; Jung, J. G.; Kim, Y. J.; Roh, J. S.; Yoon, H. W.; Ghanem, B. S.; Kim, H. W.; Cho, Y. H.; Pinnau, I.; Park, H. B. Defect engineering in metal-organic frameworks towards advanced mixed matrix membranes for efficient propylene/propane separation. Angew. Chem., Int. Ed. 2021, 60, 13081–13088.

[55]

Ma, X.; Wang, L.; Zhang, Q.; Jiang, H. L. Switching on the photocatalysis of metal-organic frameworks by engineering structural defects. Angew. Chem., Int. Ed. 2019, 58, 12175–12179.

[56]

Lázaro, I. A.; Popescu, C.; Cirujano, F. G. Controlling the molecular diffusion in MOFs with the acidity of monocarboxylate modulators. Dalton Trans. 2021, 50, 11291–11299.

[57]

Gibbons, B.; Bartlett, E. C.; Cai, M.; Yang, X. Z.; Johnson, E. M.; Morris, A. J. Defect level and particle size effects on the hydrolysis of a chemical warfare agent simulant by UiO-66. Inorg. Chem. 2021, 60, 16378–16387.

[58]

Atzori, C.; Shearer, G. C.; Maschio, L.; Civalleri, B.; Bonino, F.; Lamberti, C.; Svelle, S.; Lillerud, K. P.; Bordiga, S. Effect of benzoic acid as a modulator in the structure of UiO-66: An experimental and computational study. J. Phys. Chem. C 2017, 121, 9312–9324.

[59]

Wang, K. Y.; Yang, Z. T.; Zhang, J. Q.; Banerjee, S.; Joseph, E. A.; Hsu, Y. C.; Yuan, S.; Feng, L.; Zhou, H. C. Creating hierarchical pores in metal-organic frameworks via postsynthetic reactions. Nat. Protoc. 2023, 18, 604–625.

[60]

Kim, M.; Cahill, J. F.; Fei, H. H.; Prather, K. A.; Cohen, S. M. Postsynthetic ligand and cation exchange in robust metal-organic frameworks. J. Am. Chem. Soc. 2012, 134, 18082–18088.

[61]

Karagiaridi, O.; Bury, W.; Mondloch, J. E.; Hupp, J. T.; Farha, O. K. Solvent-assisted linker exchange: An alternative to the de novo synthesis of unattainable metal-organic frameworks. Angew. Chem., Int. Ed. 2014, 53, 4530–4540.

[62]

Gutov, O. V.; Hevia, M. G.; Escudero-Adán, E. C.; Shafir, A. Metal-organic framework (MOF) defects under control: Insights into the missing linker sites and their implication in the reactivity of zirconium-based frameworks. Inorg. Chem. 2015, 54, 8396–8400.

[63]

Taddei, M.; Wakeham, R. J.; Koutsianos, A.; Andreoli, E.; Barron, A. R. Post-synthetic ligand exchange in zirconium-based metal-organic frameworks: Beware of the defects! Angew. Chem., Int. Ed. 2018, 57, 11706–11710.

[64]

Das, S.; Yang, D.; Conley, E. T.; Gates, B. C. 2-Propanol dehydration on the nodes of the metal-organic framework UiO-66: Distinguishing catalytic sites for formation of propene and di-isopropyl ether. ACS Catal. 2023, 13, 14173–14188

[65]

Feng, L.; Yuan, S.; Zhang, L. L.; Tan, K.; Li, J. L.; Kirchon, A.; Liu, L. M.; Zhang, P.; Han, Y.; Chabal, Y. J. et al. Creating hierarchical pores by controlled linker thermolysis in multivariate metal-organic frameworks. J. Am. Chem. Soc. 2018, 140, 2363–2372.

[66]

Bueken, B.; Van Velthoven, N.; Krajnc, A.; Smolders, S.; Taulelle, F.; Mellot-Draznieks, C.; Mali, G.; Bennett, T. D.; De Vos, D. Tackling the defect conundrum in UiO-66: A mixed-linker approach to engineering missing linker defects. Chem. Mater. 2017, 29, 10478–10486.

