AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Enhanced population of excited single state strategy: Irradiation and ultrasound dual-response and host tumor-driven nano-sensitizers construction in triple synergistic therapy

Yaning Li1Mengyan Tian1Tianyue Yang1Jiayu Cao2Hongli Chen3Jun Guo2Pai Liu1,6( )Yi Liu4,5,6( )
State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, Tianjin 300387, China
State Key Laboratory of Separation Membranes and Membrane Processes, School of Life Science, Tiangong University, Tianjin 300387, China
State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, School of Chemistry, Tiangong University, Tianjin 300387, China
School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
Cangzhou Institute of Tiangong University, Cangzhou 061000, China
Show Author Information

Graphical Abstract

In this strategy, the triple synergistic antitumor nanoparticles (NPs) were constructed with maximized excited singlet state (S1), population core and adenosine triphosphate (ATP)-specific responses shell. For the NP core, in terms of molecular structure and energy source, sensitizers 2I-TPIS with dual response to irradiation and ultrasound were designed to enhance the light-trapping capacity,S1 population and inter-system scampering. For the NP shell, utilizing the structural features of the chemotherapeutic agent DPA-Cd, the carrier-free self-assembly of the sensitizer was realized while endowing the NPs with specific responsiveness to ATP, achieving therapy of “photo-sonodynamic therapy (PSDT) + chemotherapy (CT)”.

Abstract

Phototheranostics is an emerging field in synergistic antitumor therapy in which irradiation and sensitizers are combined to produce reactive oxygen species (ROS), bio-images, and high temperatures. All of these are arrived from the energy of sensitizers, which located in excited single state (S1). Undeniably, the decentralization of the S1 population indirectly decreases the effect of each individual treatment. In this study, a strategy was proposed for enhancing the S1 population, and a sensitizer with mitochondrial targeting property, 1,4-indolyl iodinated pyrrolo[3,2-b]pyrrole derivative (2I-TPIS), was assembled into adenosine triphosphate (ATP)-responsive nanoparticles (DPA-2I NPs) to achieve dual responses to irradiation and ultrasonication (US) for application to photo-sonodynamic therapy (PSDT). Compared with monotherapies, 2I-TPIS generated more ROS in PSDT, inducing mitochondrial autophagy and apoptosis, which in turn triggered immunogenic cell death (ICD). Subsequently, DPA-2I NPs were constructed and self-assembled with the chemotherapeutic agents DPA-Cd and 2I-TPIS to achieve a triple synergistic strategy involving chemotherapy (CT) and PSDT. DPA-2I NPs exhibited absolute sensitization, intra-tumoral overexpression of ATP, and disassembly. Importantly, the biosafety and potent antitumor efficiency of the DPA-2I NP-based “PSDT + CT” therapy were revealed using a 4T1 tumor model. The study results provide insights into the design of sensitizers possessing a sufficient S1 population and a highly efficient tumor ablation capacity derived from molecular structural modulation, further enabling triple synergistic antitumor therapies, and expanding the clinical application of sensitizers.

Electronic Supplementary Material

Download File(s)
12274_2024_6595_MOESM1_ESM.pdf (3.3 MB)

References

[1]

Li, T. W.; Xu, Z.; Chen, H.; Zhen, S. J.; Gu, H.; Zhao, Z. J.; Tang, B. Z. Constructing efficient and photostable photosensitizer with aggregation-induced emission by introducing highly electronegative nitrogen atom for photodynamic therapy. Chem. Eng. J. 2023, 468, 143829.

[2]

Li, X. Z.; Fang, F.; Sun, B.; Yin, C.; Tan, J. H.; Wan, Y. P.; Zhang, J. F.; Sun, P. F.; Fan, Q. L.; Wang, P. F. et al. Near-infrared small molecule coupled with rigidness and flexibility for high-performance multimodal imaging-guided photodynamic and photothermal synergistic therapy. Nanoscale Horiz. 2021, 6, 177–185.

[3]

Fang, S.; Lin, J.; Li, C. X.; Huang, P.; Hou, W. X.; Zhang, C. L.; Liu, J. J.; Huang, S. S.; Luo, Y. X.; Fan, W. P. et al. Dual-stimuli responsive nanotheranostics for multimodal imaging guided trimodal synergistic therapy. Small 2017, 13, 1602580.

