Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Halogen-bond induced unusual polyhalogen anions formation in hydrogen-bonded frameworks to secure iodine sequestration

Yi XiePengling HuangQiang GaoShiyu WangJianchen Wang()Gang Ye()
Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
Show Author Information

Graphical Abstract

View original image Download original image
Hybrid hydrogen-bonded (H-bonded) frameworks bearing open halide sites serve as halogen-bond (X-bond) acceptors to secure volatile iodine species with unprecedented stability, accompanied by the formation of unusual polyhalogen ions [I2Cl2]2– and [I2Br2]2– stabilized in the confined pore channels.

Abstract

Safe confinement of fission iodine isotopes for long-term radioactive waste disposal remains a formidable challenge, as conventional sorbents provide inherently weak iodine-host interactions. We report here a novel halogen bond (X-bond) directed strategy to sequester volatile iodine in hydrogen-bonded (H-bonded) frameworks with unprecedented stability. Charge-assisted H-bonded frameworks bearing open halide sites are developed, showing distinctive iodine encapsulation behaviors without compromising the crystallinity. Direct crystallographic evidence indicates the formation of X-bonds, i.e., I–I···Cl and I–I···Br, within the confined pore channels. Unusual polyhalogen anions, i.e., [I2Cl2]2− and [I2Br2]2−, sustained in H-bonded frameworks are identified for the first time. The X-bond reinforced host-guest interaction affords robust iodine trapping without leaking out even at elevated temperatures up to 180 °C. By integrating the halogen-bond chemistry with H-bonded frameworks, this study offers fresh concepts for developing effective host reservoirs to secure fission iodine isotopes from spent fuel reprocessing off-gases.

Electronic Supplementary Material

Download File(s)
6606_ESM.pdf (2.6 MB)

References

[1]

Pan, T. T.; Yang, K. J.; Dong, X. L.; Han, Y. Adsorption-based capture of iodine and organic iodides: Status and challenges. J. Mater. Chem. A 2023, 11, 5460–5475.

[2]

Guo, X. H.; Tian, Y.; Zhang, M. C.; Li, Y.; Wen, R.; Li, X.; Li, X. F.; Xue, Y.; Ma, L. J.; Xia, C. Q. et al. Mechanistic insight into hydrogen-bond-controlled crystallinity and adsorption property of covalent organic frameworks from flexible building blocks. Chem. Mater. 2018, 30, 2299–2308.

[3]

Wang, J.; Li, Z. L.; Wang, Y.; Wei, C. T.; Ai, K. L.; Lu, L. H. Hydrogen bond-mediated strong adsorbent-I3 interactions enable high-efficiency radioiodine capture. Mater. Horiz. 2019, 6, 1517–1525.

[4]

Nandanwar, S. U.; Coldsnow, K.; Utgikar, V.; Sabharwall, P.; Aston, D. E. Capture of harmful radioactive contaminants from off-gas stream using porous solid sorbents for clean environment—A review. Chem. Eng. J. 2016, 306, 369–381.

[5]

Pham, T. C. T.; Docao, S.; Hwang, I. C.; Song, M. K.; Choi, D. Y.; Moon, D.; Oleynikov, P.; Yoon, K. B. Capture of iodine and organic iodides using silica zeolites and the semiconductor behaviour of iodine in a silica zeolite. Energy Environ. Sci. 2016, 9, 1050–1062.

[6]

Pan, T. T.; Dong, X. L.; Han, Y. Efficient capture of iodine and methyl iodide using all-silica EMM-17 zeolite. Nano Res. 2023, 16, 6308–6315.

[7]

Li, B.; Wang, B.; Huang, X. Y.; Dai, L.; Cui, L.; Li, J.; Jia, X. S.; Li, C. J. Terphen[ n]arenes and quaterphen[ n]arenes ( n = 3–6): One-pot synthesis, self-assembly into supramolecular gels, and iodine capture. Angew. Chem., Int. Ed. 2019, 58, 3885–3889.

[8]

Chong, S.; Riley, B. J.; Peterson, J. A.; Olszta, M. J.; Nelson, Z. J. Gaseous iodine sorbents: A comparison between Ag-loaded aerogel and xerogel scaffolds. ACS Appl. Mater. Interfaces 2020, 12, 26127–26136.

