Journal Home > Online First

It is the sluggish ion migration kinetics that seriously affects the practical performance of the magnesium ion batteries. Even though an electrode material design using rational interlayer engineering method could effectively solve this issue, the optimal interlayer distance remains undetermined. Herein, various VOPO4-based electrodes with expanded interlayer spacing were fabricated and the relationship between interlayer structure and battery performance was revealed. Electrochemical analysis combined with computations unveils the existence of an optimal interlayer structure, as inadequate expansion failed to fully utilization of the material performance, while excessive expansion degraded the electrode stability. Among them, the electrode with triethylene glycol (TEG) intercalation exhibited optimized performance, maintaining excellent cycling stability (191.3 mAh·g−1 after 800 cycles). Density functional theory (DFT) demonstrated the effectiveness and limitations to lowering the migration energy barrier by expanding the interlayer engineering. In addition, systematic mechanism research revealed the Mg2+ storage process: The stepwise shuttling of Mg2+ along the directions that lie in (001) plane triggers two pairs of redox processes, namely V5+/V4+ and V4+/V3+. This study, regulation of layer spacing to achieve the best integrated performance of electrodes, could deepen the understanding of interlayer engineering and guide the design of advanced multivalent-ion batteries.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Highly cycle-stable VOPO4-based cathodes for magnesium ion batteries: Insight into the role of interlayer engineering in batteries performance

Show Author's information Jiahe ZhangJing ShangXiaojun ZhangKe Wang( )Yihe Zhang( )
Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China

Abstract

It is the sluggish ion migration kinetics that seriously affects the practical performance of the magnesium ion batteries. Even though an electrode material design using rational interlayer engineering method could effectively solve this issue, the optimal interlayer distance remains undetermined. Herein, various VOPO4-based electrodes with expanded interlayer spacing were fabricated and the relationship between interlayer structure and battery performance was revealed. Electrochemical analysis combined with computations unveils the existence of an optimal interlayer structure, as inadequate expansion failed to fully utilization of the material performance, while excessive expansion degraded the electrode stability. Among them, the electrode with triethylene glycol (TEG) intercalation exhibited optimized performance, maintaining excellent cycling stability (191.3 mAh·g−1 after 800 cycles). Density functional theory (DFT) demonstrated the effectiveness and limitations to lowering the migration energy barrier by expanding the interlayer engineering. In addition, systematic mechanism research revealed the Mg2+ storage process: The stepwise shuttling of Mg2+ along the directions that lie in (001) plane triggers two pairs of redox processes, namely V5+/V4+ and V4+/V3+. This study, regulation of layer spacing to achieve the best integrated performance of electrodes, could deepen the understanding of interlayer engineering and guide the design of advanced multivalent-ion batteries.

Keywords: magnesium ion batteries, energy storage mechanisms, layered electrodes, interlayer engineering, high kinetics

References(71)

[1]

Lei, X.; Liang, X.; Yang, R.; Zhang, F.; Wang, C. C.; Lee, C. S.; Tang, Y. B. Rational design strategy of novel energy storage systems: Toward high-performance rechargeable magnesium batteries. Small 2022, 18, 2200418.

[2]

Forero-Saboya, J. D.; Tchitchekova, D. S.; Johansson, P.; Palacín, M. R.; Ponrouch, A. Interfaces and interphases in Ca and Mg batteries. Adv. Mater. Interfaces 2022, 9, 2101578.

[3]

Wang, L. P.; Li, Z. Y.; Meng, Z.; Xiu, Y.; Dasari, B.; Zhao-Karger, Z.; Fichtner, M. Designing gel polymer electrolyte with synergetic properties for rechargeable magnesium batteries. Energy Storage Mater. 2022, 48, 155–163.

[4]

Lee, J.; Dey, S.; Dutton, S. E.; Grey, C. P. Synthesis and characterization of magnesium vanadates as potential magnesium-ion cathode materials through an ab initio guided carbothermal reduction approach. Angew. Chem., Int. Ed. 2022, 61, e202112688.

[5]

Zhang, Y. Q.; Liu, G.; Zhang, C. H.; Chi, Q. G.; Zhang, T. D.; Feng, Y.; Zhu, K.; Zhang, Y.; Chen, Q. G.; Cao, D. X. Low-cost MgFe x Mn2− x O4 cathode materials for high-performance aqueous rechargeable magnesium-ion batteries. Chem. Eng. J. 2020, 392, 123652.

