Journal Home > Online First

The use of single-atom cocatalysts plays a crucial role in enhancing artificial photocatalysis, where the precise construction of stable and efficient single-atom configuration is essential but remains challenging. Here, we report a simple one-step hydrothermal method for preparing single-atomic Mo modified ZnIn2S4 (Mo-ZIS) nanosheets as a highly active photocatalytic hydrogen evolution (PHE) photocatalyst. The Mo substituting for portion of In atoms in ZIS nanosheets induces the spatial charge redistribution, which not only promotes the separation of photogenerated charge carriers but also optimizes the Gibbs free energy of adsorbing H* on S atoms at basal planes. As a result, Mo-ZIS exhibits an impressive PHE rate as high as 6.71 mmol·g−1·h−1, over 10 times that of the pristine ZIS, with an apparent quantum efficiency (AQE) up to 38.8% at 420 nm. This study gains insights into the coordination configuration and electronic modulation resulting from single-atomic decoration, providing mechanistic cognitions for the development of advanced photocatalysts via non-precious metal atomic modification.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Single-atomic activation on ZnIn2S4 basal planes boosts photocatalytic hydrogen evolution

Show Author's information Jianpeng Cui1,§Ying Wang1,§Luxue Lin1,§Xiaotian Yang1Xuyu Luo1Shiying Guo1( )Xiaoyong Xu1( )
College of Physics Science and Technology, and Center for Interdisciplinary Research, Yangzhou University, Yangzhou 225002, China

§ Jianpeng Cui, Ying Wang, and Luxue Lin contributed equally to this work.

Abstract

The use of single-atom cocatalysts plays a crucial role in enhancing artificial photocatalysis, where the precise construction of stable and efficient single-atom configuration is essential but remains challenging. Here, we report a simple one-step hydrothermal method for preparing single-atomic Mo modified ZnIn2S4 (Mo-ZIS) nanosheets as a highly active photocatalytic hydrogen evolution (PHE) photocatalyst. The Mo substituting for portion of In atoms in ZIS nanosheets induces the spatial charge redistribution, which not only promotes the separation of photogenerated charge carriers but also optimizes the Gibbs free energy of adsorbing H* on S atoms at basal planes. As a result, Mo-ZIS exhibits an impressive PHE rate as high as 6.71 mmol·g−1·h−1, over 10 times that of the pristine ZIS, with an apparent quantum efficiency (AQE) up to 38.8% at 420 nm. This study gains insights into the coordination configuration and electronic modulation resulting from single-atomic decoration, providing mechanistic cognitions for the development of advanced photocatalysts via non-precious metal atomic modification.

Keywords: photocatalytic hydrogen evolution, Gibbs free energy, ZnIn2S4, single-atom activation

References(46)

[1]

Chen, X. B.; Shen, S. H.; Guo, L. J.; Mao, S. S. Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 2010, 110, 6503–6570.

[2]

Lee, W. H.; Lee, C. W.; Cha, G. D.; Lee, B. H.; Jeong, J. H.; Park, H.; Heo, J.; Bootharaju, M. S.; Sunwoo, S. H.; Kim, J. H. et al. Floatable photocatalytic hydrogel nanocomposites for large-scale solar hydrogen production. Nat. Nanotechnol. 2023, 18, 754–762.

[3]

Takata, T.; Jiang, J. Z.; Sakata, Y.; Nakabayashi, M.; Shibata, N.; Nandal, V.; Seki, K.; Hisatomi, T.; Domen, K. Photocatalytic water splitting with a quantum efficiency of almost unity. Nature 2020, 581, 411–414.

[4]

Wang, H.; Liu, W. X.; He, X.; Zhang, P.; Zhang, X. D.; Xie, Y. An excitonic perspective on low-dimensional semiconductors for photocatalysis. J. Am. Chem. Soc. 2020, 142, 14007–14022.

[5]

Chen, R. T.; Ren, Z. F.; Liang, Y.; Zhang, G. H.; Dittrich, T.; Liu, R. Z.; Liu, Y.; Zhao, Y.; Pang, S.; An, H. Y. et al. Spatiotemporal imaging of charge transfer in photocatalyst particles. Nature 2022, 610, 296–301.

[6]

Zhou, Q. X.; Guo, Y.; Zhu, Y. F. Photocatalytic sacrificial H2 evolution dominated by micropore-confined exciton transfer in hydrogen-bonded organic frameworks. Nat. Catal. 2023, 6, 574–584.

[7]

Zhu, B. C.; Sun, J.; Zhao, Y. Y.; Zhang, L. Y.; Yu, J. G. Construction of 2D S‐scheme heterojunction photocatalyst. Adv. Mater. 2024, 36, 2310600.