[9]

Zhang, X. R.; da Silva, I.; Godfrey, H. G. W.; Callear, S. K.; Sapchenko, S. A.; Cheng, Y. Q.; Vitórica-Yrezábal, I.; Frogley, M. D.; Cinque, G.; Tang, C. C. et al. Confinement of iodine molecules into triple-helical chains within robust metal-organic frameworks. J. Am. Chem. Soc. 2017, 139, 16289–16296.

[10]

Wang, H.; Lustig, W. P.; Li, J. Sensing and capture of toxic and hazardous gases and vapors by metal-organic frameworks. Chem. Soc. Rev. 2018, 47, 4729–4756.

[11]

Zeng, M. H.; Wang, Q. X.; Tan, Y. X.; Hu, S.; Zhao, H. X.; Long, L. S.; Kurmoo, M. Rigid pillars and double walls in a porous metal-organic framework: Single-crystal to single-crystal, controlled uptake and release of iodine and electrical conductivity. J. Am. Chem. Soc. 2010, 132, 2561–2563.

[12]

Zhang, X. R.; Maddock, J.; Nenoff, T. M.; Denecke, M. A.; Yang, S. H.; Schröder, M. Adsorption of iodine in metal-organic framework materials. Chem. Soc. Rev. 2022, 51, 3243–3262.

[13]

Zheng, X. Q.; Chen, L. J.; Zhang, H.; Yao, Z. Z.; Yang, Y. S.; Xiang, F. H.; Li, Y. B.; Xiang, S. C.; Zhang, Z. J.; Chen, B. L. Optimized sieving effect for ethanol/water separation by ultramicroporous MOFs. Angew. Chem., Int. Ed. 2023, 62, e202216710.

[14]

Guo, X. H.; Li, Y.; Zhang, M. C.; Cao, K. C.; Tian, Y.; Qi, Y.; Li, S. J.; Li, K.; Yu, X. Q.; Ma, L. J. Colyliform crystalline 2D covalent organic frameworks (COFs) with quasi-3D topologies for rapid I2 adsorption. Angew. Chem., Int. Ed. 2020, 59, 22697–22705.

[15]

Cheng, K.; Li, H. L.; Li, Z. Y.; Li, P. Z.; Zhao, Y. L. Linking nitrogen-rich organic cages into isoreticular covalent organic frameworks for enhancing iodine adsorption capability. ACS Materials Lett. 2023, 5, 1546–1555.

[16]

He, L. W.; Chen, L.; Dong, X. L.; Zhang, S. T.; Zhang, M. X.; Dai, X.; Liu, X. J.; Lin, P.; Li, K. F.; Chen, C. L. et al. A nitrogen-rich covalent organic framework for simultaneous dynamic capture of iodine and methyl iodide. Chem 2021, 7, 699–714.

[17]

Wang, P.; Xu, Q.; Li, Z. P.; Jiang, W. M.; Jiang, Q. H.; Jiang, D. L. Exceptional iodine capture in 2D covalent organic frameworks. Adv. Mater. 2018, 30, 1801991.

[18]

Dai, D. H.; Yang, J.; Zou, Y. C.; Wu, J. R.; Tan, L. L.; Wang, Y.; Li, B.; Lu, T.; Wang, B.; Yang, Y. W. Macrocyclic arenes-based conjugated macrocycle polymers for highly selective CO2 capture and iodine adsorption. Angew. Chem., Int. Ed. 2021, 60, 8967–8975.

[19]

Jie, K. C.; Zhou, Y. J.; Li, E. R.; Li, Z. T.; Zhao, R.; Huang, F. H. Reversible iodine capture by nonporous pillar[6]arene crystals. J. Am. Chem. Soc. 2017, 139, 15320–15323.

[20]

Luo, D.; He, Y. L.; Tian, J. Y.; Sessler, J. L.; Chi, X. D. Reversible iodine capture by nonporous adaptive crystals of a bipyridine cage. J. Am. Chem. Soc. 2022, 144, 113–117.