[6]

Luo, P.; Xiao, Y.; Yang, J.; Zuo, C. L.; Xiong, F. Y.; Tang, C.; Liu, G. Y.; Zhang, W. W.; Tang, W.; Wang, S. Y. et al. Polyaniline nanoarrays/carbon cloth as binder-free and flexible cathode for magnesium ion batteries. Chem. Eng. J. 2022, 433, 133772.

[7]

Guo, Z. Q.; Zhao, S. Q.; Li, T. X.; Su, D. W.; Guo, S. J.; Wang, G. X. Recent advances in rechargeable magnesium-based batteries for high-efficiency energy storage. Adv. Energy Mater. 2020, 10, 1903591.

[8]

Song, J.; Sahadeo, E.; Noked, M.; Lee, S. B. Mapping the challenges of magnesium battery. J. Phys. Chem. Lett. 2016, 7, 1736–1749.

[9]

Shah, R.; Mittal, V.; Matsil, E.; Rosenkranz, A. Magnesium-ion batteries for electric vehicles: Current trends and future perspectives. Adv. Mechan. Eng. 2021, 13, 1–9.

[10]

Zuo, C. L.; Tang, W.; Lan, B. X.; Xiong, F. Y.; Tang, H.; Dong, S. J.; Zhang, W. W.; Tang, C.; Li, J. T.; Ruan, Y. S. et al. Unexpected discovery of magnesium-vanadium spinel oxide containing extractable Mg2+ as a high-capacity cathode material for magnesium ion batteries. Chem. Eng. J. 2021, 405, 127005.

[11]

Zhang, J. L.; Liu, J.; Wang, M.; Zhang, Z. H.; Zhou, Z. F.; Chen, X.; Du, A. B.; Dong, S. M.; Li, Z. J.; Li, G. C. et al. The origin of anode-electrolyte interfacial passivation in rechargeable Mg-metal batteries. Energy Environ. Sci. 2023, 16, 1111–1124.

[12]

Liu, J.; Zhou, Z. F.; Wang, M.; Zhang, J. L.; Li, Z. J.; Li, G. C.; Li, F. J.; Cui, G. L.; Zhang, Z. H. Intercalation species regulation in layered vanadium oxide scaffolds enables long cycle life Mg-metal anodes. Chem. Eng. J. 2023, 466, 143308.

[13]

Liu, J.; Zhang, J. L.; Zhang, Z. H.; Du, A. B.; Dong, S. M.; Zhou, Z. F.; Guo, X. S.; Wang, Q. F.; Li, Z. J.; Li, G. C. et al. Epitaxial electrocrystallization of magnesium via synergy of magnesiophilic interface, lattice matching, and electrostatic confinement. ACS Nano 2022, 16, 9894–9907.

[14]

Huang, M.; Wang, X. P.; Wang, J. J.; Meng, J. S.; Liu, X.; He, Q.; Geng, L. S.; An, Q. Y.; Yang, J. L.; Mai, L. Proton/Mg2+ Co-insertion chemistry in aqueous Mg-ion batteries: From the interface to the inner. Angew. Chem., Int. Ed. 2023, 62, e202308961.

[15]

Wen, B.; Yang, C.; Wu, J.; Liu, J. H.; Wang, W. K.; Yang, J. H.; Chi, X. W.; Liu, Y. Water-induced 3D MgMn2O4 assisted by unique nanofluidic effect for energy-dense and durable aqueous magnesium-ion batteries. Chem. Eng. J. 2022, 435, 134997.

[16]

Tian, H. J.; Gao, T.; Li, X. G.; Wang, X. W.; Luo, C.; Fan, X. L.; Yang, C. Y.; Suo, L. M.; Ma, Z. H.; Han, W. Q. et al. High power rechargeable magnesium/iodine battery chemistry. Nat. Commun. 2017, 8, 14083.

[17]

Zhang, Z. H.; Dong, S. M.; Cui, Z. L.; Du, A. B.; Li, G. C.; Cui, G. L. Rechargeable magnesium batteries using conversion-type cathodes: A perspective and minireview. Small Methods 2018, 2, 1800020.