[8]

Luo, Z. P.; Chen, X. W.; Hu, Y. Y.; Chen, X.; Lin, W.; Wu, X. F.; Wang, X. C. Side-chain molecular engineering of triazole-based donor–acceptor polymeric photocatalysts with strong electron push–pull interactions. Angew. Chem., Int. Ed. 2023, 62, e202304875.

[9]

Yang, X. T.; Cui, J. P.; Lin, L. X.; Bian, A.; Dai, J.; Du, W.; Guo, S. Y.; Hu, J. G.; Xu, X. Y. Enhanced charge separation in nanoporous BiVO4 by external electron transport layer boosts solar water splitting. Adv. Sci. 2024, 11, 2305567.

[10]

Shen, Y.; Ren, C. J.; Zheng, L. R.; Xu, X. Y.; Long, R.; Zhang, W. Q.; Yang, Y.; Zhang, Y. C.; Yao, Y. F.; Chi, H. Q. et al. Room-temperature photosynthesis of propane from CO2 with Cu single atoms on vacancy-rich TiO2. Nat. Commun. 2023, 14, 1117.

[11]

Chang, K.; Hai, X.; Ye, J. H. Transition metal disulfides as noble‐metal‐alternative co‐catalysts for solar hydrogen production. Adv. Energy Mater. 2016, 6, 1502555.

[12]

Ran, J. R.; Zhang, J.; Yu, J. G.; Jaroniec, M.; Qiao, S. Z. Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem. Soc. Rev. 2014, 43, 7787–7812.

[13]

Li, R. G.; Li, C. Photocatalytic water splitting on semiconductor-based photocatalysts. Adv. Catal. 2017, 60, 1–57.

[14]

Li, Z. J.; Wang, D. H.; Wu, Y. E.; Li, Y. D. Recent advances in the precise control of isolated single-site catalysts by chemical methods. Nat. Sci. Rev. 2018, 5, 673–689.

[15]

Huang, P. P.; Huang, J. H.; Pantovich, S. A.; Carl, A. D.; Fenton, T. G.; Caputo, C. A.; Grimm, R. L.; Frenkel, A. I.; Li, G. H. Selective CO2 reduction catalyzed by single cobalt sites on carbon nitride under visible-light irradiation. J. Am. Chem. Soc. 2018, 140, 16042–16047.

[16]

Shi, X. W.; Dai, C.; Wang, X.; Hu, J. Y.; Zhang, J. Y.; Zheng, L. X.; Mao, L.; Zheng, H. J.; Zhu, M. S. Protruding Pt single-sites on hexagonal ZnIn2S4 to accelerate photocatalytic hydrogen evolution. Nat. Commun. 2022, 13, 1287.

[17]

Ding, C.; Lu, X. X.; Tao, B.; Yang, L. Q.; Xu, X. Y.; Tang, L. Q.; Chi, H. Q.; Yang, Y.; Meira, D. M.; Wang, L. et al. Interlayer spacing regulation by single-atom indium δ +-N4 on carbon nitride for boosting CO2/CO photo-conversion. Adv. Funct. Mater. 2023, 33, 2302824.

[18]

Chen, Y. J.; Ji, S. F.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysts: Synthetic strategies and electrochemical applications. Joule 2018, 2, 1242–1264.

[19]

Wang, Y.; Mao, J.; Meng, X. G.; Yu, L.; Deng, D. H.; Bao, X. H. Catalysis with two-dimensional materials confining single atoms: Concept, design, and applications. Chem. Rev. 2019, 119, 1806–1854.

[20]

Hejazi, S.; Mohajernia, S.; Osuagwu, B.; Zoppellaro, G.; Andryskova, P.; Tomanec, O.; Kment, S.; Zbořil, R.; Schmuki, P. On the controlled loading of single platinum atoms as a Co-catalyst on TiO2 anatase for optimized photocatalytic H2 generation. Adv. Mater. 2020, 32, 1908505.

[21]

Zhou, P.; Li, N.; Chao, Y. G.; Zhang, W. Y.; Lv, F.; Wang, K.; Yang, W. X.; Gao, P.; Guo, S. J. Thermolysis of noble metal nanoparticles into electron-rich phosphorus-coordinated noble metal single atoms at low temperature. Angew. Chem., Int. Ed. 2019, 58, 14184–14188.

[22]

Wang, A. Q.; Li, J.; Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2018, 2, 65–81.

[23]

Cheng, N. C.; Zhang, L.; Doyle-Davis, K.; Sun, X. L. Single-atom catalysts: From design to application. Electrochem. Energy Rev. 2019, 2, 539–573.