[21]

Li, X. L.; Wang, Y. L.; Chen, Z.; Li, P.; Liang, G. J.; Huang, Z. D.; Yang, Q.; Chen, A.; Cui, H. L.; Dong, B. B. et al. Two-electron redox chemistry enabled high-performance iodide-ion conversion battery. Angew. Chem., Int. Ed. 2022, 61, e202113576.

[22]

Liu, T.; Zhao, Y.; Song, M.; Pang, X. H.; Shi, X. F.; Jia, J. J.; Chi, L. F.; Lu, G. Ordered macro-microporous single crystals of covalent organic frameworks with efficient sorption of iodine. J. Am. Chem. Soc. 2023, 145, 2544–2552.

[23]

Li, Y. X.; Yu, H. Y.; Xu, F. F.; Guo, Q. Y.; Xie, Z. G.; Sun, Z. Y. Solvent controlled self-assembly of π-stacked/H-bonded supramolecular organic frameworks from a C3-symmetric monomer for iodine adsorption. CrystEngComm 2019, 21, 1742–1749.

[24]

Liu, C. H.; Fang, W. H.; Sun, Y. Y.; Yao, S. Y.; Wang, S. T.; Lu, D. F.; Zhang, J. Designable assembly of aluminum molecular rings for sequential confinement of iodine molecules. Angew. Chem., Int. Ed. 2021, 60, 21426–21433.

[25]

Yang, J.; Hu, S. J.; Cai, L. X.; Zhou, L. P.; Sun, Q. F. Counteranion-mediated efficient iodine capture in a hexacationic imidazolium organic cage enabled by multiple non-covalent interactions. Nat. Commun. 2023, 14, 6082.

[26]

Politzer, P. Book review of halogen bonding: Fundamentals and applications. Structure and bonding, 126. J. Am. Chem. Soc. 2008, 130, 10446–10447.

[27]

Cavallo, G.; Metrangolo, P.; Milani, R.; Pilati, T.; Priimagi, A.; Resnati, G.; Terraneo, G. The halogen bond. Chem. Rev. 2016, 116, 2478–2601.

[28]

Desiraju, G. R.; Ho, P. S.; Kloo, L.; Legon, A. C.; Marquardt, R.; Metrangolo, P.; Politzer, P.; Resnati, G.; Rissanen, K. Definition of the halogen bond (IUPAC Recommendations 2013). Pure Appl. Chem. 2013, 85, 1711–1713.

[29]

Gong, G. F.; Lv, S. H.; Han, J. X.; Xie, F.; Li, Q.; Xia, N.; Zeng, W.; Chen, Y.; Wang, L.; Wang, J. K. et al. Halogen-bonded organic framework (XOF) based on iodonium-bridged N···I+···N interactions: A type of diphase periodic organic network. Angew. Chem., Int. Ed. 2021, 60, 14831–14835.

[30]

Nikolayenko, V. I.; Castell, D. C.; van Heerden, D. P.; Barbour, L. J. Guest-induced structural transformations in a porous halogen-bonded framework. Angew. Chem., Int. Ed. 2018, 57, 12086–12091.

[31]

Tepper, R.; Schubert, U. S. Halogen bonding in solution: Anion recognition, templated self-assembly, and organocatalysis. Angew. Chem., Int. Ed. 2018, 57, 6004–6016.

[32]

Chai, S. B.; Yao, J. J.; Wang, Y. L.; Zhu, J. H.; Jiang, J. Mediating iodine cathodes with robust directional halogen bond interactions for highly stable rechargeable Zn-I2 batteries. Chem. Eng. J. 2022, 439, 135676.

[33]

Chen, Y.; Yang, Y. S.; Wang, Y.; Xiong, Q. Z.; Yang, J. F.; Xiang, S. C.; Li, L. B.; Li, J. P.; Zhang, Z. J.; Chen, B. L. Ultramicroporous hydrogen-bonded organic framework material with a thermoregulatory gating effect for record propylene separation. J. Am. Chem. Soc. 2022, 144, 17033–17040.