[4]

Tan, H. S.; Liu, Y. L.; Hou, N.; Cui, S. S.; Liu, B.; Fan, S. S.; Yu, G. P.; Han, C.; Zheng, D. C.; Li, W. Z. et al. Tumor microenvironment pH-responsive pentagonal gold prism-based nanoplatform for multimodal imaging and combined therapy of castration-resistant prostate cancer. Acta Biomater. 2022, 141, 408–417.

[5]
Ma, J. W.; Li, N.; Wang, J. J.; Liu, Z.; Han, Y. L.; Zeng, Y. In vivo synergistic tumor therapies based on copper sulfide photothermal therapeutic nanoplatforms. Exploration 2023 , 3, 20220161.
[6]

Yang, M. Q.; Deng, J. R.; Su, H. F.; Gu, S. X.; Zhang, J.; Zhong, A. G.; Wu, F. S. Small organic molecule-based nanoparticles with red/near-infrared aggregation- induced emission for bioimaging and PDT/PTT synergistic therapy. Mater. Chem. Front. 2021, 5, 406–417.

[7]

Zhang, Z. J.; Xu, W. H.; Kang, M. M.; Wen, H. F.; Guo, H.; Zhang, P. F.; Xi, L.; Li, K.; Wang, L.; Wang, D. et al. An all-round athlete on the track of phototheranostics: Subtly regulating the balance between radiative and nonradiative decays for multimodal imaging-guided synergistic therapy. Adv. Mater. 2020, 32, 2003210.

[8]

Song, S. L.; Zhao, Y.; Kang, M. M.; Zhang, Z. J.; Wu, Q.; Fu, S.; Li, Y. M.; Wen, H. F.; Wang, D.; Tang, B. Z. Side-chain engineering of aggregation-induced emission molecules for boosting cancer phototheranostics. Adv. Funct. Mater. 2021, 31, 2107545.

[9]

Liu, L. Q.; Wang, X.; Wang, L. J.; Guo, L. Q.; Li, Y. B.; Bai, B.; Fu, F.; Lu, H. G.; Zhao, X. W. One-for-all phototheranostic agent based on aggregation-induced emission characteristics for multimodal imaging-guided synergistic photodynamic/photothermal cancer therapy. ACS Appl. Mater. Interfaces 2021, 13, 19668–19678.

[10]

Xu, W. H.; Zhang, Z. J.; Kang, M. M.; Guo, H.; Li, Y. M.; Wen, H. F.; Lee, M. M. S.; Wang, Z. Y.; Kwok, R. T. K.; Lam, J. W. Y. et al. Making the best use of excited-state energy: Multimodality theranostic systems based on second near-infrared (NIR-II) aggregation-induced emission luminogens (AIEgens). ACS Materials Lett. 2020, 2, 1033–1040.

[11]

Li, Y.; Wang, Y. G.; Huang, G.; Gao, J. M. Cooperativity principles in self-assembled nanomedicine. Chem. Rev. 2018, 118, 5359–5391.

[12]

Gil-Garcia, M.; Ventura, S. Multifunctional antibody-conjugated coiled-coil protein nanoparticles for selective cell targeting. Acta Biomater 2021, 131, 472–482.

[13]

Wang, X.; Wang, J. F.; Wang, J. H.; Zhong, Y.; Han, L. L.; Yan, J. L.; Duan, P. C.; Shi, B. Y.; Bai, F. Noncovalent self-assembled smart gold (III) porphyrin nanodrug for synergistic chemo-photothermal therapy. Nano Lett. 2021, 21, 3418–3425.

[14]

Sun, C.; Wang, Z. Y.; Yang, K. K.; Yue, L. D.; Cheng, Q.; Ma, Y. L.; Lu, S. Y.; Chen, G. S.; Wang, R. B. Polyamine-responsive morphological transformation of a supramolecular peptide for specific drug accumulation and retention in cancer cells. Small 2021, 17, 2101139.

[15]

Lovegrove, J. T.; Kent, B.; Förster, S.; Garvey, C. J.; Stenzel, M. H. The flow of anisotropic nanoparticles in solution and in blood. Exploration 2023, 3, 20220075.

[16]

Yao, Q. X.; Gao, S.; Wu, C. L.; Lin, T.; Gao, Y. Enzymatic non-covalent synthesis of supramolecular assemblies as a general platform for bioorthogonal prodrugs activation to combat drug resistance. Biomaterials 2021, 277, 121119.

