Journal Home > Online First

All-solid-state batteries, renowned for their enhanced safety and high energy density, have garnered broad interest. Oxide solid electrolytes are highly anticipated for their balanced performance. However, their high Young’s modulus and inadaptability to volume change during cycling lead to poor contact and eventual battery failure. In this work, Young’s modulus of Li1+x(OH)xCl samples is lowered to a level comparable to that of sulfide by regulating the –OH content. As the –OH content increases, Young’s modulus of Li1+x(OH)xCl samples decreases significantly. This may be due to the local aggregation of –OH groups, forming cavities similar to LiOH structure, which reduces the bonding of the structure. On the premise of high Li-ion conductivity and electrochemical stability, the lowered Young’s modulus improves the contact between the solid electrolyte and the electrodes, forming a strong and stable interfacial layer, thereby improving interfacial and cycling stability. The symmetrical lithium metal cell shows excellent cycle performance of 600 h, and the assembled LiFePO4|Li2.4(OH)1.4Cl|Li cell shows significantly enhanced cycling endurance with 80% capacity retention after 150 cycles. This work not only emphasizes the crucial importance of Young’s modulus in improving interface issues but also offers innovative approaches to advance the mechanical properties of solid electrolytes.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Enhancement of –OH content on mechanical properties of anti-perovskite solid electrolytes

Show Author's information Zunqiu Xiao1Huaying Wang1Ningyuan Cai1Yutong Li2Kejia Xiang1Wei Wei1Tao Ye1Zhongtai Zhang1Shitong Wang3( )Zilong Tang1( )
State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
College of New Energy, Advanced Chemical Engineering and Energy Materials Research Center, China University of Petroleum (East China), Qingdao 266580, China
Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Abstract

All-solid-state batteries, renowned for their enhanced safety and high energy density, have garnered broad interest. Oxide solid electrolytes are highly anticipated for their balanced performance. However, their high Young’s modulus and inadaptability to volume change during cycling lead to poor contact and eventual battery failure. In this work, Young’s modulus of Li1+x(OH)xCl samples is lowered to a level comparable to that of sulfide by regulating the –OH content. As the –OH content increases, Young’s modulus of Li1+x(OH)xCl samples decreases significantly. This may be due to the local aggregation of –OH groups, forming cavities similar to LiOH structure, which reduces the bonding of the structure. On the premise of high Li-ion conductivity and electrochemical stability, the lowered Young’s modulus improves the contact between the solid electrolyte and the electrodes, forming a strong and stable interfacial layer, thereby improving interfacial and cycling stability. The symmetrical lithium metal cell shows excellent cycle performance of 600 h, and the assembled LiFePO4|Li2.4(OH)1.4Cl|Li cell shows significantly enhanced cycling endurance with 80% capacity retention after 150 cycles. This work not only emphasizes the crucial importance of Young’s modulus in improving interface issues but also offers innovative approaches to advance the mechanical properties of solid electrolytes.

Keywords: mechanical properties, Li-ion batteries, solid electrolytes, anti-perovskite, –OH content

References(51)

[1]

Zhao, Q.; Stalin, S.; Zhao, C. Z.; Archer, L. A. Designing solid-state electrolytes for safe, energy-dense batteries. Nat. Rev. Mater. 2020, 5, 229–252.

[2]

Famprikis, T.; Canepa, P.; Dawson, J. A.; Islam, M. S.; Masquelier, C. Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 2019, 18, 1278–1291.

[3]

Wang, X. Y.; He, K.; Li, S. Y.; Zhang, J. H.; Lu, Y. Y. Realizing high-performance all-solid-state batteries with sulfide solid electrolyte and silicon anode: A review. Nano Res. 2023, 16, 3741–3765.

[4]

Xia, W.; Zhao, Y.; Zhao, F. P.; Adair, K.; Zhao, R.; Li, S.; Zou, R. Q.; Zhao, Y. S.; Sun, X. L. Antiperovskite electrolytes for solid-state batteries. Chem. Rev. 2022, 122, 3763–3819.

[5]

Miao, X.; Guan, S. D.; Ma, C.; Li, L. L.; Nan, C. W. Role of interfaces in solid-state batteries. Adv. Mater. 2023, 35, 2206402.

[6]

Thangadurai, V.; Narayanan, S.; Pinzaru, D. Garnet-type solid-state fast Li ion conductors for Li batteries: Critical review. Chem. Soc. Rev. 2014, 43, 4714–4727.

[7]

Niu, Y. J.; Yu, Z. Z.; Zhou, Y. J.; Tang, J. W.; Li, M. X.; Zhuang, Z. C.; Yang, Y.; Huang, X.; Tian, B. B. Constructing stable Li-solid electrolyte interphase to achieve dendrites-free solid-state battery: A nano-interlayer/Li pre-reduction strategy. Nano Res. 2022, 15, 7180–7189.