[67]

Feng, X.; Jena, H. S.; Krishnaraj, C.; Arenas-Esteban, D.; Leus, K.; Wang, G. B.; Sun, J. M.; Rüscher, M.; Timoshenko, J.; Roldan Cuenya, B. et al. Creation of exclusive artificial cluster defects by selective metal removal in the (Zn, Zr) mixed-metal UiO-66. J. Am. Chem. Soc. 2021, 143, 21511–21518.

[68]

Sun, Y. W.; Yan, J. H.; Gao, Y. L.; Ji, T. T.; Chen, S. X.; Wang, C.; Lu, P.; Li, Y. S.; Liu, Y. Fabrication of highly oriented ultrathin zirconium metal-organic framework membrane from nanosheets towards unprecedented gas separation. Angew. Chem., Int. Ed. 2023, 62, e202216697.

[69]

Zhai, X.; Cao, T. L.; Lu, X. Y.; Gao, N. J.; Li, L. L.; Liu, F. C.; Fu, Y.; Qi, W. Construction of hierarchically porous metal-organic frameworks via vapor atmosphere etching. Sci. China Mater. 2022, 65, 3062–3068.

[70]

Yang, X. Y.; Li, Z.; Tang, S. K. Tailored design of hierarchically porous UiO-66 with a controlled pore structure and metal sites. Cryst. Growth Des. 2021, 21, 6092–6100.

[71]

Wang, P. M.; Sun, L. X.; Ye, J. H.; Liu, Q.; Fei, Z. Y.; Chen, X.; Zhang, Z. X.; Tang, J. H.; Cui, M. F.; Qiao, X. Construction of crystal defect sites in UiO-66 for adsorption of dimethyl phthalate and phthalic acid. Microporous Mesoporous Mater. 2021, 312, 110778.

[72]

Zhou, T.; Yang, D. H.; Wang, Y. J.; Cheng, J. S.; Chen, Q.; Liu, B. W.; Liu, Z. W. Low-pressure-RF plasma modification of UiO-66 and its application in methylene blue adsorption. Plasma Sci. Technol. 2023, 25, 085505.

[73]

Xiang, W. L.; Ren, J.; Chen, S.; Shen, C. Y.; Chen, Y. F.; Zhang, M. H.; Liu, C. J. The metal-organic framework UiO-66 with missing-linker defects: A highly active catalyst for carbon dioxide cycloaddition. Appl. Energy 2020, 277, 115560.

[74]

Yuan, S.; Zou, L. F.; Qin, J. S.; Li, J. L.; Huang, L.; Feng, L.; Wang, X.; Bosch, M.; Alsalme, A.; Cagin, T. et al. Construction of hierarchically porous metal-organic frameworks through linker labilization. Nat. Commun. 2017, 8, 15356.

[75]

Bon, V.; Senkovskyy, V.; Senkovska, I.; Kaskel, S. Zr(IV) and Hf(IV) based metal-organic frameworks with reo-topology. Chem. Commun. 2012, 48, 8407–8409.

[76]

Liu, L. M.; Chen, Z. J.; Wang, J. J.; Zhang, D. L.; Zhu, Y. H.; Ling, S. L.; Huang, K. W.; Belmabkhout, Y.; Adil, K.; Zhang, Y. X. et al. Imaging defects and their evolution in a metal-organic framework at sub-unit-cell resolution. Nat. Chem. 2019, 11, 622–628.

[77]

Thornton, A. W.; Babarao, R.; Jain, A.; Trousselet, F.; Coudert, F. X. Defects in metal-organic frameworks: A compromise between adsorption and stability. Dalton Trans. 2016, 45, 4352–4359.

[78]

Shan, Y.; Zhang, G. X.; Shi, Y. X.; Pang, H. Synthesis and catalytic application of defective MOF materials. Cell Rep. Phys. Sci. 2023, 4, 101301.