[17]

Zhao, X. B.; Kang, J. Y.; Shi, Y. P. Noncovalent dual-locked near-infrared fluorescent probe for precise imaging of tumor via hypoxia/glutathione activation. Anal. Chem. 2022, 94, 6574–6581.

[18]

Ma, X. M.; Chen, X. Y.; Yi, Z.; Deng, Z. W.; Su, W.; Chen, G. C.; Ma, L.; Ran, Y. Q.; Tong, Q. L.; Li, X. D. Size changeable nanomedicines assembled by noncovalent interactions of responsive small molecules for enhancing tumor therapy. ACS Appl. Mater. Interfaces 2022, 14, 26431–26442.

[19]

Qi, J.; Duan, X. C.; Liu, W. Y.; Li, Y.; Cai, Y. J.; Lam, J. W. Y.; Kwok, R. T. K.; Ding, D.; Tang, B. Z. Dragonfly-shaped near-infrared AIEgen with optimal fluorescence brightness for precise image-guided cancer surgery. Biomaterials 2020, 248, 120036.

[20]

Nene, L. C.; Magadla, A.; Nyokong, T. Enhanced mitochondria destruction on MCF-7 and HeLa cell lines in vitro using triphenyl-phosphonium-labelled phthalocyanines in ultrasound-assisted photodynamic therapy activity. J. Photoch. Photobio. B Biol. 2022, 235, 112553.

[21]
Zhao, G. Z.; Chen, S. N.; Zheng, J.; Li, C. Y.; Zhong, X. W.; Cao, Y.; Zheng, Y.; Sun, J. C.; Zhu, S. Y.; Chang, S. F. Photo-sonodynamic therapy mediated with OLI_NPs to induce HPV16E7-specific immune response and inhibit cervical cancer in a Tc-1-grafted murine model. J. Photoch. Photobio. B Biol. 2023 , 238, 112583.
[22]

Sun, W. J.; Chu, C. C.; Li, S.; Ma, X. Q.; Liu, P. F.; Chen, S. L.; Chen, H. M. Nanosensitizer-mediated unique dynamic therapy tactics for effective inhibition of deep tumors. Adv. Drug Delivery Rev. 2023, 192, 114643.

[23]

Yang, Y. R.; Huang, J.; Liu, M.; Qiu, Y. G.; Chen, Q. H.; Zhao, T. J.; Xiao, Z. X.; Yang, Y. Q.; Jiang, Y. T.; Huang, Q. et al. Emerging sonodynamic therapy-based nanomedicines for cancer immunotherapy. Adv. Sci. 2022, 10, 2204365.

[24]

Lafond, M.; Yoshizawa, S.; Umemura, S. I. Sonodynamic therapy: Advances and challenges in clinical translation. J. Ultras. Med. 2019, 38, 567–580.

[25]

Nanzai, B.; Mochizuki, A.; Wakikawa, Y.; Masuda, Y.; Oshio, T.; Yagishita, K. Sonoluminescence intensity and ultrasonic cavitation temperature in organic solvents: Effects of generated radicals. Ultrason. Sonochem. 2023, 95, 106357.

[26]

Cui, S. S.; Dai, S. X.; Lin, N.; Wu, X. H.; Shi, J. B.; Tong, B.; Liu, P.; Cai, Z. X.; Dong, Y. P. Constructing hypoxia-tolerant and host tumor-enriched aggregation-induced emission photosensitizer for suppressing malignant tumors relapse and metastasis. Small 2022, 18, 2203825.

[27]

Chen, Y. Z.; Ai, W. T.; Guo, X.; Li, Y. W.; Ma, Y. F.; Chen, L. F.; Zhang, H.; Wang, T. X.; Zhang, X.; Wang, Z. Mitochondria-targeted polydopamine nanocomposite with AIE photosensitizer for image-guided photodynamic and photothermal tumor ablation. Small 2019, 15, 1902352.

[28]

Li, Y. L.; Zhang, D.; Yu, Y. W.; Zhang, L.; Li, L.; Shi, L. L.; Feng, G. X.; Tang, B. Z. A cascade strategy boosting hydroxyl radical generation with aggregation-induced emission photosensitizers-albumin complex for photodynamic therapy. ACS Nano 2023, 17, 16993–17003.

