Journal Home > Online First

Safe confinement of fission iodine isotopes for long-term radioactive waste disposal remains a formidable challenge, as conventional sorbents provide inherently weak iodine-host interactions. We report here a novel halogen bond (X-bond) directed strategy to sequester volatile iodine in hydrogen-bonded (H-bonded) frameworks with unprecedented stability. Charge-assisted H-bonded frameworks bearing open halide sites are developed, showing distinctive iodine encapsulation behaviors without compromising the crystallinity. Direct crystallographic evidence indicates the formation of X-bonds, i.e., I–I···Cl and I–I···Br, within the confined pore channels. Unusual polyhalogen anions, i.e., [I2Cl2]2− and [I2Br2]2−, sustained in H-bonded frameworks are identified for the first time. The X-bond reinforced host-guest interaction affords robust iodine trapping without leaking out even at elevated temperatures up to 180 °C. By integrating the halogen-bond chemistry with H-bonded frameworks, this study offers fresh concepts for developing effective host reservoirs to secure fission iodine isotopes from spent fuel reprocessing off-gases.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Halogen-bond induced unusual polyhalogen anions formation in hydrogen-bonded frameworks to secure iodine sequestration

Show Author's information Yi XiePengling HuangQiang GaoShiyu WangJianchen Wang( )Gang Ye( )
Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China

Abstract

Safe confinement of fission iodine isotopes for long-term radioactive waste disposal remains a formidable challenge, as conventional sorbents provide inherently weak iodine-host interactions. We report here a novel halogen bond (X-bond) directed strategy to sequester volatile iodine in hydrogen-bonded (H-bonded) frameworks with unprecedented stability. Charge-assisted H-bonded frameworks bearing open halide sites are developed, showing distinctive iodine encapsulation behaviors without compromising the crystallinity. Direct crystallographic evidence indicates the formation of X-bonds, i.e., I–I···Cl and I–I···Br, within the confined pore channels. Unusual polyhalogen anions, i.e., [I2Cl2]2− and [I2Br2]2−, sustained in H-bonded frameworks are identified for the first time. The X-bond reinforced host-guest interaction affords robust iodine trapping without leaking out even at elevated temperatures up to 180 °C. By integrating the halogen-bond chemistry with H-bonded frameworks, this study offers fresh concepts for developing effective host reservoirs to secure fission iodine isotopes from spent fuel reprocessing off-gases.

Keywords: halogen-bond chemistry, anion coordination chemistry, hydrogen-bonded organic frameworks, polyhalogen anions, iodine confinement

References(60)

[1]

Pan, T. T.; Yang, K. J.; Dong, X. L.; Han, Y. Adsorption-based capture of iodine and organic iodides: Status and challenges. J. Mater. Chem. A 2023, 11, 5460–5475.

[2]

Guo, X. H.; Tian, Y.; Zhang, M. C.; Li, Y.; Wen, R.; Li, X.; Li, X. F.; Xue, Y.; Ma, L. J.; Xia, C. Q. et al. Mechanistic insight into hydrogen-bond-controlled crystallinity and adsorption property of covalent organic frameworks from flexible building blocks. Chem. Mater. 2018, 30, 2299–2308.

[3]

Wang, J.; Li, Z. L.; Wang, Y.; Wei, C. T.; Ai, K. L.; Lu, L. H. Hydrogen bond-mediated strong adsorbent-I3 interactions enable high-efficiency radioiodine capture. Mater. Horiz. 2019, 6, 1517–1525.

[4]

Nandanwar, S. U.; Coldsnow, K.; Utgikar, V.; Sabharwall, P.; Aston, D. E. Capture of harmful radioactive contaminants from off-gas stream using porous solid sorbents for clean environment—A review. Chem. Eng. J. 2016, 306, 369–381.

[5]

Pham, T. C. T.; Docao, S.; Hwang, I. C.; Song, M. K.; Choi, D. Y.; Moon, D.; Oleynikov, P.; Yoon, K. B. Capture of iodine and organic iodides using silica zeolites and the semiconductor behaviour of iodine in a silica zeolite. Energy Environ. Sci. 2016, 9, 1050–1062.

[6]

Pan, T. T.; Dong, X. L.; Han, Y. Efficient capture of iodine and methyl iodide using all-silica EMM-17 zeolite. Nano Res. 2023, 16, 6308–6315.