[8]

Pang, Y. P.; Pan, J. Y.; Yang, J. H.; Zheng, S. Y.; Wang, C. S. Electrolyte/electrode interfaces in all-solid-state lithium batteries: A review. Electrochem. Energy Rev. 2021, 4, 169–193.

[9]

Koerver, R.; Zhang, W. B.; de Biasi, L.; Schweidler, S.; Kondrakov, A. O.; Kolling, S.; Brezesinski, T.; Hartmann, P.; Zeier, W. G.; Janek, J. Chemo-mechanical expansion of lithium electrode materials - on the route to mechanically optimized all-solid-state batteries. Energy Environ. Sci. 2018, 11, 2142–2158.

[10]

McGrogan, F. P.; Swamy, T.; Bishop, S. R.; Eggleton, E.; Porz, L.; Chen, X. W.; Chiang, Y. M.; Van Vliet, K. J. Compliant yet brittle mechanical behavior of Li2S-P2S5 lithium-ion-conducting solid electrolyte. Adv. Energy Mater. 2017, 7, 1602011.

[11]

Hu, S.; Xu, P. Y.; de Vasconcelos, L. S.; Stanciu, L.; Ni, H. W.; Zhao, K. J. Elastic modulus, hardness, and fracture toughness of Li6.4La3Zr1.4Ta0.6O12 solid electrolyte. Chin. Phys. Lett. 2021, 38, 098401.

[12]

Tao, B. R.; Zhong, D. L.; Li, H. D.; Wang, G. F.; Chang, H. X. Halide solid-state electrolytes for all-solid-state batteries: Structural design, synthesis, environmental stability, interface optimization and challenges. Chem. Sci. 2023, 14, 8693–8722.

[13]

Ren, Y.; Sun, C. J.; Liu, J. J.; Cai, G. J.; Tan, X.; Zhang, C. Effect of the mechanical strength on the ion transport in a transition metal lithium halide electrolyte: First-principle calculations. Mater. Today Commun. 2022, 33, 104570.

[14]

Hikima, K.; Totani, M.; Obokata, S.; Muto, H.; Matsuda, A. Mechanical properties of sulfide-type solid electrolytes analyzed by indentation methods. ACS Appl. Energy Mater. 2022, 5, 2349–2355.

[15]

Muramatsu, H.; Hayashi, A.; Ohtomo, T.; Hama, S.; Tatsumisago, M. Structural change of Li2S-P2S5 sulfide solid electrolytes in the atmosphere. Solid State Ion. 2011, 182, 116–119.

[16]

Wang, K.; Ren, Q. Y.; Gu, Z. Q.; Duan, C. M.; Wang, J. Z.; Zhu, F.; Fu, Y. Y.; Hao, J. P.; Zhu, J. F.; He, L. H. et al. A cost-effective and humidity-tolerant chloride solid electrolyte for lithium batteries. Nat. Commun. 2021, 12, 4410.

[17]

Zeng, Z. C.; Shi, X. M.; Sun, M. Z.; Zhang, H. T.; Luo, W.; Huang, Y. H.; Huang, B. L.; Du, Y. P.; Yan, C. H. Stable all-solid-state Li-Te battery with Li3TbBr6 superionic conductor. Nano Res. 2023, 16, 9344–9351.

[18]

Reddy, M. V.; Julien, C. M.; Mauger, A.; Zaghib, K. Sulfide and oxide inorganic solid electrolytes for all-solid-state Li batteries: A review. Nanomaterials 2020, 10, 1606.

[19]

Krauskopf, T.; Dippel, R.; Hartmann, H.; Peppler, K.; Mogwitz, B.; Richter, F. H.; Zeier, W. G.; Janek, J. Lithium-metal growth kinetics on LLZO garnet-type solid electrolytes. Joule 2019, 3, 2030–2049.

[20]

Leng, J.; Wang, H. Y.; Liang, H. M.; Xiao, Z. Q.; Wang, S. T.; Zhang, Z. T.; Tang, Z. L. Storage of garnet solid electrolytes: Insights into air stability and surface chemistry. ACS Appl. Energy Mater. 2022, 5, 5108–5116.

[21]

Yan, G.; Yu, S. C.; Nonemacher, J. F.; Tempel, H.; Kungl, H.; Malzbender, J.; Eichel, R. A.; Krüger, M. Influence of sintering temperature on conductivity and mechanical behavior of the solid electrolyte LATP. Ceram. Int. 2019, 45, 14697–14703.

[22]

Yu, S.; Schmidt, R. D.; Garcia-Mendez, R.; Herbert, E.; Dudney, N. J.; Wolfenstine, J. B.; Sakamoto, J.; Siegel, D. J. Elastic properties of the solid electrolyte Li7La3Zr2O12 (LLZO). Chem. Mater. 2016, 28, 197–206.