[79]

Feng, Y.; Chen, Q.; Jiang, M. Q.; Yao, J. F. Tailoring the properties of UiO-66 through defect engineering: A review. Ind. Eng. Chem. Res. 2019, 58, 17646–17659.

[80]

Guo, B. B.; Cheng, X. Y.; Tang, Y.; Guo, W.; Deng, S. Q.; Wu, L.; Fu, X. Z. Dehydrated UiO-66(SH)2: The Zr-O cluster and its photocatalytic role mimicking the biological nitrogen fixation. Angew. Chem., Int. Ed. 2022, 61, e202117244.

[81]

Dorneles de Mello, M.; Kumar, G.; Tabassum, T.; Jain, S. K.; Chen, T. H.; Caratzoulas, S.; Li, X. Y.; Vlachos, D. G.; Han, S. I.; Scott, S. L. et al. Phosphonate-modified UiO-66 brønsted acid catalyst and its use in dehydra-decyclization of 2-methyltetrahydrofuran to pentadienes. Angew. Chem., Int. Ed. 2020, 59, 13260–13266.

[82]

Wang, C.; Kosari, M.; Xi, S. B.; Zeng, H. C. Uniform Si-infused UiO-66 as a robust catalyst host for efficient CO2 hydrogenation to methanol. Adv. Funct. Mater. 2023, 33, 2212478.

[83]

He, X. B.; Yin, F. X.; Yi, X. R.; Yang, T.; Chen, B. H.; Wu, X.; Guo, S.; Li, G. R.; Li, Z. C. Defective UiO-66-NH2 functionalized with stable superoxide radicals toward electrocatalytic nitrogen reduction with high faradaic efficiency. ACS Appl. Mater. Interfaces 2022, 14, 26571–26586.

[84]

Sannes, D. K.; Øien-Ødegaard, S.; Aunan, E.; Nova, A.; Olsbye, U. Quantification of linker defects in UiO-type metal-organic frameworks. Chem. Mater. 2023, 35, 3793–3800.

[85]

Shearer, G. C.; Chavan, S.; Bordiga, S.; Svelle, S.; Olsbye, U.; Lillerud, K. P. Defect engineering: Tuning the porosity and composition of the metal-organic framework UiO-66 via modulated synthesis. Chem. Mater. 2016, 28, 3749–3761.

[86]

Shan, B. H.; McIntyre, S. M.; Armstrong, M. R.; Shen, Y. X.; Mu, B. Investigation of missing-cluster defects in UiO-66 and ferrocene deposition into defect-induced cavities. Ind. Eng. Chem. Res. 2018, 57, 14233–14241.

[87]

Fu, Y.; Kang, Z. Z.; Cao, W. C.; Yin, J. L.; Tu, Y. Q.; Li, J. H.; Guan, H. X.; Wang, Y. R.; Wang, Q.; Kong, X. Q. Defect-assisted loading and docking conformations of pharmaceuticals in metal-organic frameworks. Angew. Chem., Int. Ed. 2021, 60, 7719–7727.

[88]

Chevreau, H.; Liang, W. B.; Kearley, G. J.; Duyker, S. G.; D’Alessandro, D. M.; Peterson, V. K. Concentration-dependent binding of CO2 and CD4 in UiO-66(Zr). J. Phys. Chem. C 2015, 119, 6980–6987.

[89]

Johnstone, D. N.; Firth, F. C. N.; Grey, C. P.; Midgley, P. A.; Cliffe, M. J.; Collins, S. M. Direct imaging of correlated defect nanodomains in a metal-organic framework. J. Am. Chem. Soc. 2020, 142, 13081–13089.

[90]

Kang, X. C.; Lyu, K.; Li, L. L.; Li, J. N.; Kimberley, L.; Wang, B.; Liu, L. F.; Cheng, Y. Q.; Frogley, M. D.; Rudić, S. et al. Integration of mesopores and crystal defects in metal-organic frameworks via templated electrosynthesis. Nat. Commun. 2019, 10, 4466.