[18]

Deng, M.; Wang, L. Q.; Vaghefinazari, B.; Xu, W.; Feiler, C.; Lamaka, S. V.; Höche, D.; Zheludkevich, M. L.; Snihirova, D. High-energy and durable aqueous magnesium batteries: Recent advances and perspectives. Energy Storage Mater. 2021, 43, 238–247.

[19]

Yoo, H. D.; Liang, Y. L.; Dong, H.; Lin, J. H.; Wang, H.; Liu, Y. S.; Ma, L.; Wu, T. P.; Li, Y. F.; Ru, Q. et al. Fast kinetics of magnesium monochloride cations in interlayer-expanded titanium disulfide for magnesium rechargeable batteries. Nat. Commun. 2017, 8, 339.

[20]

Mao, M. L.; Tong, Y. X.; Zhang, Q. H.; Hu, Y. S.; Li, H.; Huang, X. J.; Chen, L. Q.; Gu, L.; Suo, L. M. Joint cationic and anionic redox chemistry for advanced Mg batteries. Nano Lett. 2020, 20, 6852–6858.

[21]

Kaveevivitchai, W.; Jacobson, A. J. High capacity rechargeable magnesium-ion batteries based on a microporous molybdenum-vanadium oxide cathode. Chem. Mater. 2016, 28, 4593–4601.

[22]

Zhou, L. M.; Liu, Q.; Zhang, Z. H.; Zhang, K.; Xiong, F. Y.; Tan, S. S.; An, Q. Y.; Kang, Y. M.; Zhou, Z.; Mai, L. Interlayer-spacing-regulated VOPO4 nanosheets with fast kinetics for high-capacity and durable rechargeable magnesium batteries. Adv. Mater. 2018, 30, e1801984.

[23]

Kwon, B. J.; Yin, L.; Park, H.; Parajuli, P.; Kumar, K.; Kim, S.; Yang, M. X.; Murphy, M.; Zapol, P.; Liao, C. et al. High voltage Mg-ion battery cathode via a solid solution Cr-Mn spinel oxide. Chem. Mater. 2020, 32, 6577–6587.

[24]

Chen, L.; Bao, J. L.; Dong, X.; Truhlar, D. G.; Wang, Y.; Wang, C.; Xia, Y. Aqueous Mg-ion battery based on polyimide anode and prussian blue cathode. ACS Energy Lett. 2017, 2, 1115–1121.

[25]

Xie, J.; Zhang, Q. C. Recent Progress in multivalent metal (Mg, Zn, Ca, and Al) and metal-ion rechargeable batteries with organic materials as promising electrodes. Small 2019, 15, 1805061.

[26]

An, Q. Y.; Li, Y. F.; Yoo, H. D.; Chen, S.; Ru, Q.; Mai, L.; Yao, Y. Graphene decorated vanadium oxide nanowire aerogel for long-cycle-life magnesium battery cathodes. Nano Energy 2015, 18, 265–272.

[27]

Zhao, C. L.; Wang, Q. D.; Yao, Z. P.; Wang, J. L.; Sánchez-Lengeling, B.; Ding, F. X.; Qi, X. G.; Lu, Y. X.; Bai, X. D.; Li, B. H. et al. Rational design of layered oxide materials for sodium-ion batteries. Science 2020, 370, 708–711.

[28]

Cheng, Y. W.; Shao, Y. Y.; Raju, V.; Ji, X. L.; Mehdi, B. L.; Han, K. S.; Engelhard, M. H.; Li, G. S.; Browning, N. D.; Mueller, K. T. et al. Molecular storage of Mg ions with vanadium oxide nanoclusters. Adv. Funct. Mater. 2016, 26, 3446–3453.

[29]

Andrews, J. L.; Mukherjee, A.; Yoo, H. D.; Parija, A.; Marley, P. M.; Fakra, S.; Prendergast, D.; Cabana, J.; Klie, R. F.; Banerjee, S. Reversible Mg-ion insertion in a metastable one-dimensional polymorph of V2O5. Chem 2018, 4, 564–585.

