Journal Home > Online First

Recently, the coexistence of topology and superconductivity has garnered considerable attention. Specifically, the dimensionality of these materials is crucial for the realization of topological quantum computation. However, the naturally grown materials, especially with one-dimensional feature that exhibits the coexistence of topology and superconductivity, still face challenges in terms of experimental realization and scalability, which hinders the fundamental research development and the potential to revolutionize quantum computing. Here, we report the first experimental synthesis of quasi-one-dimensional InNbS2 nanoribbons that exhibit the coexistence of topological order and superconductivity via a chemical vapor transport method. Especially, the in-plane upper critical field of InNbS2 nanoribbons exceeds the Pauli paramagnetic limit by more than 2.2 times, which can be attributed to the enhanced spin-orbit coupling and the weakened interlayer interaction between the NbS2 layers induced by the insertion of In atoms, making InNbS2 exhibit spin-momentum locking similar to that of monolayer NbS2. Moreover, for the first time, we report the superconducting diode effect in a quasi-one-dimensional superconductor system without any inherent geometric imperfections. The measured maximum efficiency is manifested as 14%, observed at μ0H ≈ ±60 mT, and we propose that the superconducting diode effect can potentially be attributed to the presence of the nontrivial topological band. Our work provides a platform for studying exotic phenomena in condensed matter physics and potential applications in quantum computing and quantum information processing.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Larger in-plane upper critical field and superconducting diode effect observed in topological superconductor candidate InNbS2 nanoribbons

Show Author's information Bo Zheng1,§Changlong Wang1,§Xukun Feng2,§Xiaozhen Sun3Shasha Wang1Dawei Qiu4Xiang Ma1Ruimin Li1Guanglei Cheng4Lan Wang5Yalin Lu1Peng Li3Shengyuan A. Yang6Bin Xiang1( )
Department of Materials Science and Engineering, CAS Key Lab of Materials for Energy Conversion, Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, Hefei, China
Research Laboratory for Quantum Materials, Singapore University of Technology and Design, Singapore 487372, Singapore
School of Microelectronics, University of Science and Technology of China, Hefei 230052, China
CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
Lab of Low Dimensional Magnetism and Spintronic Devices, School of Physics, Hefei University of Technology, Hefei 230009, China
Research Laboratory for Quantum Materials, IAPME, University of Macau, Macau, China

§ Bo Zheng, Changlong Wang, and Xukun Feng contributed equally to this work.

Abstract

Recently, the coexistence of topology and superconductivity has garnered considerable attention. Specifically, the dimensionality of these materials is crucial for the realization of topological quantum computation. However, the naturally grown materials, especially with one-dimensional feature that exhibits the coexistence of topology and superconductivity, still face challenges in terms of experimental realization and scalability, which hinders the fundamental research development and the potential to revolutionize quantum computing. Here, we report the first experimental synthesis of quasi-one-dimensional InNbS2 nanoribbons that exhibit the coexistence of topological order and superconductivity via a chemical vapor transport method. Especially, the in-plane upper critical field of InNbS2 nanoribbons exceeds the Pauli paramagnetic limit by more than 2.2 times, which can be attributed to the enhanced spin-orbit coupling and the weakened interlayer interaction between the NbS2 layers induced by the insertion of In atoms, making InNbS2 exhibit spin-momentum locking similar to that of monolayer NbS2. Moreover, for the first time, we report the superconducting diode effect in a quasi-one-dimensional superconductor system without any inherent geometric imperfections. The measured maximum efficiency is manifested as 14%, observed at μ0H ≈ ±60 mT, and we propose that the superconducting diode effect can potentially be attributed to the presence of the nontrivial topological band. Our work provides a platform for studying exotic phenomena in condensed matter physics and potential applications in quantum computing and quantum information processing.