[91]

Zhang, D. L.; Zhu, Y. H.; Liu, L. M.; Ying, X. R.; Hsiung, C. E.; Sougrat, R.; Li, K.; Han, Y. Atomic-resolution transmission electron microscopy of electron beam-sensitive crystalline materials. Science 2018, 359, 675–679.

[92]

Wang, J. J.; Liu, L. M.; Chen, C. L.; Dong, X. L.; Wang, Q.; Alfilfil, L.; AlAlouni, M. R.; Yao, K. X.; Huang, J. F.; Zhang, D. L. et al. Engineering effective structural defects of metal-organic frameworks to enhance their catalytic performances. J. Mater. Chem. A 2020, 8, 4464–4472.

[93]

Xu, Y.; Jiao, L.; Ma, J. L.; Zhang, P.; Tang, Y. F.; Liu, L. M.; Liu, Y.; Ding, H. H.; Sun, J. F.; Wang, M. M. et al. Metal-organic frameworks for nanoconfinement of chlorine in rechargeable lithium-chlorine batteries. Joule 2023, 7, 515–528.

[94]

Liu, G. Z.; Guo, Y. N.; Chen, C. L.; Lu, Y.; Chen, G. N.; Liu, G. P.; Han, Y.; Jin, W. Q.; Xu, N. P. Eliminating lattice defects in metal-organic framework molecular-sieving membranes. Nat. Mater. 2023, 22, 769–776.

[95]

Liu, B. Y.; Chen, X.; Huang, N.; Liu, S. X.; Wang, Y.; Lan, X. C.; Wei, F.; Wang, T. F. Imaging the dynamic influence of functional groups on metal-organic frameworks. Nat. Commun. 2023, 14, 4835.

[96]

Feldblyum, J. I.; Liu, M.; Gidley, D. W.; Matzger, A. J. Reconciling the discrepancies between crystallographic porosity and guest access as exemplified by Zn-HKUST-1. J. Am. Chem. Soc. 2011, 133, 18257–18263.

[97]

Liu, M.; Wong-Foy, A. G.; Vallery, R. S.; Frieze, W. E.; Schnobrich, J. K.; Gidley, D. W.; Matzger, A. J. Evolution of nanoscale pore structure in coordination polymers during thermal and chemical exposure revealed by positron annihilation. Adv. Mater. 2010, 22, 1598–1601.

[98]

Yuan, L. Y.; Tian, M.; Lan, J. H.; Cao, X. Z.; Wang, X. L.; Chai, Z. F.; Gibson, J. K.; Shi, W. Q. Defect engineering in metal-organic frameworks: A new strategy to develop applicable actinide sorbents. Chem. Commun. 2018, 54, 370–373.

[99]

Mondal, S. S.; Dey, S.; Attallah, A. G.; Bhunia, A.; Kelling, A.; Schilde, U.; Krause-Rehberg, R.; Janiak, C.; Holdt, H. J. Missing building blocks defects in a porous hydrogen-bonded amide-imidazolate network proven by positron annihilation lifetime spectroscopy. ChemistrySelect 2016, 1, 4320–4325.

[100]

Mitchell, S.; Gerchow, L.; Warringham, R.; Crivelli, P.; Pérez-Ramírez, J. Shedding new light on nanostructured catalysts with positron annihilation spectroscopy. Small Methods 2018, 2, 1800268.

[101]

Guo, P.; Dutta, D.; Wong-Foy, A. G.; Gidley, D. W.; Matzger, A. J. Water sensitivity in Zn4O-based MOFs is structure and history dependent. J. Am. Chem. Soc. 2015, 137, 2651–2657.

[102]

Wang, X.; Zhang, X. M.; Zhao, Y.; Luo, D.; Shui, L. L.; Li, Y. B.; Ma, G.; Zhu, Y. J.; Zhang, Y. G.; Zhou, G. F. et al. Accelerated multi-step sulfur redox reactions in lithium-sulfur batteries enabled by dual defects in metal-organic framework-based catalysts. Angew. Chem., Int. Ed. 2023, 62, e202306901.