[34]

Liu, Y.; Wu, H.; Guo, L. D.; Zhou, W.; Zhang, Z. G.; Yang, Q. W.; Yang, Y. W.; Ren, Q. L.; Bao, Z. B. Hydrogen-bonded metal-nucleobase frameworks for efficient separation of xenon and krypton. Angew. Chem., Int. Ed. 2022, 61, e202117609.

[35]

Zhang, X.; Li, L. B.; Wang, J. X.; Wen, H. M.; Krishna, R.; Wu, H.; Zhou, W.; Chen, Z. N.; Li, B.; Qian, G. D. et al. Selective ethane/ethylene separation in a robust microporous hydrogen-bonded organic framework. J. Am. Chem. Soc. 2020, 142, 633–640.

[36]

Yang, Y. S.; Zhang, H.; Yuan, Z.; Wang, J. Q.; Xiang, F. H.; Chen, L. J.; Wei, F. F.; Xiang, S. C.; Chen, B. L.; Zhang, Z. J. An ultramicroporous hydrogen-bonded organic framework exhibiting high C2H2/CO2 separation. Angew. Chem., Int. Ed. 2022, 61, e202207579.

[37]

Yang, Y. S.; Li, L. B.; Lin, R. B.; Ye, Y. X.; Yao, Z. Z.; Yang, L.; Xiang, F. H.; Chen, S. M.; Zhang, Z. J.; Xiang, S. C. et al. Ethylene/ethane separation in a stable hydrogen-bonded organic framework through a gating mechanism. Nat. Chem. 2021, 13, 933–939.

[38]

Chen, L. J.; Yuan, Z.; Zhang, H.; Ye, Y. X.; Yang, Y. S.; Xiang, F. H.; Cai, K. C.; Xiang, S. C.; Chen, B. L.; Zhang, Z. J. A flexible hydrogen-bonded organic framework constructed from a tetrabenzaldehyde with a carbazole N-H binding site for the highly selective recognition and separation of acetone. Angew. Chem., Int. Ed. 2022, 61, e202213959.

[39]

Fu, L.; Liu, Y.; Pan, M.; Kuang, X. J.; Yan, C.; Li, K.; Wei, S. C.; Su, C. Y. Accumulation of versatile iodine species by a porous hydrogen-bonding Cu(II) coordination framework. J. Mater. Chem. A 2013, 1, 8575–8580.

[40]

Hisaki, I.; Ikenaka, N.; Gomez, E.; Cohen, B.; Tohnai, N.; Douhal, A. Hexaazatriphenylene-based hydrogen-bonded organic framework with permanent porosity and single-crystallinity. Chem.—Eur. J. 2017, 23, 11611–11619.

[41]

Wang, Y. Q.; Jin, Y. Y.; Xian, W. P.; Zuo, X. H.; Wang, S.; Sun, Q. Pore polarity engineering in hydrogen-bonded organic frameworks for enhanced iodine capture. J. Mater. Chem. A 2022, 10, 18730–18736.

[42]

Xie, Y. B.; Zhong, F. Y.; Chen, H. X.; Chen, D. N.; Wang, J. W.; Gao, J. K.; Yao, J. M. Fabrication of hydrogen-bonded metal-complex frameworks for capturing iodine. J. Solid State Chem. 2019, 277, 525–530.

[43]

Zhang, M. S.; Samanta, J.; Atterberry, B. A.; Staples, R.; Rossini, A. J.; Ke, C. F. A crosslinked ionic organic framework for efficient iodine and iodide remediation in water. Angew. Chem., Int. Ed. 2022, 61, e202214189.

[44]

Lin, R. B.; Chen, B. L. Hydrogen-bonded organic frameworks: Chemistry and functions. Chem 2022, 8, 2114–2135.

[45]

Song, X. Y.; Wang, Y.; Wang, C.; Wang, D.; Zhuang, G. W.; Kirlikovali, K. O.; Li, P.; Farha, O. K. Design rules of hydrogen-bonded organic frameworks with high chemical and thermal stabilities. J. Am. Chem. Soc. 2022, 144, 10663–10687.

[46]

Wang, B.; Lin, R. B.; Zhang, Z. J.; Xiang, S. C.; Chen, B. L. Hydrogen-bonded organic frameworks as a tunable platform for functional materials. J. Am. Chem. Soc. 2020, 142, 14399–14416.

