Journal Home > Online First

Li-O2 batteries with high energy density hold significant promise as next-generation energy storage systems. However, Li-O2 batteries have poor cycling performance at high current densities and large capacities, primarily due to the high impedance caused by the instability of the lithium anode and the sluggish kinetics in the discharge products decomposition on the cathode. Herein, we investigated a bifunctional nitrile additive (2-methoxy benzonitrile (2-MBN)) with good chemical/electrochemical stability to improve the performances of Li-O2 batteries. The 2-MBN could actively modify the anode by ensuring uniform Li+ deposition and optimizing the composition of solid electrolyte interphase (SEI). Meanwhile, it could also facilitate the decomposition of discharge products by inducing the formation of sheet-like Li2O2, significantly reducing the battery charge overpotential. The bifunctional effects of 2-MBN for the anode and cathode enable Li-O2 batteries to achieve a stable lifetime of 97 cycles at a current density of 600 mA·g−1 with a fixed capacity of 2000 mAh·g−1, much better than that of Li-O2 batteries without 2-MBN (28 cycles). The inclusion of 2-MBN provides an effective approach for attaining high-performance Li-O2 batteries.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

A bifunctional nitrile additive for high-performance lithium-oxygen batteries

Show Author's information Ziwei Li1,2Yue Yu3Dongyue Yang2,4Jin Wang2Junmin Yan1Gang Huang2,4Tong Liu2,4( )Xinbo Zhang2,4( )
Key Laboratory of Automobile Materials, Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun 130022, China
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
Department of Chemistry and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Ave. W., Waterloo, Ontario N2L 3G1, Canada
School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China

Abstract

Li-O2 batteries with high energy density hold significant promise as next-generation energy storage systems. However, Li-O2 batteries have poor cycling performance at high current densities and large capacities, primarily due to the high impedance caused by the instability of the lithium anode and the sluggish kinetics in the discharge products decomposition on the cathode. Herein, we investigated a bifunctional nitrile additive (2-methoxy benzonitrile (2-MBN)) with good chemical/electrochemical stability to improve the performances of Li-O2 batteries. The 2-MBN could actively modify the anode by ensuring uniform Li+ deposition and optimizing the composition of solid electrolyte interphase (SEI). Meanwhile, it could also facilitate the decomposition of discharge products by inducing the formation of sheet-like Li2O2, significantly reducing the battery charge overpotential. The bifunctional effects of 2-MBN for the anode and cathode enable Li-O2 batteries to achieve a stable lifetime of 97 cycles at a current density of 600 mA·g−1 with a fixed capacity of 2000 mAh·g−1, much better than that of Li-O2 batteries without 2-MBN (28 cycles). The inclusion of 2-MBN provides an effective approach for attaining high-performance Li-O2 batteries.

Keywords: lithium metal anode, Li-O2 batteries, nitrile additives, charge overpotential

References(51)

[1]

Aurbach, D.; McCloskey, B. D.; Nazar, L. F.; Bruce, P. G. Advances in understanding mechanisms underpinning lithium-air batteries. Nat. Energy 2016, 1, 16128.

[2]

Farahmandjou, M.; Zhao, S. Q.; Lai, W. H.; Sun, B.; Notten, P. H. L.; Wang, G. X. Oxygen redox chemistry in lithium-rich cathode materials for Li-ion batteries: Understanding from atomic structure to nano-engineering. Nano Mater. Sci. 2022, 4, 322–338.

[3]

Ding, Y. J.; Li, Y. J.; Wu, Z. S. Recent advances and challenges in the design of Li-air batteries oriented solid-state electrolytes. Battery Energy 2023, 2, 20220014.

[4]

Zhang, J.; Shi, J. Y.; Wen, X. Y.; Zhao, Y. F.; Guo, J. G. Properties of thin lithium metal electrodes in carbonate electrolytes with realistic parameters. ACS Appl. Mater. Interfaces 2020, 12, 32863–32870.

[5]

Liu, T.; Zhao, S. Y.; Xiong, Q.; Yu, J.; Wang, J.; Huang, G.; Ni, M.; Zhang, X. B. Reversible discharge products in Li-air batteries. Adv. Mater. 2023, 35, 2208925.

[6]

Liu, S. J.; Jiao, K. J.; Yan, J. H. Prospective strategies for extending long-term cycling performance of anode-free lithium metal batteries. Energy Storage Mater. 2023, 54, 689–712.

[7]

Zhao, Q.; Stalin, S.; Archer, L. A. Stabilizing metal battery anodes through the design of solid electrolyte interphases. Joule 2021, 5, 1119–1142.