[103]

Trickett, C. A.; Gagnon, K. J.; Lee, S.; Gándara, F.; Bürgi, H. B.; Yaghi, O. M. Definitive molecular level characterization of defects in UiO-66 crystals. Angew. Chem., Int. Ed. 2015, 127, 11314–11319.

[104]

Cliffe, M. J.; Wan, W.; Zou, X. D.; Chater, P. A.; Kleppe, A. K.; Tucker, M. G.; Wilhelm, H.; Funnell, N. P.; Coudert, F. X.; Goodwin, A. L. Correlated defect nanoregions in a metal-organic framework. Nat. Commun. 2014, 5, 4176.

[105]

Bourikas, K.; Kordulis, C.; Lycourghiotis, A. Titanium dioxide (anatase and rutile): Surface chemistry, liquid solid interface chemistry, and scientific synthesis of supported catalysts. Chem. Rev. 2014, 114, 9754–9823.

[106]

Klet, R. C.; Liu, Y. Y.; Wang, T. C.; Hupp, J. T.; Farha, O. K. Evaluation of Brønsted acidity and proton topology in Zr- and Hf-based metal-organic frameworks using potentiometric acid-base titration. J. Mater. Chem. A 2016, 4, 1479–1485.

[107]

DeStefano, M. R.; Islamoglu, T.; Garibay, S. J.; Hupp, J. T.; Farha, O. K. Room-temperature synthesis of UiO-66 and thermal modulation of densities of defect sites. Chem. Mater. 2017, 29, 1357–1361.

[108]

Hicks, K. E.; Wolek, A. T. Y.; Farha, O. K.; Notestein, J. M. The dependence of olefin hydrogenation and isomerization rates on zirconium metal-organic framework structure. ACS Catal. 2022, 12, 13671–13680.

[109]

Kar, A. K.; Sarkar, R.; Manal, A. K.; Kumar, R.; Chakraborty, S.; Ahuja, R.; Srivastava, R. Unveiling and understanding the remarkable enhancement in the catalytic activity by the defect creation in UIO-66 during the catalytic transfer hydrodeoxygenation of vanillin with isopropanol. Appl. Catal. B: Environ. 2023, 325, 122385.

[110]

Evtushok, V. Y.; Larionov, K. P.; Lopatkin, V. A.; Stonkus, O. A.; Kholdeeva, O. A. What factors determine activity of UiO-66 in H2O2-based oxidation of thioethers. The role of basic sites. J. Catal. 2023, 427, 115099.

[111]

Tan, K.; Pandey, H.; Wang, H.; Velasco, E.; Wang, K. Y.; Zhou, H. C.; Li, J.; Thonhauser, T. Defect termination in the UiO-66 family of metal-organic frameworks: The role of water and modulator. J. Am. Chem. Soc. 2021, 143, 6328–6332.

[112]

Fu, Y.; Kang, Z. Z.; Yin, J. L.; Cao, W. C.; Tu, Y. Q.; Wang, Q.; Kong, X. Q. Duet of acetate and water at the defects of metal-organic frameworks. Nano Lett. 2019, 19, 1618–1624.

[113]

He, Y. Q.; Li, C. G.; Chen, X. B.; Shi, Z.; Feng, S. H. Visible-light-responsive UiO-66(Zr) with defects efficiently promoting photocatalytic CO2 reduction. ACS Appl. Mater. Interfaces 2022, 14, 28977–28984.

[114]

Yin, J. L.; Kang, Z. Z.; Fu, Y.; Cao, W. C.; Wang, Y. R.; Guan, H. X.; Yin, Y.; Chen, B. B.; Yi, X. F.; Chen, W. et al. Molecular identification and quantification of defect sites in metal-organic frameworks with NMR probe molecules. Nat. Commun. 2022, 13, 5112.

[115]

Peng, W. L.; Liu, F. Q.; Yi, X. F.; Sun, S. G.; Shi, H.; Hui, Y.; Chen, W.; Yu, X.; Liu, Z. Q.; Qin, Y. C. et al. Structural and acidic characteristics of multiple Zr defect sites in UiO-66 metal-organic frameworks. J. Phys. Chem. Lett. 2022, 13, 9295–9302.