[7]

Li, B.; Wang, B.; Huang, X. Y.; Dai, L.; Cui, L.; Li, J.; Jia, X. S.; Li, C. J. Terphen[ n]arenes and quaterphen[ n]arenes ( n = 3–6): One-pot synthesis, self-assembly into supramolecular gels, and iodine capture. Angew. Chem., Int. Ed. 2019, 58, 3885–3889.

[8]

Chong, S.; Riley, B. J.; Peterson, J. A.; Olszta, M. J.; Nelson, Z. J. Gaseous iodine sorbents: A comparison between Ag-loaded aerogel and xerogel scaffolds. ACS Appl. Mater. Interfaces 2020, 12, 26127–26136.

[9]

Zhang, X. R.; da Silva, I.; Godfrey, H. G. W.; Callear, S. K.; Sapchenko, S. A.; Cheng, Y. Q.; Vitórica-Yrezábal, I.; Frogley, M. D.; Cinque, G.; Tang, C. C. et al. Confinement of iodine molecules into triple-helical chains within robust metal-organic frameworks. J. Am. Chem. Soc. 2017, 139, 16289–16296.

[10]

Wang, H.; Lustig, W. P.; Li, J. Sensing and capture of toxic and hazardous gases and vapors by metal-organic frameworks. Chem. Soc. Rev. 2018, 47, 4729–4756.

[11]

Zeng, M. H.; Wang, Q. X.; Tan, Y. X.; Hu, S.; Zhao, H. X.; Long, L. S.; Kurmoo, M. Rigid pillars and double walls in a porous metal-organic framework: Single-crystal to single-crystal, controlled uptake and release of iodine and electrical conductivity. J. Am. Chem. Soc. 2010, 132, 2561–2563.

[12]

Zhang, X. R.; Maddock, J.; Nenoff, T. M.; Denecke, M. A.; Yang, S. H.; Schröder, M. Adsorption of iodine in metal-organic framework materials. Chem. Soc. Rev. 2022, 51, 3243–3262.

[13]

Zheng, X. Q.; Chen, L. J.; Zhang, H.; Yao, Z. Z.; Yang, Y. S.; Xiang, F. H.; Li, Y. B.; Xiang, S. C.; Zhang, Z. J.; Chen, B. L. Optimized sieving effect for ethanol/water separation by ultramicroporous MOFs. Angew. Chem., Int. Ed. 2023, 62, e202216710.

[14]

Guo, X. H.; Li, Y.; Zhang, M. C.; Cao, K. C.; Tian, Y.; Qi, Y.; Li, S. J.; Li, K.; Yu, X. Q.; Ma, L. J. Colyliform crystalline 2D covalent organic frameworks (COFs) with quasi-3D topologies for rapid I2 adsorption. Angew. Chem., Int. Ed. 2020, 59, 22697–22705.

[15]

Cheng, K.; Li, H. L.; Li, Z. Y.; Li, P. Z.; Zhao, Y. L. Linking nitrogen-rich organic cages into isoreticular covalent organic frameworks for enhancing iodine adsorption capability. ACS Materials Lett. 2023, 5, 1546–1555.

[16]

He, L. W.; Chen, L.; Dong, X. L.; Zhang, S. T.; Zhang, M. X.; Dai, X.; Liu, X. J.; Lin, P.; Li, K. F.; Chen, C. L. et al. A nitrogen-rich covalent organic framework for simultaneous dynamic capture of iodine and methyl iodide. Chem 2021, 7, 699–714.

[17]

Wang, P.; Xu, Q.; Li, Z. P.; Jiang, W. M.; Jiang, Q. H.; Jiang, D. L. Exceptional iodine capture in 2D covalent organic frameworks. Adv. Mater. 2018, 30, 1801991.

[18]

Dai, D. H.; Yang, J.; Zou, Y. C.; Wu, J. R.; Tan, L. L.; Wang, Y.; Li, B.; Lu, T.; Wang, B.; Yang, Y. W. Macrocyclic arenes-based conjugated macrocycle polymers for highly selective CO2 capture and iodine adsorption. Angew. Chem., Int. Ed. 2021, 60, 8967–8975.