[29]

Hu, W. B.; Zhang, R.; Zhang, X. F.; Liu, J. T.; Luo, L. Halogenated BODIPY photosensitizers: Photophysical processes for generation of excited triplet state, excited singlet state and singlet oxygen. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022, 272, 120965.

[30]

Li, P. F.; Shimoyama, D.; Zhang, N.; Jia, Y. W.; Hu, G. F.; Li, C. L.; Yin, X. D.; Wang, N.; Jäkle, F.; Chen, P. K. A new platform of B/N-doped cyclophanes: Access to a π-conjugated block-type B3N3 macrocycle with strong dipole moment and unique optoelectronic properties. Angew. Chem., Int. Ed. 2022, 61, e202200612.

[31]

Li, Y.; Zhuang, J. B.; Lu, Y.; Li, N.; Gu, M. J.; Xia, J.; Zhao, N.; Tang, B. Z. High-performance near-infrared aggregation-induced emission luminogen with mitophagy regulating capability for multimodal cancer theranostics. ACS Nano 2021, 15, 20453–20465.

[32]

Huang, Y. Y.; You, X.; Wang, L. N.; Zhang, G. X.; Gui, S. L.; Jin, Y. L.; Zhao, R.; Zhang, D. Q. Pyridinium-substituted tetraphenylethylenes functionalized with alkyl chains as autophagy modulators for cancer therapy. Angew. Chem., Int. Ed. 2020, 59, 10042–10051.

[33]

Amorim, R.; Cagide, F.; Tavares, L. C.; Simões, R. F.; Soares, P.; Benfeito, S.; Baldeiras, I.; Jones, J. G.; Borges, F.; Oliveira, P. J. et al. Mitochondriotropic antioxidant based on caffeic acid AntiOxCIN4 activates Nrf2-dependent antioxidant defenses and quality control mechanisms to antagonize oxidative stress-induced cell damage. Free Radical Biol. Med. 2022, 179, 119–132.

[34]

Zhang, Y. Z.; Wu, Y.; Zhang, M. J.; Li, Z. X.; Liu, B.; Liu, H. F.; Hao, J. F.; Li, X. Y. Synergistic mechanism between the endoplasmic reticulum and mitochondria and their crosstalk with other organelles. Cell Death Discov. 2023, 9, 51.

[35]

Jain, M. V.; Paczulla, A. M.; Klonisch, T.; Dimgba, F. N.; Rao, S. B.; Roberg, K.; Schweizer, F.; Lengerke, C.; Davoodpour, P.; Palicharla, V. R. et al. Interconnections between apoptotic, autophagic and necrotic pathways: Implications for cancer therapy development. J. Cell. Mol. Med. 2013, 17, 12–29.

[36]

Gonzalez-Polo, R. A.; Boya, P.; Pauleau, A. L.; Jalil, A.; Larochette, N.; Souquere, S.; Eskelinen, E. L.; Pierron, G.; Saftig, P.; Kroemer, G. The apoptosis/autophagy paradox: Autophagic vacuolization before apoptotic death. J. Cell Sci. 2005, 118, 3091–3102.

[37]

Muhsin-Sharafaldine, M. R.; McLellan, A. D. Tumor-derived apoptotic vesicles: With death they do part. Front. Immunol. 2018, 9, 957.

[38]

De Nicola, M.; Cerella, C.; D’Alessio, M.; Coppola, S.; Magrini, A.; Bergamaschi, A.; Ghibelli, L. The cleavage mode of apoptotic nuclear vesiculation is related to plasma membrane blebbing and depends on actin reorganization. Ann. N. Y. Acad. Sci. 2006, 1090, 69–78.

[39]

Rose, R.; Peschke, N.; Nigi, E.; Gelléri, M.; Ritz, S.; Cremer, C.; Luhmann, H. J.; Sinning, A. Chromatin compaction precedes apoptosis in developing neurons. Commun. Biol. 2022, 5, 797.

[40]

Lamberti, M. J.; Nigro, A.; Casolaro, V.; Rumie Vittar, N. B.; Dal Col, J. Damage-associated molecular patterns modulation by microRNA: Relevance on immunogenic cell death and cancer treatment outcome. Cancers 2021, 13, 2566.

[41]

Yang, Z. B.; Bian, M. L.; Lv, L.; Chang, X. Y.; Wen, Z. F.; Li, F. W.; Lu, Y. L.; Liu, W. K. Tumor-targeting NHC-Au(I) complex induces immunogenic cell death in hepatocellular carcinoma. J. Med. Chem. 2023, 66, 3934–3952.