[8]

Zhai, P. B.; Wei, Y.; Xiao, J.; Liu, W.; Zuo, J. H.; Gu, X. K.; Yang, W. W.; Cui, S. Q.; Li, B.; Yang, S. B. et al. In situ generation of artificial solid-electrolyte interphases on 3D conducting scaffolds for high-performance lithium-metal anodes. Adv. Energy Mater. 2020, 10, 1903339

[9]

Li, F. J.; Zhang, T.; Zhou, H. S. Challenges of non-aqueous Li-O2 batteries: Electrolytes, catalysts, and anodes. Energy Environ. Sci. 2013, 6, 1125–1141.

[10]

Yang, Y.; Zhang, T.; Wang, X. C.; Chen, L. F.; Wu, N.; Liu, W.; Lu, H. F.; Xiao, L.; Fu, L.; Zhuang, L. Tuning the morphology and crystal structure of Li2O2: A graphene model electrode study for Li-O2 battery. ACS Appl. Mater. Interfaces 2016, 8, 21350–21357.

[11]

Sun, Z. M.; He, J. L.; Yuan, M. W.; Lin, L.; Zhang, Z.; Kang, Z.; Liao, Q. L.; Li, H. F.; Sun, G. B.; Yang, X. J. et al. Li+-clipping for edge S-vacancy MoS2 quantum dots as an efficient bifunctional electrocatalyst enabling discharge growth of amorphous Li2O2 film. Nano Energy 2019, 65, 103996.

[12]

Zhang, G. L.; Li, G. Y.; Wang, J.; Tong, H.; Wang, J. C.; Du, Y.; Sun, S. H.; Dang, F. 2D SnSe cathode catalyst featuring an efficient facet-dependent selective Li2O2 growth/decomposition for Li-oxygen batteries. Adv. Energy Mater. 2022, 12, 2103910

[13]

Zhang, G. L.; Liu, C. Y.; Guo, L.; Liu, R. W.; Miao, L.; Dang, F. Electronic “bridge” construction via ag intercalation to diminish catalytic anisotropy for 2D Tin diselenide cathode catalyst in lithium-oxygen batteries. Adv. Energy Mater. 2022, 12, 2200791.

[14]

Zhang, J. Q.; Sun, B.; Zhao, Y. F.; Tkacheva, A.; Liu, Z. J.; Yan, K.; Guo, X.; McDonagh, A. M.; Shanmukaraj, D.; Wang, C. Y. et al. A versatile functionalized ionic liquid to boost the solution-mediated performances of lithium-oxygen batteries. Nat. Commun. 2019, 10, 602.

[15]

Wang, D.; Zhang, F.; He, P.; Zhou, H. S. A versatile halide ester enabling Li-anode stability and a high rate capability in lithium-oxygen batteries. Angew. Chem., Int. Ed. 2019, 58, 2355–2359.

[16]

Nakanishi, A.; Thomas, M. L.; Kwon, H. M.; Kobayashi, Y.; Tatara, R.; Ueno, K.; Dokko, K.; Watanabe, M. Electrolyte composition in Li/O2 batteries with LiI redox mediators: Solvation effects on redox potentials and implications for redox shuttling. J. Phys. Chem. C 2018, 122, 1522–1534.

[17]

Bryantsev, V. S.; Uddin, J.; Giordani, V.; Walker, W.; Addison, D.; Chase, G. V. The identification of stable solvents for nonaqueous rechargeable Li-air batteries. J. Electrochem. Soc. 2012, 160, A160–A171.

[18]

Semino, R.; Zaldivar, G.; Calvo, E. J.; Laria, D. Lithium solvation in dimethyl sulfoxide-acetonitrile mixtures. J. Chem. Phys. 2014, 141, 214509.

[19]

Wu, J. Y.; Li, X. W.; Rao, Z. X.; Xu, X. N.; Cheng, Z. X.; Liao, Y. Q.; Yuan, L. X.; Xie, X. L.; Li, Z.; Huang, Y. H. Electrolyte with boron nitride nanosheets as leveling agent towards dendrite-free lithium metal anodes. Nano Energy 2020, 72, 104725.

[20]

Romanin, A. M.; Gennaro A.; Vianello, E. Electrode reduction mechanism of aromatic nitriles in aprotic solvents: Benzonitrile. J. Electroanal. Chem. 1978, 88, 175–185.

[21]

Rieger, P. H.; Bernal, I.; Reinmuth, W. H.; Fraenkel, G. K. Electron spin resonance of electrolytically generated nitrile radicals. J. Am. Chem. Soc. 1963, 85, 683–693.