[116]

Kong, X. Q.; Deng, H. X.; Yan, F. Y.; Kim, J.; Swisher, J. A.; Smit, B.; Yaghi, O. M.; Reimer, J. A. Mapping of functional groups in metal-organic frameworks. Science 2013, 341, 882–885.

[117]

Zhao, M. T.; Yuan, K.; Wang, Y.; Li, G. D.; Guo, J.; Gu, L.; Hu, W. P.; Zhao, H. J.; Tang, Z. Y. Metal-organic frameworks as selectivity regulators for hydrogenation reactions. Nature 2016, 539, 76–80.

[118]

Feng, Y. M.; Xu, Y.; Liu, S. C.; Wu, D.; Su, Z. Q.; Chen, G.; Liu, J. H.; Li, G. L. Recent advances in enzyme immobilization based on novel porous framework materials and its applications in biosensing. Coord. Chem. Rev. 2022, 459, 214414.

[119]

Feng, X.; Jena, H. S.; Krishnaraj, C.; Leus, K.; Wang, G. B.; Chen, H.; Jia, C. M.; Van Der Voort, P. Generating catalytic sites in UiO-66 through defect engineering. ACS Appl. Mater. Interfaces 2021, 13, 60715–60735.

[120]

Wu, J. C.; Liang, D.; Song, X. B.; Liu, T. S.; Xu, T. Y.; Wang, S. Y.; Zou, Y. Q. Sulfonic groups functionalized Zr-metal organic framework for highly catalytic transfer hydrogenation of furfural to furfuryl alcohol. J. Energy Chem. 2022, 71, 411–417.

[121]

Liang, Y.; Li, C. H.; Chen, L. J.; Huo, J.; Loubidi, M.; Zhou, Y. Y.; Liu, Y. B. Microwave-assisted acid-induced formation of linker vacancies within Zr-based metal organic frameworks with enhanced heterogeneous catalysis. Chin. Chem. Lett. 2021, 32, 787–790.

[122]

Liu, X. T.; Hu, C. H.; Wu, J. J.; Cui, P.; Wei, F. Y. Defective NH2-UiO-66 (Zr) effectively converting CO2 into cyclic carbonate under ambient pressure, solvent-free and co-catalyst-free conditions. Chin. J. Chem. Eng. 2022, 43, 222–229.

[123]

Rapeyko, A.; Rodenas, M.; Llabrés i Xamena, F. X. Zr-containing UiO-66 metal-organic frameworks as highly selective heterogeneous acid catalysts for the direct ketalization of levulinic acid. Adv. Sustain. Syst. 2022, 6, 2100451.

[124]

Feng, X.; Hajek, J.; Jena, H. S.; Wang, G. B.; Veerapandian, S. K. P.; Morent, R.; De Geyter, N.; Leyssens, K.; Hoffman, A. E. J.; Meynen, V. et al. Engineering a highly defective stable UiO-66 with tunable lewis- brønsted acidity: The role of the hemilabile linker. J. Am. Chem. Soc. 2020, 142, 3174–3183.

[125]

Dai, J.; Wang, D. Z.; Yang, J.; Tian, R.; Wang, Q.; Li, Y. Construction of imidazole@defective hierarchical porous UiO-66 and fibrous composites for rapid and nonbuffered catalytic hydrolysis of organophosphorus nerve agents. J. Colloid Interface Sci. 2023, 652, 1156–1169.

[126]

Cirujano, F. G.; Llabrés i Xamena, F. X. Tuning the catalytic properties of UiO-66 metal-organic frameworks: From lewis to defect-induced brønsted acidity. J. Phys. Chem. Lett. 2020, 11, 4879–4890.

[127]

Kalaj, M.; Momeni, M. R.; Bentz, K. C.; Barcus, K. S.; Palomba, J. M.; Paesani, F.; Cohen, S. M. Halogen bonding in UiO-66 frameworks promotes superior chemical warfare agent simulant degradation. Chem. Commun. 2019, 55, 3481–3484.