[24]

Gao, C.; Low, J.; Long, R.; Kong, T. T.; Zhu, J. F.; Xiong, Y. J. Heterogeneous single-atom photocatalysts: Fundamentals and applications. Chem. Rev. 2020, 120, 12175–12216.

[25]

Sun, B. J.; Bu, J. Q.; Chen, X. Y.; Fan, D. G.; Li, S. W.; Li, Z. Z.; Zhou, W.; Du, Y. C. In- situ interstitial zinc doping-mediated efficient charge separation for ZnIn2S4 nanosheets visible-light photocatalysts towards optimized overall water splitting. Chem. Eng. J. 2022, 435, 135074.

[26]

Yang, R. J.; Fan, Y. Y.; Zhang, Y. F.; Mei, L.; Zhu, R. S.; Qin, J. Q.; Hu, J. G.; Chen, Z. X.; Ng, Y. H.; Voiry, D. et al. 2D transition metal dichalcogenides for photocatalysis. Angew. Chem., Int. Ed. 2023, 62, e202218016.

[27]

Yang, H. C.; Cao, R. Y.; Sun, P. X.; Yin, J. M.; Zhang, S. W.; Xu, X. J. Constructing electrostatic self-assembled 2D/2D ultra-thin ZnIn2S4/protonated g-C3N4 heterojunctions for excellent photocatalytic performance under visible light. Appl. Catal. B: Environ. 2019, 256, 117862.

[28]

Yang, R. J.; Mei, L.; Fan, Y. Y.; Zhang, Q. Y.; Zhu, R. S.; Amal, R.; Yin, Z. Y.; Zeng, Z. Y. ZnIn2S4-based photocatalysts for energy and environmental applications. Small Methods 2021, 5, 2100887.

[29]

Zhu, J. F.; Bi, Q. Y.; Tao, Y. H.; Guo, W. Y.; Fan, J. C.; Min, Y. L.; Li, G. S. Mo-modified ZnIn2S4@NiTiO3 S-scheme heterojunction with enhanced interfacial electric field for efficient visible-light-driven hydrogen evolution. Adv. Funct. Mater. 2023, 33, 2213131.

[30]

Shi, X. W.; Mao, L.; Dai, C.; Yang, P.; Zhang, J. Y.; Dong, F. Y.; Zheng, L. X.; Fujitsuka, M.; Zheng, H. J. Inert basal plane activation of two-dimensional ZnIn2S4 via Ni atom doping for enhanced Co-catalyst free photocatalytic hydrogen evolution. J. Mater. Chem. A 2020, 8, 13376–13384.

[31]

Shi, X. W.; Mao, L.; Yang, P.; Zheng, H. J.; Fujitsuka, M.; Zhang, J. Y.; Majima, T. Ultrathin ZnIn2S4 nanosheets with active (110) facet exposure and efficient charge separation for cocatalyst free photocatalytic hydrogen evolution. Appl. Catal. B: Environ. 2020, 265, 118616.

[32]

Wei, S. J.; Li, A.; Liu, J. C.; Li, Z.; Chen, W. X.; Gong, Y.; Zhang, Q. H.; Cheong, W. C.; Wang, Y.; Zheng, L. R. et al. Direct observation of noble metal nanoparticles transforming to thermally stable single atoms. Nat. Nanotechnol. 2018, 13, 856–861.

[33]

Qu, Y. T.; Li, Z. J.; Chen, W. X.; Lin, Y.; Yuan, T. W.; Yang, Z. K.; Zhao, C. M.; Wang, J.; Zhao, C.; Wang, X. et al. Direct transformation of bulk copper into copper single sites via emitting and trapping of atoms. Nat. Catal. 2018, 1, 781–786.

[34]

Li, H.; Tsai, C.; Koh, A. L.; Cai, L. L.; Contryman, A. W.; Fragapane, A. H.; Zhao, J. H.; Han, H. S.; Manoharan, H. C.; Abild-Pedersen, F. et al. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater. 2015, 15, 48–53.

[35]

Hinnemann, B.; Moses, P. G.; Bonde, J.; Jørgensen, K. P.; Nielsen, J. H.; Horch, S.; Chorkendorff, I.; Nørskov, J. K. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 2005, 127, 5308–5309.

[36]

Yoshida, H.; Pan, Z. H.; Shoji, R.; Nandal, V.; Matsuzaki, H.; Seki, K.; Lin, L. H.; Kaneko, M.; Fukui, T.; Yamashita, K. et al. An oxysulfide photocatalyst evolving hydrogen with an apparentquantum efficiency of 30% under visible light. Angew. Chem., Int. Ed. 2023, 62, e202312938.