Keywords: nanoribbon, superconductivity, topological order, superconducting anisotropy, superconducting diode

References(68)

[1]

Sohn, E.; Xi, X. X.; He, W. Y.; Jiang, S. W.; Wang, Z. F.; Kang, K. F.; Park, J. H.; Berger, H.; Forró, L.; Law, K. T. et al. An unusual continuous paramagnetic-limited superconducting phase transition in 2D NbSe2. Nat. Mater. 2018, 17, 504–508.

[2]

Ugeda, M. M.; Bradley, A. J.; Zhang, Y.; Onishi, S.; Chen, Y.; Ruan, W.; Ojeda-Aristizabal, C.; Ryu, H.; Edmonds, M. T.; Tsai, H. Z. et al. Characterization of collective ground states in single-layer NbSe2. Nat. Phys. 2016, 12, 92–97.

[3]

Wang, E. Y.; Ding, H.; Fedorov, A. V.; Yao, W.; Li, Z.; Lv, Y. F.; Zhao, K.; Zhang, L. G.; Xu, Z. J.; Schneeloch, J. et al. Fully gapped topological surface states in Bi2Se3 films induced by a d-wave high-temperature superconductor. Nat. Phys. 2013, 9, 621–625.

[4]

Zhang, H. J.; Liu, C. X.; Qi, X. L.; Dai, X.; Fang, Z.; Zhang, S. C. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 2009, 5, 438–442.

[5]

Li, Y. P.; Wu, Z. X.; Zhou, J. G.; Bu, K. L.; Xu, C. C.; Qiao, L.; Li, M. C.; Bai, H.; Ma, J.; Tao, Q. et al. Enhanced anisotropic superconductivity in the topological nodal-line semimetal In x TaS2. Phys. Rev. B 2020, 102, 224503.

[6]

Adam, M. L.; Liu, Z. F.; Moses, O. A.; Wu, X. J.; Song, L. Superconducting properties and topological nodal lines features in centrosymmetric Sn0.5TaSe2. Nano Res. 2021, 14, 2613–2619.

[7]

Bian, G.; Chang, T. R.; Sankar, R.; Xu, S. Y.; Zheng, H.; Neupert, T.; Chiu, C. K.; Huang, S. M.; Chang, G. Q.; Belopolski, I. et al. Topological nodal-line fermions in spin-orbit metal PbTaSe2. Nat. Commun. 2016, 7, 10556.

[8]

Gao, W. S.; Zhu, M. C.; Chen, D.; Liang, X.; Wu, Y. L.; Zhu, A. K.; Han, Y. Y.; Li, L.; Liu, X.; Zheng, G. L. et al. Evidences of topological surface states in the nodal-line semimetal SnTaS2 nanoflakes. ACS Nano 2023, 17, 4913–4921.

[9]

Vaitiekėnas, S.; Winkler, G. W.; Van Heck, B.; Karzig, T.; Deng, M. T.; Flensberg, K.; Glazman, L. I.; Nayak, C.; Krogstrup, P.; Lutchyn, R. M. et al. Flux-induced topological superconductivity in full-shell nanowires. Science 2020, 367, eaav3392.

[10]

Flensberg, K. Tunneling characteristics of a chain of Majorana bound states. Phys. Rev. B 2010, 82, 180516.

[11]

Nilsson, J.; Akhmerov, A. R.; Beenakker, C. W. J. Splitting of a Cooper pair by a pair of Majorana bound states. Phys. Rev. Lett. 2008, 101, 120403.

[12]

Oreg, Y.; Refael, G.; von Oppen, F. Helical liquids and Majorana bound states in quantum wires. Phys. Rev. Lett. 2010, 105, 177002.

[13]

Gaidamauskas, E.; Paaske, J.; Flensberg, K. Majorana bound states in two-channel time-reversal-symmetric nanowire systems. Phys. Rev. Lett. 2014, 112, 126402.

[14]

Lai, Y. H.; Sau, J. D.; Sarma, S. D. Presence versus absence of end-to-end nonlocal conductance correlations in Majorana nanowires: Majorana bound states versus Andreev bound states. Phys. Rev. B 2019, 100, 045302.