[42]

Song, M.; Cubillos-Ruiz, J. R. Endoplasmic reticulum stress responses in intratumoral immune cells: Implications for cancer immunotherapy. Trends Immunol. 2019, 40, 128–141.

[43]

Hou, Z. Y.; Zhou, M.; Ma, Y. Y.; Xu, X. X.; Zhang, Z. Q.; Lai, S. W.; Fan, W. P.; Xie, J. B.; Ju, S. H. Size-changeable nanoprobes for the combined radiotherapy and photodynamic therapy of tumor. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 2655–2667.

[44]

Zhang, L. M.; Wang, K.; Huang, Y. H.; Zhang, H.; Zhou, L.; Li, A.; Sun, Y. Y. Photosensitizer-induced HPV16 E7 nanovaccines for cervical cancer immunotherapy. Biomaterials 2022, 282, 121411.

[45]

Yang, H.; Tang, J.; Guo, D.; Zhao, Q. Q.; Wen, J. G.; Zhang, Y. J.; Obianom, O. N.; Zhou, S. W.; Zhang, W.; Shu, Y. Cadmium exposure enhances organic cation transporter 2 trafficking to the kidney membrane and exacerbates cisplatin nephrotoxicity. Kidney Int. 2020, 97, 765–777.

[46]

Li, D. S.; Yang, C. L.; Xu, X. M.; Li, S. H.; Luo, G. F.; Zhang, C.; Wang, Z. L.; Sun, D. L.; Cheng, J. Z.; Zhang, Q. H. Low dosage fluorine ameliorates the bioaccumulation, hepatorenal dysfunction and oxidative stress, and gut microbiota perturbation of cadmium in rats. Environ. Pollut. 2023, 324, 121375.

[47]

Zhang, Y. M.; Li, Y. J.; Feng, Q.; Shao, M. H.; Yuan, F. Y.; Liu, F. S. Polydatin attenuates cadmium-induced oxidative stress via stimulating SOD activity and regulating mitochondrial function in Musca domestica larvae. Chemosphere 2020, 248, 126009.

[48]

Zhou, Y. F.; Tozzi, F.; Chen, J. Y.; Fan, F.; Xia, L.; Wang, J. R.; Gao, G.; Zhang, A. J.; Xia, X. F.; Brasher, H. et al. Intracellular ATP levels are a pivotal determinant of chemoresistance in colon cancer cells. Cancer Res. 2012, 72, 304–314.

[49]

Su, Z. H.; Xi, D. M.; Chen, Y. C.; Wang, R.; Zeng, X. L.; Xiong, T.; Xia, X.; Rong, X.; Liu, T.; Liu, W. K. et al. Carrier-free ATP-activated nanoparticles for combined photodynamic therapy and chemotherapy under near-infrared light. Small 2023, 19, 2205825.

[50]

Jeena, M. T.; Jin, S.; Jeong, K.; Cho, Y.; Kim, J. C.; Lee, J. H.; Lee, S.; Hwang, S. W.; Kwak, S. K.; Kim, S. et al. Cancer-selective supramolecular chemotherapy by disassembly-assembly approach. Adv. Funct. Mater. 2022, 32, 2208098.

[51]

Zhang, T. F.; Zhang, J. Y.; Wang, F. B.; Cao, H.; Zhu, D. M.; Chen, X. Y.; Xu, C. H.; Yang, X. Q.; Huang, W. B.; Wang, Z. Y. et al. Mitochondria-targeting phototheranostics by aggregation-induced NIR-II emission luminogens: Modulating intramolecular motion by electron acceptor engineering for multi-modal synergistic therapy. Adv. Funct. Mater. 2022, 32, 2110526.

Nano Research
Pages 5501-5511
Cite this article:
Li Y, Tian M, Yang T, et al. Enhanced population of excited single state strategy: Irradiation and ultrasound dual-response and host tumor-driven nano-sensitizers construction in triple synergistic therapy. Nano Research, 2024, 17(6): 5501-5511. https://doi.org/10.1007/s12274-024-6595-4
Topics:

592

Views

1

Crossref

3

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 14 December 2023
Revised: 20 February 2024
Accepted: 26 February 2024
Published: 23 March 2024
© Tsinghua University Press 2024
Return