[37]

Qiu, B. C.; Huang, P.; Lian, C.; Ma, Y. X.; Xing, M. Y.; Liu, H. L.; Zhang, J. L. Realization of all-in-one hydrogen-evolving photocatalysts via selective atomic substitution. Appl. Catal. B: Environ. 2021, 298, 120518.

[38]

Wang, Y. J.; Huang, W. J.; Guo, S. H.; Xin, X.; Zhang, Y. Z.; Guo, P.; Tang, S. W.; Li, X. H. Sulfur-deficient ZnIn2S4/oxygen-deficient WO3 hybrids with carbon layer bridges as a novel photothermal/photocatalytic integrated system for Z-scheme overall water splitting. Adv. Energy Mater. 2021, 11, 2102452.

[39]

Xi, Q.; Xie, F. X.; Liu, J. X.; Zhang, X. C.; Wang, J. C.; Wang, Y. W.; Wang, Y. F.; Li, H. F.; Yu, Z. B.; Sun, Z. J. et al. In situ formation ZnIn2S4/Mo2TiC2 Schottky junction for accelerating photocatalytic hydrogen evolution kinetics: Manipulation of local coordination and electronic structure. Small 2023, 19, 2300717

[40]

Li, C. X.; Liu, X. T.; Ding, G. X.; Huo, P. W.; Yan, Y.; Yan, Y. S.; Liao, G. F. Interior and surface synergistic modifications modulate the SnNb2O6/Ni-doped ZnIn2S4 S-scheme heterojunction for efficient photocatalytic H2 evolution. Inorg. Chem. 2022, 61, 4681–4689.

[41]

Wang, S.; Du, X.; Yao, C. H.; Cai, Y. F.; Ma, H. Y.; Jiang, B. J.; Ma, J. S-scheme heterojunction/Schottky junction tandem synergistic effect promotes visible-light-driven catalytic activity. Nano Res. 2023, 16, 2152–2162.

[42]

Zhang, G. P.; Li, X. X.; Wang, M. M.; Li, X. Q.; Wang, Y. R.; Huang, S. T.; Chen, D. Y.; Li, N. J.; Xu, Q. F.; Li, H. et al. 2D/2D hierarchical Co3O4/ZnIn2S4 heterojunction with robust built-in electric field for efficient photocatalytic hydrogen evolution. Nano Res. 2023, 16, 6134–6141

[43]

Su, H.; Lou, H. M.; Zhao, Z. P.; Zhou, L.; Pang, Y. X.; Xie, H. J.; Rao, C.; Yang, D. J.; Qiu, X. Q. In- situ Mo doped ZnIn2S4 wrapped MoO3 S-scheme heterojunction via Mo–S bonds to enhance photocatalytic HER. Chem. Eng. J. 2022, 430, 132770.

[44]

Tang, C. X.; Bao, T. F.; Li, S. M.; Wang, X. Y.; Rao, H.; She, P.; Qin, J. S. Bioinspired 3D penetrating structured micro-mesoporous NiCoFe-LDH@ZnIn2S4 Z-scheme heterojunction for simultaneously photocatalytic H2 evolution coupled with benzylamine oxidation. Appl. Catal. B: Environ. 2024, 342, 123384.

[45]

Yang, R. J.; Chen, Q. Q.; Ma, Y. Y.; Zhu, R. S.; Fan, Y. Y.; Huang, J. Y.; Niu, H. N.; Dong, Y.; Li, D.; Zhang, Y. F. et al. Highly efficient photocatalytic hydrogen evolution and simultaneous formaldehyde degradation over Z-scheme ZnIn2S4-NiO/BiVO4 hierarchical heterojunction under visible light irradiation. Chem. Eng. J. 2021, 423, 130164.

[46]

Yang, R. J.; Fan, Y. Y.; Hu, J. G.; Chen, Z. X.; Shin, H. S.; Voiry, D.; Wang, Q.; Lu, Q. Y.; Yu, J. C.; Zeng, Z. Y. Photocatalysis with atomically thin sheets. Chem. Soc. Rev. 2023, 52, 7687–7706.

File
6617_ESM.pdf (1.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 11 January 2024
Revised: 05 March 2024
Accepted: 08 March 2024
Published: 12 April 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos 11974303 and 12074332), the Qinglan Project (No. 337050073) of Jiangsu Province, the High-End Talent Program (No. 137080210), the Yangzhou University Interdisciplinary Research Project of Chemistry Discipline (No. yzuxk202014), and the Innovative Science and Technology Platform Project of Cooperation between Yangzhou City and Yangzhou University (No. YZ2020263).

Return