[15]

Mao, L.; Gong, M.; Dumitrescu, E.; Tewari, S.; Zhang, C. W. Hole-doped semiconductor nanowire on top of an s-wave superconductor: A new and experimentally accessible system for Majorana fermions. Phys. Rev. Lett. 2012, 108, 177001.

[16]

Prada, E.; San-Jose, P.; de Moor, M. W. A.; Geresdi, A.; Lee, E. J. H.; Klinovaja, J.; Loss, D.; Nygård, J.; Aguado, R.; Kouwenhoven, L. P. From Andreev to Majorana bound states in hybrid superconductor–semiconductor nanowires. Nat. Rev. Phys. 2020, 2, 575–594.

[17]

Das, A.; Ronen, Y.; Most, Y.; Oreg, Y.; Heiblum, M.; Shtrikman, H. Zero-bias peaks and splitting in an Al-InAs nanowire topological superconductor as a signature of Majorana fermions. Nat. Phys. 2012, 8, 887–895.

[18]

Mourik, V.; Zuo, K.; Frolov, S. M.; Plissard, S. R.; Bakkers, E. P. A. M.; Kouwenhoven, L. P. Signatures of Majorana fermions in hybrid superconductor–semiconductor nanowire devices. Science 2012, 336, 1003–1007.

[19]

Hess, H. F.; Robinson, R. B.; Dynes, R. C.; Valles, J. M. J.; Waszczak, J. V. Scanning-tunneling-microscope observation of the Abrikosov flux lattice and the density of states near and inside a fluxoid. Phys. Rev. Lett. 1989, 62, 214–216.

[20]

Clogston, A. M. Upper limit for the critical field in hard superconductors. Phys. Rev. Lett. 1962, 9, 266–267.

[21]

Xi, X. X.; Wang, Z. F.; Zhao, W. W.; Park, J. H.; Law, K. T.; Berger, H.; Forró, L.; Shan, J.; Mak, K. F. Ising pairing in superconducting NbSe2 atomic layers. Nat. Phys. 2016, 12, 139–143.

[22]

Zhang, H. X.; Rousuli, A.; Zhang, K. N.; Luo, L. P.; Guo, C. G.; Cong, X.; Lin, Z. Z.; Bao, C. H.; Zhang, H. Y.; Xu, S. N. et al. Tailored Ising superconductivity in intercalated bulk NbSe2. Nat. Phys. 2022, 18, 1425–1430.

[23]

de la Barrera, S. C.; Sinko, M. R.; Gopalan, D. P.; Sivadas, N.; Seyler, K. L.; Watanabe, K.; Taniguchi, T.; Tsen, A. W.; Xu, X. D.; Xiao, D. et al. Tuning Ising superconductivity with layer and spin-orbit coupling in two-dimensional transition-metal dichalcogenides. Nat. Commun. 2018, 9, 1427.

[24]

He, J. J.; Tanaka, Y.; Nagaosa, N. A phenomenological theory of superconductor diodes. New J. Phys. 2022, 24, 053014.

[25]

Wu, H.; Wang, Y. J.; Xu, Y. F.; Sivakumar, P. K.; Pasco, C.; Filippozzi, U.; Parkin, S. S. P.; Zeng, Y. J.; McQueen, T.; Ali, M. N. The field-free Josephson diode in a van der Waals heterostructure. Nature 2022, 604, 653–656.

[26]

Bauriedl, L.; Bäuml, C.; Fuchs, L.; Baumgartner, C.; Paulik, N.; Bauer, J. M.; Lin, K. Q.; Lupton, J. M.; Taniguchi, T.; Watanabe, K. et al. Supercurrent diode effect and magnetochiral anisotropy in few-layer NbSe2. Nat. Commun. 2022, 13, 4266.

[27]

Zhang, E. Z.; Xu, X.; Zou, Y. C.; Ai, L. F.; Dong, X.; Huang, C.; Leng, P. L.; Liu, S. S.; Zhang, Y. D.; Jia, Z. H. et al. Nonreciprocal superconducting NbSe2 antenna. Nat. Commun. 2020, 11, 5634.