[23]

Leng, J.; Wang, H. Y.; Li, Y. T.; Xiao, Z. Q.; Wang, S. T.; Zhang, Z. T.; Tang, Z. L. Insight into the solid-liquid electrolyte interphase between Li6.4La3Zr1.4Ta0.6O12 and LiPF6-based liquid electrolyte. Appl. Surf. Sci. 2022, 575, 151638.

[24]

Zhou, L. D.; Minafra, N.; Zeier, W. G.; Nazar, L. F. Innovative approaches to Li-Argyrodite solid electrolytes for all-solid-state lithium batteries. Acc. Chem. Res. 2021, 54, 2717–2728.

[25]

Nie, L.; Chen, S. J.; Zhang, M. T.; Gao, T. Y.; Zhang, Y. Y.; Wei, R.; Zhang, Y. N.; Liu, W. An in- situ polymerized interphase engineering for high-voltage all-solid-state lithium-metal batteries. Nano Res. 2024, 17, 2687–2692

[26]

Sun, J. Q.; Yao, X. M.; Li, Y. G.; Zhang, Q. H.; Hou, C. Y.; Shi, Q. W.; Wang, H. Z. Facilitating interfacial stability via bilayer heterostructure solid electrolyte toward high-energy, safe and adaptable lithium batteries. Adv. Energy Mater. 2020, 10, 2000709.

[27]

Cheng, Z. W.; Liu, T.; Zhao, B.; Shen, F.; Jin, H. Y.; Han, X. G. Recent advances in organic–inorganic composite solid electrolytes for all-solid-state lithium batteries. Energy Storage Mater. 2021, 34, 388–416.

[28]

Feng, W. L.; Zhu, L.; Dong, X. L.; Wang, Y. G.; Xia, Y. Y.; Wang, F. Enhanced moisture stability of lithium-rich antiperovskites for sustainable all-solid-state lithium batteries. Adv. Mater. 2023, 35, 2210365.

[29]

Deng, Z.; Ni, D. X.; Chen, D. C.; Bian, Y.; Li, S.; Wang, Z. X.; Zhao, Y. S. Anti-perovskite materials for energy storage batteries. InfoMat 2022, 4, e12252.

[30]

Effat, M. B.; Liu, J. P.; Lu, Z. H.; Wan, T. H.; Curcio, A.; Ciucci, F. Stability, elastic properties, and the Li transport mechanism of the protonated and fluorinated antiperovskite lithium conductors. ACS Appl. Mater. Interfaces 2020, 12, 55011–55022.

[31]

Li, C. C.; Lian, S.; Kang, C.; Ren, J. F.; Chen, M. N. Insights on transport performance, thermodynamic properties, and mechanical properties of Ruddlesden–Popper antiperovskite LiBr(Li2OHBr)2 and LiBr(Li3OBr)2. J. Chem. Phys. 2023, 159, 024705.

[32]

Dutra, A. C. C.; Dawson, J. A. Computational design of antiperovskite solid electrolytes. J. Phys. Chem. C 2023, 127, 18256–18270.

[33]

Xiao, Z. Q.; Li, Y. T.; Leng, J.; Xiang, K. J.; Wei, W.; Wang, H. Y.; Hong, Z. J.; Zhang, Z. T.; Wang, S. T.; Tang, Z. L. Unraveling the enhancement of confined water on the Li-ion transport of solid electrolytes. Adv. Funct. Mater. 2024, 34, 2306320.

[34]

Sakuda, A.; Hayashi, A.; Tatsumisago, M. Sulfide solid electrolyte with favorable mechanical property for all-solid-state lithium battery. Sci. Rep. 2013, 3, 2261.

[35]

Kato, A.; Yamamoto, M.; Sakuda, A.; Hayashi, A.; Tatsumisago, M. Mechanical properties of Li2S-P2S5 glasses with lithium halides and application in all-solid-state batteries. ACS Appl. Energy Mater. 2018, 1, 1002–1007.

[36]

Wang, Z. Q.; Wu, M. S.; Liu, G.; Lei, X. L.; Xu, B.; Ouyang, C. Y. Elastic properties of new solid state electrolyte material Li10GeP2S12: A study from first-principles calculations. Int. J. Electrochem. Sci. 2014, 9, 562–568.

[37]

Kim, K.; Park, D.; Jung, H. G.; Chung, K. Y.; Shim, J. H.; Wood, B. C.; Yu, S. Material design strategy for halide solid electrolytes Li3MX6 (X = Cl, Br, and I) for all-solid-state high-voltage Li-ion batteries. Chem. Mater. 2021, 33, 3669–3677.