[30]

Xiong, F. Y.; Jiang, Y. L.; Cheng, L.; Yu, R. H.; Tan, S. S.; Tang, C.; Zuo, C. L.; An, Q. Y.; Zhao, Y. L.; Gaumet, J. J. et al. Low-strain TiP2O7 with three-dimensional ion channels as long-life and high-rate anode material for Mg-ion batteries. Interdisciplin. Mater. 2022, 1, 140–147.

[31]

Gershinsky, G.; Yoo, H. D.; Gofer, Y.; Aurbach, D. Electrochemical and spectroscopic analysis of Mg2+ intercalation into thin film electrodes of layered oxides: V2O5 and MoO3. Langmuir 2013, 29, 10964–10972.

[32]

Esparcia, E. A.; Chae, M. S.; Ocon, J. D.; Hong, S. T. Ammonium vanadium bronze (NH4V4O10) as a high-capacity cathode material for nonaqueous magnesium-ion batteries. Chem. Mater. 2018, 30, 3690–3696.

[33]

Liang, Y. L.; Yoo, H. D.; Li, Y. F.; Shuai, J.; Calderon, H. A.; Hernandez, F. C. R.; Grabow, L. C.; Yao, Y. Interlayer-expanded molybdenum disulfide nanocomposites for electrochemical magnesium storage. Nano Lett 2015, 15, 2194–2202.

[34]

Bi, S. S.; Zhang, Y.; Deng, S. Z.; Tie, Z.; Niu, Z. Q. Proton-assisted aqueous manganese-ion battery chemistry. Angew. Chem., Int. Ed. 2022, 61, e202200809.

[35]

Dupré, N.; Wallez, G.; Gaubicher, J.; Quarton, M. Phase transition induced by lithium insertion in αI- and αII-VOPO4. J. Solid State Chem. 2004, 177, 2896–2902.

[36]

De Stefanis, A.; Foglia, S.; Tomlinson, A. A. G. Assembly and polymerisation of some aromatic amines in α-VOPO4·2H2O. J. Mater. Chem. 1995, 5, 475–483.

[37]

Wu, C. Z.; Lu, X. L.; Peng, L. L.; Xu, K.; Peng, X.; Huang, J. L.; Yu, G. H.; Xie, Y. Two-dimensional vanadyl phosphate ultrathin nanosheets for high energy density and flexible pseudocapacitors. Nat. Commun. 2013, 4, 2431.

[38]

Peng, L. L.; Zhu, Y.; Peng, X.; Fang, Z. W.; Chu, W. S.; Wang, Y.; Xie, Y. J.; Li, Y. F.; Cha, J. J.; Yu, G. H. Effective interlayer engineering of two-dimensional VOPO4 nanosheets via controlled organic intercalation for improving alkali ion storage. Nano Lett. 2017, 17, 6273–6279.

[39]

Markovitch, O.; Agmon, N. Structure and energetics of the hydronium hydration shells. J. Phys. Chem. A 2007, 111, 2253–2256.

[40]

Schmidt, C.; Rosen, M. E.; Caplan, D. F.; Pines, A.; Quinton, M. F. Orientation and motion of tetrahydrofuran in graphite intercalation compounds: Proton NMR studies of Cs (THF) 1.3C24 and K (THF) 2.5C24. J. Phys. Chem. 1995, 99, 10565–10572.

[41]

Wang, C. H.; Zhang, X.; Xu, Z. T.; Sun, X. Z.; Ma, Y. W. Ethylene glycol intercalated cobalt/nickel layered double hydroxide nanosheet assemblies with ultrahigh specific capacitance: Structural design and green synthesis for advanced electrochemical storage. ACS Appl. Mater. Interfaces 2015, 7, 19601–19610.

[42]

Yan, B.; Liao, L.; You, Y. M.; Xu, X. J.; Zheng, Z.; Shen, Z. X.; Ma, J.; Tong, L. M.; Yu, T. Single-crystalline V2O5 ultralong nanoribbon waveguides. Adv. Mater. 2009, 21, 2436–2440.

[43]

Verma, V.; Kumar, S.; Manalastas, W. Jr., Zhao, J.; Chua, R.; Meng, S. Z.; Kidkhunthod, P.; Srinivasan, M. Layered VOPO4 as a cathode material for rechargeable zinc-ion battery: Effect of polypyrrole intercalation in the host and water concentration in the electrolyte. ACS Appl. Energy Mater. 2019, 2, 8667–8674

[44]

Griesel, L.; Bartley, J. K.; Wells, R. P. K.; Hutchings, G. J. Preparation of vanadium phosphate catalysts from VOPO4·2H2O: Effect of VOPO4·2H2O preparation on catalyst performance. J. Mol. Catal. A Chem. 2004, 220, 113–119.