[28]

Wakatsuki, R.; Saito, Y.; Hoshino, S.; Itahashi, Y. M.; Ideue, T.; Ezawa, M.; Iwasa, Y.; Nagaosa, N. Nonreciprocal charge transport in noncentrosymmetric superconductors. Sci. Adv. 2017, 3, e1602390.

[29]

Wu, Y. S.; Wang, Q.; Zhou, X.; Wang, J. H.; Dong, P.; He, J. D.; Ding, Y. F.; Teng, B. L.; Zhang, Y. W.; Li, Y. F. et al. Nonreciprocal charge transport in topological kagome superconductor CsV3Sb5. npj Quantum Mater. 2022, 7, 105.

[30]

Pal, B.; Chakraborty, A.; Sivakumar, P. K.; Davydova, M.; Gopi, A. K.; Pandeya, A. K.; Krieger, J. A.; Zhang, Y.; Date, M.; Ju, S. L. et al. Josephson diode effect from Cooper pair momentum in a topological semimetal. Nat. Phys. 2022, 18, 1228–1233.

[31]
Liu, Z. C.; Huang, L. H.; Wang, J. Josephson diode effect in topological superconductor. arXiv preprint arXiv: 2311.09009, 2023.
[32]

de Picoli, T.; Blood, Z.; Lyanda-Geller, Y.; Väyrynen, J. I. Superconducting diode effect in quasi-one-dimensional systems. Phys. Rev. B 2023, 107, 224518.

[33]

Du, Y. P.; Bo, X. Y.; Wang, D.; Kan, E. J.; Duan, C. G.; Savrasov, S. Y.; Wan, X. G. Emergence of topological nodal lines and type-II Weyl nodes in the strong spin-orbit coupling system InNbX2 (X = S, Se). Phys. Rev. B 2017, 96, 235152.

[34]

Bian, G.; Chang, T. R.; Zheng, H.; Velury, S.; Xu, S. Y.; Neupert, T.; Chiu, C. K.; Huang, S. M.; Sanchez, D. S.; Belopolski, I. et al. Drumhead surface states and topological nodal-line fermions in TlTaSe2. Phys. Rev. B 2016, 93, 121113.

[35]

Chen, D. Y.; Wu, Y. L.; Jin, L.; Li, Y. K.; Wang, X. X.; Duan, J. X.; Han, J. F.; Li, X.; Long, Y. Z.; Zhang, X. M. et al. Superconducting properties in a candidate topological nodal line semimetal SnTaS2 with a centrosymmetric crystal structure. Phys. Rev. B 2019, 100, 064516.

[36]

Yang, X. H.; Yu, T. H.; Xu, C. C.; Wang, J. L.; Hu, W. H.; Xu, Z. K.; Wang, T.; Zhang, C.; Ren, Z.; Xu, Z. A. et al. Anisotropic superconductivity in the topological crystalline metal Pb1/3TaS2 with multiple Dirac fermions. Phys. Rev. B 2021, 104, 035157.

[37]

Wan, P. H.; Zheliuk, O.; Yuan, N. F. Q.; Peng, X. L.; Zhang, L.; Liang, M. P.; Zeitler, U.; Wiedmann, S.; Hussey, N. E.; Palstra, T. T. M. et al. Orbital Fulde–Ferrell–Larkin–Ovchinnikov state in an Ising superconductor. Nature 2023, 619, 46–51.

[38]

Wang, H.; Huang, X. W.; Lin, J. H.; Cui, J.; Chen, Y.; Zhu, C.; Liu, F. C.; Zeng, Q. S.; Zhou, J. D.; Yu, P. et al. High-quality monolayer superconductor NbSe2 grown by chemical vapour deposition. Nat. Commun. 2017, 8, 394.

[39]

Blum, Y.; Tsukernik, A.; Karpovski, M.; Palevski, A. Oscillations of the superconducting critical current in Nb-Cu-Ni-Cu-Nb junctions. Phys. Rev. Lett. 2002, 89, 187004.