[38]

Yu, Y. R.; Wang, Z.; Shao, G. S. Formulation of Li-metal-halide (LMX) solid state electrolytes through extensive first principles modelling. J. Mater. Chem. A 2021, 9, 25585–25594.

[39]

Deng, Z.; Wang, Z. B.; Chu, I. H.; Luo, J.; Ong, S. P. Elastic properties of alkali superionic conductor electrolytes from first principles calculations. J. Electrochem. Soc. 2015, 163, A67–A74.

[40]

Cha, M.; Shi, K.; Lee, H. Spectroscopic identification of amyl alcohol hydrates through free OH observation. J. Phys. Chem. B 2009, 113, 10562–10565.

[41]

Frost, R. L.; Dickfos, M. J.; Reddy, B. J. Raman spectroscopy of hydroxy nickel carbonate minerals nullaginite and zaratite. J. Raman Spectrosc. 2008, 39, 1250–1256.

[42]

Dawson, J. A.; Attari, T. S.; Chen, H.; Emge, S. P.; Johnston, K. E.; Islam, M. S. Elucidating lithium-ion and proton dynamics in anti-perovskite solid electrolytes. Energy Environ. Sci. 2018, 11, 2993–3002.

[43]

Gao, L.; Song, M. R.; Zhao, R.; Han, S. B.; Zhu, J. L.; Xia, W.; Bian, J. C.; Wang, L. P.; Gao, S.; Wang, Y. G. et al. Effects of fluorination on crystal structure and electrochemical performance of antiperovskite solid electrolytes. J. Energy Chem. 2023, 77, 521–528.

[44]

Ling, S. F.; Deng, B.; Zhao, R.; Lin, H. B.; Kong, L.; Zhang, R. Q.; Lu, Z. G.; Bian, J. C.; Zhao, Y. S. Revisiting the role of hydrogen in lithium-rich antiperovskite solid electrolytes: New insight in lithium ion and hydrogen dynamics. Adv. Energy Mater. 2023, 13, 2202847.

[45]

Hood, Z. D.; Wang, H.; Pandian, A. S.; Keum, J. K.; Liang, C. D. Li2OHCl crystalline electrolyte for stable metallic lithium anodes. J. Am. Chem. Soc. 2016, 138, 1768–1771.

[46]

Tian, Y. J.; Ding, F.; Zhong, H.; Liu, C.; He, Y. B.; Liu, J. Q.; Liu, X. J.; Xu, Q. Li6.75La3Zr1.75Ta0.25O12@amorphous Li3OCl composite electrolyte for solid state lithium-metal batteries. Energy Storage Mater. 2018, 14, 49–57.

[47]

Yu, P. C.; Ye, Y.; Zhu, J. L.; Xia, W.; Zhao, Y. S. Optimized interfaces in anti-perovskite electrolyte-based solid-state lithium metal batteries for enhanced performance. Front. Chem. 2021, 9, 786956.

[48]

Ye, Y.; Gao, L.; Deng, Z.; Niu, K. D.; Zhao, R.; Bian, J. C.; Lin, H. B.; Zhu, J. L.; Zhao, Y. S. Regulating the lithium metal growth by Li3BO3/Li2OHCl solid-state electrolyte for long-lasting lithium metal stripping-plating. J. Power Sources 2021, 507, 230299.

[49]

Ye, Y.; Deng, Z.; Gao, L.; Niu, K. D.; Zhao, R.; Bian, J. C.; Li, S.; Lin, H. B.; Zhu, J. L.; Zhao, Y. S. Lithium-rich anti-perovskite Li2OHBr-based polymer electrolytes enabling an improved interfacial stability with a three-dimensional-structured lithium metal anode in all-solid-state batteries. ACS Appl. Mater. Interfaces 2021, 13, 28108–28117.

[50]

Bian, J. C.; Yuan, H. M.; Li, M. Q.; Ling, S. F.; Deng, B.; Luo, W.; Chen, X. D.; Yin, L. H.; Li, S.; Kong, L. et al. Li-rich antiperovskite/nitrile butadiene rubber composite electrolyte for sheet-type solid-state lithium metal battery. Front. Chem. 2021, 9, 744417.

[51]

Yin, L. H.; Yuan, H. M.; Kong, L.; Lu, Z. G.; Zhao, Y. S. Engineering Frenkel defects of anti-perovskite solid-state electrolytes and their applications in all-solid-state lithium-ion batteries. Chem. Commun. 2020, 56, 1251–1254.

File
6600_ESM.pdf (4.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 17 January 2024
Revised: 18 February 2024
Accepted: 29 February 2024
Published: 06 April 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

Z. L. T. acknowledges support from the National Natural Science Foundation of China (Nos. 52172210 and 51772163).

Return