[19]

Jie, K. C.; Zhou, Y. J.; Li, E. R.; Li, Z. T.; Zhao, R.; Huang, F. H. Reversible iodine capture by nonporous pillar[6]arene crystals. J. Am. Chem. Soc. 2017, 139, 15320–15323.

[20]

Luo, D.; He, Y. L.; Tian, J. Y.; Sessler, J. L.; Chi, X. D. Reversible iodine capture by nonporous adaptive crystals of a bipyridine cage. J. Am. Chem. Soc. 2022, 144, 113–117.

[21]

Li, X. L.; Wang, Y. L.; Chen, Z.; Li, P.; Liang, G. J.; Huang, Z. D.; Yang, Q.; Chen, A.; Cui, H. L.; Dong, B. B. et al. Two-electron redox chemistry enabled high-performance iodide-ion conversion battery. Angew. Chem., Int. Ed. 2022, 61, e202113576.

[22]

Liu, T.; Zhao, Y.; Song, M.; Pang, X. H.; Shi, X. F.; Jia, J. J.; Chi, L. F.; Lu, G. Ordered macro-microporous single crystals of covalent organic frameworks with efficient sorption of iodine. J. Am. Chem. Soc. 2023, 145, 2544–2552.

[23]

Li, Y. X.; Yu, H. Y.; Xu, F. F.; Guo, Q. Y.; Xie, Z. G.; Sun, Z. Y. Solvent controlled self-assembly of π-stacked/H-bonded supramolecular organic frameworks from a C3-symmetric monomer for iodine adsorption. CrystEngComm 2019, 21, 1742–1749.

[24]

Liu, C. H.; Fang, W. H.; Sun, Y. Y.; Yao, S. Y.; Wang, S. T.; Lu, D. F.; Zhang, J. Designable assembly of aluminum molecular rings for sequential confinement of iodine molecules. Angew. Chem., Int. Ed. 2021, 60, 21426–21433.

[25]

Yang, J.; Hu, S. J.; Cai, L. X.; Zhou, L. P.; Sun, Q. F. Counteranion-mediated efficient iodine capture in a hexacationic imidazolium organic cage enabled by multiple non-covalent interactions. Nat. Commun. 2023, 14, 6082.

[26]

Politzer, P. Book review of halogen bonding: Fundamentals and applications. Structure and bonding, 126. J. Am. Chem. Soc. 2008, 130, 10446–10447.

[27]

Cavallo, G.; Metrangolo, P.; Milani, R.; Pilati, T.; Priimagi, A.; Resnati, G.; Terraneo, G. The halogen bond. Chem. Rev. 2016, 116, 2478–2601.

[28]

Desiraju, G. R.; Ho, P. S.; Kloo, L.; Legon, A. C.; Marquardt, R.; Metrangolo, P.; Politzer, P.; Resnati, G.; Rissanen, K. Definition of the halogen bond (IUPAC Recommendations 2013). Pure Appl. Chem. 2013, 85, 1711–1713.

[29]

Gong, G. F.; Lv, S. H.; Han, J. X.; Xie, F.; Li, Q.; Xia, N.; Zeng, W.; Chen, Y.; Wang, L.; Wang, J. K. et al. Halogen-bonded organic framework (XOF) based on iodonium-bridged N···I+···N interactions: A type of diphase periodic organic network. Angew. Chem., Int. Ed. 2021, 60, 14831–14835.

[30]

Nikolayenko, V. I.; Castell, D. C.; van Heerden, D. P.; Barbour, L. J. Guest-induced structural transformations in a porous halogen-bonded framework. Angew. Chem., Int. Ed. 2018, 57, 12086–12091.

[31]

Tepper, R.; Schubert, U. S. Halogen bonding in solution: Anion recognition, templated self-assembly, and organocatalysis. Angew. Chem., Int. Ed. 2018, 57, 6004–6016.

[32]

Chai, S. B.; Yao, J. J.; Wang, Y. L.; Zhu, J. H.; Jiang, J. Mediating iodine cathodes with robust directional halogen bond interactions for highly stable rechargeable Zn-I2 batteries. Chem. Eng. J. 2022, 439, 135676.