[40]

Wang, Z. Y.; Cheon, C. Y.; Tripathi, M.; Marega, G. M.; Zhao, Y. F.; Ji, H. G.; Macha, M.; Radenovic, A.; Kis, A. Superconducting 2D NbS2 grown epitaxially by chemical vapor deposition. ACS Nano 2021, 15, 18403–18410.

[41]

Hunte, F.; Jaroszynski, J.; Gurevich, A.; Larbalestier, D. C.; Jin, R.; Sefat, A. S.; McGuire, M. A.; Sales, B. C.; Christen, D. K.; Mandrus, D. Two-band superconductivity in LaFeAsO0.89F0.11 at very high magnetic fields. Nature 2008, 453, 903–905.

[42]

Hu, R. W.; Lauritch-Kullas, K.; O’Brian, J.; Mitrovic, V. F.; Petrovic, C. Anisotropy of electrical transport and superconductivity in metal chains of Nb2Se3. Phys. Rev. B 2007, 75, 064517.

[43]

Wawro, A. Superconductivity in Ni/Pb modulated films. J. Low Temp. Phys. 1994, 94, 351–359.

[44]
Soto, F.; Berger, H.; Cabo, L.; Carballeira, C.; Mosqueira, J.; Pavuna, D.; Toimil, P.; Vidal, F. Electric and magnetic characterization of NbSe2 single crystals: Anisotropic superconducting fluctuations above Tc. Phys. C: Supercond. 2007 , 460–462, 789–790.
DOI
[45]

Onabe, K.; Naito, M.; Tanaka, S. Anisotropy of upper critical field in superconducting 2 H-NbS2. J. Phys. Soc. Japan 1978, 45, 50–58.

[46]

Fang, L.; Wang, Y.; Zou, P. Y.; Tang, L.; Xu, Z.; Chen, H.; Dong, C.; Shan, L.; Wen, H. H. Fabrication and superconductivity of Na x TaS2 crystals. Phys. Rev. B 2005, 72, 014534.

[47]

Klemm, R. A.; Luther, A.; Beasley, M. R. Theory of the upper critical field in layered superconductors. Phys. Rev. B 1975, 12, 877–891.

[48]

Gurevich, A. Enhancement of the upper critical field by nonmagnetic impurities in dirty two-gap superconductors. Phys. Rev. B 2003, 67, 184515.

[49]

Yang, H. Y.; Zhou, Y. H.; Li, L. Y.; Chen, Z.; Zhang, Z. Y.; Wang, S. Y.; Wang, J.; Chen, X. L.; An, C.; Zhou, Y. et al. Pressure-induced superconductivity in quasi-one-dimensional semimetal Ta2PdSe6. Phys. Rev. Mater. 2022, 6, 084803.

[50]

Zhou, N.; Xu, X. F.; Wang, J. R.; Yang, J. H.; Li, Y. K.; Guo, Y.; Yang, W. Z.; Niu, C. Q.; Chen, B.; Cao, C. et al. Controllable spin-orbit coupling and its influence on the upper critical field in the chemically doped quasi-one-dimensional Nb2PdS5 superconductor. Phys. Rev. B 2014, 90, 094520.

[51]

Bai, H.; Wang, M. M.; Yang, X. H.; Li, Y. P.; Ma, J.; Sun, X. K.; Tao, Q.; Li, L. J.; Xu, Z. A. Superconductivity in tantalum self-intercalated 4Ha-Ta1.03Se2. J. Phys. Condens. Matter 2018, 30, 095703.

[52]

Prober, D. E.; Schwall, R. E.; Beasley, M. R. Upper critical fields and reduced dimensionality of the superconducting layered compounds. Phys. Rev. B 1980, 21, 2717–2733.