[47]

Lin, R. B.; He, Y. B.; Li, P.; Wang, H. L.; Zhou, W.; Chen, B. L. Multifunctional porous hydrogen-bonded organic framework materials. Chem. Soc. Rev. 2019, 48, 1362–1389.

[48]

Ding, X. J.; Luo, Y. L.; Wang, W.; Hu, T. Y.; Chen, J.; Ye, G. Charge-assisted hydrogen-bonded organic frameworks with inorganic ammonium regulated switchable open polar sites. Small 2023, 19, 2207771.

[49]

Adachi, T.; Ward, M. D. Versatile and resilient hydrogen-bonded host frameworks. Acc. Chem. Res. 2016, 49, 2669–2679.

[50]

Xie, Y.; Ding, X. J.; Wang, J. C.; Ye, G. Hydrogen-bonding assembly meets anion coordination chemistry: Framework shaping and polarity tuning for xenon/krypton separation. Angew. Chem., Int. Ed. 2023, 62, e202313951.

[51]

Sava, D. F.; Rodriguez, M. A.; Chapman, K. W.; Chupas, P. J.; Greathouse, J. A.; Crozier, P. S.; Nenoff, T. M. Capture of volatile iodine, a gaseous fission product, by zeolitic imidazolate framework-8. J. Am. Chem. Soc. 2011, 133, 12398–12401.

[52]

Van Bolhuis, F.; Koster, P. B.; Migchelsen, T. Refinement of the crystal structure of iodine at 110° K. Acta Cryst. 1967, 23, 90–91.

[53]

Parigoridi, I. E.; Corban, G. J.; Hadjikakou, S. K.; Hadjiliadis, N.; Kourkoumelis, N.; Kostakis, G.; Psycharis, V.; Raptopoulou, C. P.; Kubicki, M. Structural motifs of diiodine complexes with amides and thioamides. Dalton Trans. 2008, 5159–5165

[54]

Ouvrard, C.; Le Questel, J. Y.; Berthelot, M.; Laurence, C. Halogen-bond geometry: A crystallographic database investigation of dihalogen complexes. Acta Cryst. 2003, B59, 512–526.

[55]

Martí-Rujas, J.; Meazza, L.; Lim, G. K.; Terraneo, G.; Pilati, T.; Harris, K. D. M.; Metrangolo, P.; Resnati, G. An adaptable and dynamically porous organic salt traps unique tetrahalide dianions. Angew. Chem., Int. Ed. 2013, 52, 13444–13448.

[56]

Haller, H.; Schröder, J.; Riedel, S. Structural evidence for undecabromide [Br11]. Angew. Chem., Int. Ed. 2013, 52, 4937–4940.

[57]

Svensson, P. H.; Kloo, L. Synthesis, structure, and bonding in polyiodide and metal iodide-iodine systems. Chem. Rev. 2003, 103, 1649–1684.

[58]

Sherwood, P. M. A. X-ray photoelectron spectroscopic studies of some iodine compounds. J. Chem. Soc., Faraday Trans. 2 1976, 72, 1805–1820.

[59]

Metrangolo, P.; Meyer, F.; Pilati, T.; Resnati, G.; Terraneo, G. Halogen bonding in supramolecular chemistry. Angew. Chem., Int. Ed. 2008, 47, 6114–6127.

[60]

Wang, C.; Wang, Y.; Ge, R. L.; Song, X. D.; Xing, X. Q.; Jiang, Q. K.; Lu, H.; Hao, C.; Guo, X. W.; Gao, Y. N. et al. A 3D covalent organic framework with exceptionally high iodine capture capability. Chem.—Eur. J. 2018, 24, 585–589.

Nano Research
Pages 6766-6772
Cite this article:
Xie Y, Huang P, Gao Q, et al. Halogen-bond induced unusual polyhalogen anions formation in hydrogen-bonded frameworks to secure iodine sequestration. Nano Research, 2024, 17(7): 6766-6772. https://doi.org/10.1007/s12274-024-6606-5
Topics:
Metrics & Citations  
Article History
Copyright
Return