[33]

Chen, Y.; Yang, Y. S.; Wang, Y.; Xiong, Q. Z.; Yang, J. F.; Xiang, S. C.; Li, L. B.; Li, J. P.; Zhang, Z. J.; Chen, B. L. Ultramicroporous hydrogen-bonded organic framework material with a thermoregulatory gating effect for record propylene separation. J. Am. Chem. Soc. 2022, 144, 17033–17040.

[34]

Liu, Y.; Wu, H.; Guo, L. D.; Zhou, W.; Zhang, Z. G.; Yang, Q. W.; Yang, Y. W.; Ren, Q. L.; Bao, Z. B. Hydrogen-bonded metal-nucleobase frameworks for efficient separation of xenon and krypton. Angew. Chem., Int. Ed. 2022, 61, e202117609.

[35]

Zhang, X.; Li, L. B.; Wang, J. X.; Wen, H. M.; Krishna, R.; Wu, H.; Zhou, W.; Chen, Z. N.; Li, B.; Qian, G. D. et al. Selective ethane/ethylene separation in a robust microporous hydrogen-bonded organic framework. J. Am. Chem. Soc. 2020, 142, 633–640.

[36]

Yang, Y. S.; Zhang, H.; Yuan, Z.; Wang, J. Q.; Xiang, F. H.; Chen, L. J.; Wei, F. F.; Xiang, S. C.; Chen, B. L.; Zhang, Z. J. An ultramicroporous hydrogen-bonded organic framework exhibiting high C2H2/CO2 separation. Angew. Chem., Int. Ed. 2022, 61, e202207579.

[37]

Yang, Y. S.; Li, L. B.; Lin, R. B.; Ye, Y. X.; Yao, Z. Z.; Yang, L.; Xiang, F. H.; Chen, S. M.; Zhang, Z. J.; Xiang, S. C. et al. Ethylene/ethane separation in a stable hydrogen-bonded organic framework through a gating mechanism. Nat. Chem. 2021, 13, 933–939.

[38]

Chen, L. J.; Yuan, Z.; Zhang, H.; Ye, Y. X.; Yang, Y. S.; Xiang, F. H.; Cai, K. C.; Xiang, S. C.; Chen, B. L.; Zhang, Z. J. A flexible hydrogen-bonded organic framework constructed from a tetrabenzaldehyde with a carbazole N-H binding site for the highly selective recognition and separation of acetone. Angew. Chem., Int. Ed. 2022, 61, e202213959.

[39]

Fu, L.; Liu, Y.; Pan, M.; Kuang, X. J.; Yan, C.; Li, K.; Wei, S. C.; Su, C. Y. Accumulation of versatile iodine species by a porous hydrogen-bonding Cu(II) coordination framework. J. Mater. Chem. A 2013, 1, 8575–8580.

[40]

Hisaki, I.; Ikenaka, N.; Gomez, E.; Cohen, B.; Tohnai, N.; Douhal, A. Hexaazatriphenylene-based hydrogen-bonded organic framework with permanent porosity and single-crystallinity. Chem.—Eur. J. 2017, 23, 11611–11619.

[41]

Wang, Y. Q.; Jin, Y. Y.; Xian, W. P.; Zuo, X. H.; Wang, S.; Sun, Q. Pore polarity engineering in hydrogen-bonded organic frameworks for enhanced iodine capture. J. Mater. Chem. A 2022, 10, 18730–18736.

[42]

Xie, Y. B.; Zhong, F. Y.; Chen, H. X.; Chen, D. N.; Wang, J. W.; Gao, J. K.; Yao, J. M. Fabrication of hydrogen-bonded metal-complex frameworks for capturing iodine. J. Solid State Chem. 2019, 277, 525–530.

[43]

Zhang, M. S.; Samanta, J.; Atterberry, B. A.; Staples, R.; Rossini, A. J.; Ke, C. F. A crosslinked ionic organic framework for efficient iodine and iodide remediation in water. Angew. Chem., Int. Ed. 2022, 61, e202214189.

[44]

Lin, R. B.; Chen, B. L. Hydrogen-bonded organic frameworks: Chemistry and functions. Chem 2022, 8, 2114–2135.

[45]

Song, X. Y.; Wang, Y.; Wang, C.; Wang, D.; Zhuang, G. W.; Kirlikovali, K. O.; Li, P.; Farha, O. K. Design rules of hydrogen-bonded organic frameworks with high chemical and thermal stabilities. J. Am. Chem. Soc. 2022, 144, 10663–10687.