[45]

Wang, J. J.; Tan, S. S.; Xiong, F. Y.; Yu, R. H.; Wu, P. J.; Cui, L. M.; An, Q. Y. VOPO4·2H2O as a new cathode material for rechargeable Ca-ion batteries. Chem. Commun. (Camb.) 2020, 56, 3805–3808

[46]

Zheng, J. N.; Xu, T.; Xia, G. L.; Cui, W. G.; Yang, Y. X.; Yu, X. B. Water-stabilized vanadyl phosphate monohydrate ultrathin nanosheets toward high voltage Al-ion batteries. Small 2023, 19, e2207619.

[47]

Liu, J. L.; Wang, J.; Xu, C. H.; Jiang, H.; Li, C. Z.; Zhang, L. L.; Lin, J. Y.; Shen, Z. X. Advanced energy storage devices: Basic principles, analytical methods, and rational materials design. Adv. Sci. (Weinh.) 2018, 5, 1700322

[48]

Li, Z. N.; Gadipelli, S.; Li, H. C.; Howard, C. A.; Brett, D. J. L.; Shearing, P. R.; Guo, Z. X.; Parkin, I. P.; Li, F. Tuning the interlayer spacing of graphene laminate films for efficient pore utilization towards compact capacitive energy storage. Nat. Energy 2020, 5, 160–168.

[49]

Peng, M. K.; Wang, L.; Li, L. B.; Tang, X. N.; Huang, B. Y.; Hu, T.; Yuan, K.; Chen, Y. W. Manipulating the interlayer spacing of 3D MXenes with improved stability and Zinc-Ion storage capability. Adv. Funct. Mater. 2022, 32, 2109524.

[50]

Liang, K.; Matsumoto, R. A.; Zhao, W.; Osti, N. C.; Popov, I.; Thapaliya, B. P.; Fleischmann, S.; Misra, S.; Prenger, K.; Tyagi, M. et al. Engineering the interlayer spacing by pre-intercalation for high performance supercapacitor MXene electrodes in room temperature ionic liquid. Adv. Funct. Mater. 2021, 31, 2104007.

[51]

Ji, X.; Chen, J.; Wang, F.; Sun, W.; Ruan, Y. J.; Miao, L.; Jiang, J. J.; Wang, C. S. Water-activated VOPO4 for magnesium ion batteries. Nano Lett. 2018, 18, 6441–6448.

[52]

Shi, H. Y.; Song, Y.; Qin, Z. M.; Li, C. C.; Guo, D.; Liu, X. X.; Sun, X. Q. Inhibiting VOPO4· x H2O decomposition and dissolution in rechargeable aqueous zinc batteries to promote voltage and capacity stabilities. Angew. Chem., Int. Ed. 2019, 58, 16057–16061.

[53]

Kim, D. M.; Jung, S. C.; Ha, S.; Kim, Y.; Park, Y.; Ryu, J. H.; Han, Y. K.; Lee, K. T. Cointercalation of Mg2+ ions into graphite for magnesium-ion batteries. Chem. Mater. 2018, 30, 3199–3203.

[54]

Cohn, A. P.; Muralidharan, N.; Carter, R.; Share, K.; Oakes, L.; Pint, C. L. Durable potassium ion battery electrodes from high-rate cointercalation into graphitic carbons. J. Mater. Chem. A 2016, 4, 14954–14959.

[55]

Peng, X.; Zhang, X. M.; Wang, L.; Hu, L. S.; Cheng, S. H. S.; Huang, C.; Gao, B.; Ma, F.; Huo, K. F.; Chu, P. K. Hydrogenated V2O5 nanosheets for superior lithium storage properties. Adv. Funct. Mater. 2016, 26, 784–791.

[56]

Pang, Q.; Yang, S. Y.; Yu, X. Y.; He, W.; Zhang, S. J.; Tian, Y.; Xing, M. M.; Fu, Y.; Luo, X. X. Realizing reversible storage of trivalent aluminum ions using VOPO4·2H2O nanosheets as cathode material in aqueous aluminum metal batteries. J. Alloys Compd. 2021, 885, 161008.