[128]

Ma, P.; Ding, M. L.; Rong, W.; Liu, X.; Yao, J. F. Acetic acid-assisted polyhydroxy acid modification of a zirconium-based MOF for synergistic CO2 fixation. J. Environ. Chem. Eng. 2022, 10, 108739.

[129]

Ai, Z. W.; Jiao, L.; Wang, J. X.; Jiang, H. L. Generation of hierarchical pores in metal-organic frameworks by introducing rigid modulator. CCS Chem. 2022, 4, 3705–3714.

[130]

Wu, Y. F.; Xiao, Y.; Yuan, H.; Zhang, Z. Q.; Shi, S. B.; Wei, R. P.; Gao, L. J.; Xiao, G. M. Imidazolium ionic liquid functionalized UiO-66-NH2 as highly efficient catalysts for chemical fixation of CO2 into cyclic carbonates. Microporous Mesoporous Mater. 2021, 310, 110578.

[131]

Zou, Y. H.; Huang, Y. B.; Si, D. H.; Yin, Q.; Wu, Q. J.; Weng, Z. X.; Cao, R. Porous metal-organic framework liquids for enhanced CO2 adsorption and catalytic conversion. Angew. Chem., Int. Ed. 2021, 60, 20915–20920.

[132]

Vermoortele, F.; Vandichel, M.; Van de Voorde, B.; Ameloot, R.; Waroquier, M.; Van Speybroeck, V.; De Vos, D. E. Electronic effects of linker substitution on lewis acid catalysis with metal-organic frameworks. Angew. Chem., Int. Ed. 2012, 51, 4887–4890.

[133]

Fang, G. Q.; Hu, J. N.; Tian, L. C.; Liang, J. X.; Lin, J.; Li, L.; Zhu, C.; Wang, X. D. Zirconium-oxo nodes of MOFs with tunable electronic properties provide effective ·OH species for enhanced methane hydroxylation. Angew. Chem., Int. Ed. 2022, 61, e202205077.

[134]

Jrad, A.; Hmadeh, M.; Awada, G.; Chakleh, R.; Ahmad, M. Efficient biofuel production by MTV-UiO-66 based catalysts. Chem. Eng. J. 2021, 410, 128237.

[135]

Jiménez-Osés, G.; Osuna, S.; Gao, X.; Sawaya, M. R.; Gilson, L.; Collier, S. J.; Huisman, G. W.; Yeates, T. O.; Tang, Y.; Houk, K. N. The role of distant mutations and allosteric regulation on LovD active site dynamics. Nat. Chem. Biol. 2014, 10, 431–436.

[136]

Bunzel, H. A.; Anderson, J. L. R.; Hilvert, D.; Arcus, V. L.; van der Kamp, M. W.; Mulholland, A. J. Evolution of dynamical networks enhances catalysis in a designer enzyme. Nat. Chem. 2021, 13, 1017–1022.

[137]

Zhang, X. F.; Yang, C. Y.; An, P. F.; Cui, C. Q.; Ma, Y. M.; Liu, H. T.; Wang, H.; Yan, X. Y.; Li, G. D.; Tang, Z. Y. Creating enzyme-mimicking nanopockets in metal-organic frameworks for catalysis. Sci. Adv. 2022, 8, eadd5678.

[138]

Yin, J.; Fu, W. D.; Zhang, J. R.; Liu, X. Y.; Zhang, X. M.; Wang, C.; He, J.; Jiang, W.; Li, H. P.; Li, H. M. UiO-66(Zr)-based porous ionic liquids for highly efficient extraction coupled catalytic oxidative desulfurization. Chem. Eng. J. 2023, 470, 144290.

[139]

Dai, Q. Q.; Yang, Z. F.; Li, J.; Cao, Y.; Tang, H. B.; Wei, X. C. Zirconium-based MOFs-loaded ionic liquid-catalyzed preparation of biodiesel from Jatropha oil. Renew. Energy 2021, 163, 1588–1594.