[53]

Huang, M.; Wang, S. S.; Wang, Z. H.; Liu, P.; Xiang, J. X.; Feng, C.; Wang, X. Q.; Zhang, Z. M.; Wen, Z. C.; Xu, H. J. et al. Colossal anomalous hall effect in ferromagnetic van der Waals CrTe2. ACS Nano 2021, 15, 9759–9763.

[54]

Cho, C. W.; Lyu, J.; Ng, C. Y.; He, J. J.; Lo, K. T.; Chareev, D.; Abdel-Baset, T. A.; Abdel-Hafiez, M.; Lortz, R. Evidence for the Fulde–Ferrell–Larkin–Ovchinnikov state in bulk NbS2. Nat. Commun. 2021, 12, 3676.

[55]

Devarakonda, A.; Inoue, H.; Fang, S.; Ozsoy-Keskinbora, C.; Suzuki, T.; Kriener, M.; Fu, L.; Kaxiras, E.; Bell, D. C.; Checkelsky, J. G. Clean 2D superconductivity in a bulk van der Waals superlattice. Science 2020, 370, 231–236.

[56]

Hu, X. D.; Ran, Y. Engineering chiral topological superconductivity in twisted Ising superconductors. Phys. Rev. B 2022, 106, 125136.

[57]

Li, Y. P.; Wu, Y.; Xu, C. C.; Liu, N. N.; Ma, J.; Lv, B. J.; Yao, G.; Liu, Y.; Bai, H.; Yang, X. H. et al. Anisotropic gapping of topological Weyl rings in the charge-density-wave superconductor In x TaSe2. Sci. Bull. 2021, 66, 243–249.

[58]

Jeon, K. R.; Kim, J. K.; Yoon, J.; Jeon, J. C.; Han, H.; Cottet, A.; Kontos, T.; Parkin, S. S. P. Zero-field polarity-reversible Josephson supercurrent diodes enabled by a proximity-magnetized Pt barrier. Nat. Mater. 2022, 21, 1008–1013.

[59]

Hope, M. K.; Amundsen, M.; Suri, D.; Moodera, J. S.; Kamra, A. Interfacial control of vortex-limited critical current in type-II superconductor films. Phys. Rev. B 2021, 104, 184512.

[60]

Hou, Y. S.; Nichele, F.; Chi, H.; Lodesani, A.; Wu, Y. Y.; Ritter, M. F.; Haxell, D. Z.; Davydova, M.; Ilić, S.; Glezakou-Elbert, O. et al. Ubiquitous superconducting diode effect in superconductor thin films. Phys. Rev. Lett. 2023, 131, 027001.

[61]

Roy, R. Topological Majorana and Dirac zero modes in superconducting vortex cores. Phys. Rev. Lett. 2010, 105, 186401.

[62]

Yasuda, K.; Yasuda, H.; Liang, T.; Yoshimi, R.; Tsukazaki, A.; Takahashi, K. S.; Nagaosa, N.; Kawasaki, M.; Tokura, Y. Nonreciprocal charge transport at topological insulator/superconductor interface. Nat. Commun. 2019, 10, 2734.

[63]

Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.

[64]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[65]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

[66]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[67]

Wu, Q. S.; Zhang, S. N.; Song, H. F.; Troyer, M.; Soluyanov, A. A. WannierTools: An open-source software package for novel topological materials. Comput. Phys. Commun. 2018, 224, 405–416.

[68]

Mostofi, A. A.; Yates, J. R.; Lee, Y. S.; Souza, I.; Vanderbilt, D.; Marzari, N. wannier90: A tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 2008, 178, 685–699.

File
6599_ESM.pdf (2.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 16 January 2024
Revised: 16 February 2024
Accepted: 29 February 2024
Published: 17 April 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

This work was supported by Innovation Program for Quantum Science and Technology (No. 2021ZD0302800), the National Natural Science Foundation of China (Nos. 52373309 and 12374177), University of Macau Start-up research grant (No. SRG2023-00057-IAPME), and National Synchrotron Radiation Laboratory (No. KY2060000177). This research was partially carried out at the USTC Center for Micro and Nanoscale Research and Fabrication.

Return