[57]

Wu, L. J.; Zhang, Y.; Fan, L. S.; Zhang, Q.; Wang, P. X.; Tian, D.; Zhang, N. Q.; Sun, K. N. Fabrication sandwich-like V2O5 nanosheets anchor in graphene towards high energy lithium cathode materials. Energy Technol. 2018, 6, 2115–2119.

[58]

Ding, S. Q.; Dai, X.; Li, Z. J.; Meng, A. L.; Wang, L.; Li, G. C.; Li, S. X. Strategy of cation/anion co-doping for potential elevating of VS4 cathode for magnesium ion batteries. Chem. Eng. J. 2022, 439, 135778.

[59]

Sun, X. Q.; Bonnick, P.; Nazar, L. F. Layered TiS2 positive electrode for Mg batteries. ACS Energy Lett. 2016, 1, 297–301.

[60]

He, D.; Wu, D. N.; Gao, J.; Wu, X. M.; Zeng, X. Q.; Ding, W. J. Flower-like CoS with nanostructures as a new cathode-active material for rechargeable magnesium batteries. J. Power Sources 2015, 294, 643–649.

[61]

Liu, Y. C.; Jiao, L. F.; Wu, Q.; Du, J.; Zhao, Y. P.; Si, Y. C.; Wang, Y. J.; Yuan, H T. Sandwich-structured graphene-like MoS2/C microspheres for rechargeable Mg batteries. J. Mater. Chem. A 2013, 1, 5822–5826.

[62]

Wang, L.; Asheim, K.; Vullum, P. E.; Svensson, A. M.; Vullum-Bruer, F. Sponge-like porous manganese(II,III) oxide as a highly efficient cathode material for rechargeable magnesium ion batteries. Chem. Mater. 2016, 28, 6459–6470.

[63]

Tang, H.; Xu, N.; Pei, C. Y.; Xiong, F. Y.; Tan, S. S.; Luo, W.; An, Q. Y.; Mai, L. H2V3O8 nanowires as high-capacity cathode materials for magnesium-based battery. ACS Appl. Mater. Interfaces 2017, 9, 28667–28673.

[64]

Liu, M.; Jain, A.; Rong, Z. Q.; Qu, X. H.; Canepa, P.; Malik, R.; Ceder, G.; Persson, K. A. Evaluation of sulfur spinel compounds for multivalent battery cathode applications. Energy Environ. Sci. 2016, 9, 3201–3209.

[65]

Xu, M.; Lei, S. L.; Qi, J.; Dou, Q. Y.; Liu, L. Y.; Lu, Y. L.; Huang, Q.; Shi, S. Q.; Yan, X. B. Opening magnesium storage capability of two-dimensional MXene by intercalation of cationic surfactant. ACS Nano 2018, 12, 3733–3740.

[66]

Rastgoo-Deylami, M.; Chae, M. S.; Hong, S. T. H2V3O8 as a high energy cathode material for nonaqueous magnesium-ion batteries. Chem. Mater. 2018, 30, 7464–7472

[67]

Li, Z. Y.; Mu, X. K.; Zhao-Karger, Z.; Diemant, T.; Behm, R. J.; Kübel, C.; Fichtner, M. Fast kinetics of multivalent intercalation chemistry enabled by solvated magnesium-ions into self-established metallic layered materials. Nat. Commun. 2018, 9, 5115.

[68]

Liu, B.; Luo, T.; Mu, G. Y.; Wang, X. F.; Chen, D.; Shen, G. Z. Rechargeable Mg-ion batteries based on WSe2 nanowire cathodes. Acs Nano 2013, 7, 8051–8058.

[69]

Zhang, Y. K.; Yang, W. T. Comment on “generalized gradient approximation made simple”. Phys. Rev. Lett. 1998, 80, 890–890.

[70]

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

[71]

Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901–9904.

File
6596_ESM.pdf (708.3 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 27 December 2023
Revised: 13 February 2024
Accepted: 27 February 2024
Published: 30 April 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 52072347) and the Fundamental Research Funds for the Central Universities (No. 2652021082).

Return