[140]

Zhang, X. L.; Sun, Y. X.; Liu, Y. F.; Zhai, Z. Y.; Guo, S. Q.; Peng, L. C.; Qin, Y.; Li, C. J. UiO-66-NH2 fabrics: Role of trifluoroacetic acid as a modulator on MOF uniform coating on electrospun nanofibers and efficient decontamination of chemical warfare agent simulants. ACS Appl. Mater. Interfaces 2021, 13, 39976–39984.

[141]

de Azambuja, F.; Loosen, A.; Conic, D.; van den Besselaar, M.; Harvey, J. N.; Parac-Vogt, T. N. En route to a heterogeneous catalytic direct peptide bond formation by Zr-based metal-organic framework catalysts. ACS Catal. 2021, 11, 7647–7658.

[142]

Ronaghi, N.; Shade, D.; Moon, H. J.; Najmi, S.; Cleveland, J. W.; Walton, K. S.; France, S.; Jones, C. W. Modulation and tuning of UiO-66 for lewis acid catalyzed carbohydrate conversion: Conversion of unprotected aldose sugars to polyhydroxyalkyl and C-glycosyl furans. ACS Sustain. Chem. Eng. 2021, 9, 11581–11595.

[143]

Maksimchuk, N. V.; Lee, J. S.; Solovyeva, M. V.; Cho, K. H.; Shmakov, A. N.; Chesalov, Y. A.; Chang, J. S.; Kholdeeva, O. A. Protons make possible heterolytic activation of hydrogen peroxide over Zr-based metal-organic frameworks. ACS Catal. 2019, 9, 9699–9704.

[144]

Melillo, A.; Franconetti, A.; Alvaro, M.; Ferrer, B.; Garcia, H. Metal nodes of metal-organic frameworks can activate molecular hydrogen. Chem.—Eur. J. 2023, 29, e202202625.

[145]

Jiang, Y. Y.; Zhou, R. R.; Ye, B. Y.; Hou, Z. Y. Acetalization of glycerol over sulfated UiO-66 under mild condition. J. Ind. Eng. Chem. 2022, 110, 357–366.

[146]

Zheng, Z. L.; Rong, Z. C.; Rampal, N.; Borgs, C.; Chayes, J. T.; Yaghi, O. M. A GPT-4 reticular chemist for guiding MOF discovery. Angew. Chem., Int. Ed. 2023, 62, e202311983.

[147]

Zheng, Z. L.; Zhang, O. F.; Borgs, C.; Chayes, J. T.; Yaghi, O. M. ChatGPT chemistry assistant for text mining and the prediction of MOF synthesis. J. Am. Chem. Soc. 2023, 145, 18048–18062.

[148]

Zheng, Z. L.; Alawadhi, A. H.; Chheda, S.; Neumann, S. E.; Rampal, N.; Liu, S. C.; Nguyen, H. L.; Lin, Y. H.; Rong, Z. C.; Siepmann, J. I. et al. Shaping the water-harvesting behavior of metal-organic frameworks aided by fine-tuned GPT models. J. Am. Chem. Soc. 2023, 145, 28284–28295.

[149]

Boiko, D. A.; MacKnight, R.; Kline, B.; Gomes, G. Autonomous chemical research with large language models. Nature 2023, 624, 570–578.

Publication history
Copyright
Acknowledgements

Publication history

Received: 28 January 2024
Revised: 05 March 2024
Accepted: 07 March 2024
Published: 02 May 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

The authors acknowledge financial support from the National Key Research and Development Program of China (No. 2021YFA1500403, G. D. L.; Nos. 2021YFA1200302 and 2022YFA1205400, Z. Y. T.), Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB36000000, Z. Y. T. and G. D. L.), National Natural Science Foundation of China (Nos. 92356304 and 92056204, Z. Y. T.; Nos. 52372079 and 22173024, G. D. L.; No. 52003066, L. C.), and Youth Innovation Promotion Association of CAS (G. D. L.).

Return