[46]

Wang, B.; Lin, R. B.; Zhang, Z. J.; Xiang, S. C.; Chen, B. L. Hydrogen-bonded organic frameworks as a tunable platform for functional materials. J. Am. Chem. Soc. 2020, 142, 14399–14416.

[47]

Lin, R. B.; He, Y. B.; Li, P.; Wang, H. L.; Zhou, W.; Chen, B. L. Multifunctional porous hydrogen-bonded organic framework materials. Chem. Soc. Rev. 2019, 48, 1362–1389.

[48]

Ding, X. J.; Luo, Y. L.; Wang, W.; Hu, T. Y.; Chen, J.; Ye, G. Charge-assisted hydrogen-bonded organic frameworks with inorganic ammonium regulated switchable open polar sites. Small 2023, 19, 2207771.

[49]

Adachi, T.; Ward, M. D. Versatile and resilient hydrogen-bonded host frameworks. Acc. Chem. Res. 2016, 49, 2669–2679.

[50]

Xie, Y.; Ding, X. J.; Wang, J. C.; Ye, G. Hydrogen-bonding assembly meets anion coordination chemistry: Framework shaping and polarity tuning for xenon/krypton separation. Angew. Chem., Int. Ed. 2023, 62, e202313951.

[51]

Sava, D. F.; Rodriguez, M. A.; Chapman, K. W.; Chupas, P. J.; Greathouse, J. A.; Crozier, P. S.; Nenoff, T. M. Capture of volatile iodine, a gaseous fission product, by zeolitic imidazolate framework-8. J. Am. Chem. Soc. 2011, 133, 12398–12401.

[52]

Van Bolhuis, F.; Koster, P. B.; Migchelsen, T. Refinement of the crystal structure of iodine at 110° K. Acta Cryst. 1967, 23, 90–91.

[53]

Parigoridi, I. E.; Corban, G. J.; Hadjikakou, S. K.; Hadjiliadis, N.; Kourkoumelis, N.; Kostakis, G.; Psycharis, V.; Raptopoulou, C. P.; Kubicki, M. Structural motifs of diiodine complexes with amides and thioamides. Dalton Trans. 2008, 5159–5165

[54]

Ouvrard, C.; Le Questel, J. Y.; Berthelot, M.; Laurence, C. Halogen-bond geometry: A crystallographic database investigation of dihalogen complexes. Acta Cryst. 2003, B59, 512–526.

[55]

Martí-Rujas, J.; Meazza, L.; Lim, G. K.; Terraneo, G.; Pilati, T.; Harris, K. D. M.; Metrangolo, P.; Resnati, G. An adaptable and dynamically porous organic salt traps unique tetrahalide dianions. Angew. Chem., Int. Ed. 2013, 52, 13444–13448.

[56]

Haller, H.; Schröder, J.; Riedel, S. Structural evidence for undecabromide [Br11]. Angew. Chem., Int. Ed. 2013, 52, 4937–4940.

[57]

Svensson, P. H.; Kloo, L. Synthesis, structure, and bonding in polyiodide and metal iodide-iodine systems. Chem. Rev. 2003, 103, 1649–1684.

[58]

Sherwood, P. M. A. X-ray photoelectron spectroscopic studies of some iodine compounds. J. Chem. Soc., Faraday Trans. 2 1976, 72, 1805–1820.

[59]

Metrangolo, P.; Meyer, F.; Pilati, T.; Resnati, G.; Terraneo, G. Halogen bonding in supramolecular chemistry. Angew. Chem., Int. Ed. 2008, 47, 6114–6127.

[60]

Wang, C.; Wang, Y.; Ge, R. L.; Song, X. D.; Xing, X. Q.; Jiang, Q. K.; Lu, H.; Hao, C.; Guo, X. W.; Gao, Y. N. et al. A 3D covalent organic framework with exceptionally high iodine capture capability. Chem.—Eur. J. 2018, 24, 585–589.

File
6606_ESM.pdf (2.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 31 January 2024
Revised: 29 February 2024
Accepted: 04 March 2024
Published: 04 April 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 22376117) and the Tsinghua University Initiative Scientific Research Program.

Return