[22]

Pedersen, S. U.; Christensen, T. B.; Thomasen, T.; Daasbjerg, K. New methods for the accurate determination of extinction and diffusion coefficients of aromatic and heteroaromatic radical anions in N,N-dimethylformamide. J. Electroanal. Chem. 1998, 454, 123–143.

[23]

Lin, X. C.; Li, N.; Zhang, W. J.; Huang, Z. J.; Tang, Q.; Gong, C. B.; Fu, X. K. Synthesis and electrochromic properties of benzonitriles with various chemical structures. Dyes Pigments 2019, 171, 107783.

[24]

Lee, H. W.; Kim, J. Y.; Kim, J. E.; Jo, Y. J.; Dewar, D.; Yang, S. X.; Gao, X. W.; Bruce, P. G.; Kwak, W. J. Effect of singlet oxygen on redox mediators in lithium-oxygen batteries. J. Mater. Chem. A 2023, 11, 16003–16008.

[25]

Xie, J. B.; Bao, J. J.; Li, H. X.; Tan, D. W.; Li, H. Y.; Lang, J. P. An efficient approach to the ammoxidation of alcohols to nitriles and the aerobic oxidation of alcohols to aldehydes in water using Cu(II)/pypzacac complexes as catalysts. RSC Adv. 2014, 4, 54007–54017.

[26]

Zakharchenko, T. K.; Kozmenkova, A. Y.; Isaev, V. V.; Itkis, D. M.; Yashina, L. V. Positive electrode passivation by side discharge products in Li-O2 batteries. Langmuir 2020, 36, 8716–8722.

[27]

Bondue, C. J.; Hegemann, M.; Molls, C.; Thome, E.; Baltruschat, H. A comprehensive study on oxygen reduction and evolution from lithium containing DMSO based electrolytes at gold electrodes. J. Electrochem. Soc. 2016, 163, A1765–A1775.

[28]

Amin, H. M. A.; Molls, C.; Bawol, P. P.; Baltruschat, H. The impact of solvent properties on the performance of oxygen reduction and evolution in mixed tetraglyme-dimethyl sulfoxide electrolytes for Li-O2 batteries: Mechanism and stability. Electrochim. Acta 2017, 245, 967–980.

[29]

Lee, H.; Lee, D. J.; Lee, J. N.; Song, J.; Lee, Y.; Ryou, M. H.; Park, J. K.; Lee, Y. M. Chemical aspect of oxygen dissolved in a dimethyl sulfoxide-based electrolyte on lithium metal. Electrochim. Acta 2014, 123, 419–425.

[30]

Wang, M. M.; Cheng, X. P.; Cao, T. C.; Niu, J. J.; Wu, R.; Liu, X. Q.; Zhang, Y. F. Constructing ultrathin TiO2 protection layers via atomic layer deposition for stable lithium metal anode cycling. J. Alloys Compd. 2021, 865, 158748.

[31]

Smirnov, V. S.; Kislenko, S. A. Effect of solvents on the behavior of lithium and superoxide ions in lithium-oxygen battery electrolytes. ChemPhysChem 2018, 19, 75–81.

[32]

Hellgren, N.; Haasch, R. T.; Schmidt, S.; Hultman, L.; Petrov, I. Interpretation of X-ray photoelectron spectra of carbon-nitride thin films: New insights from in situ XPS. Carbon 2016, 108, 242–252.

[33]

Lv, Z. L.; Zhou, Q.; Zhang, S.; Dong, S. M.; Wang, Q. L.; Huang, L.; Chen, K.; Cui, G. L. Cyano-reinforced in-situ polymer electrolyte enabling long-life cycling for high-voltage lithium metal batteries. Energy Storage Mater. 2021, 37, 215–223.

[34]

Liu, Y. J.; Tao, X. Y.; Wang, Y.; Jiang, C.; Ma, C.; Sheng, O. W.; Lu, G. X.; Lou, X. W. Self-assembled monolayers direct a LiF-rich interphase toward long-life lithium metal batteries. Science 2022, 375, 739–745.

[35]

Lee, S. H.; Hwang, J. Y.; Park, S. J.; Park, G. T.; Sun, Y. K. Adiponitrile (C6H8N2): A new Bi-functional additive for high-performance li-metal batteries. Adv. Funct. Mater. 2019, 29, 1902496.

[36]

Zhang, J. G.; Xu, W.; Xiao, J.; Cao, X.; Liu, J. Lithium metal anodes with nonaqueous electrolytes. Chem. Rev. 2020, 120, 13312–13348.

[37]

Temprano, I.; Liu, T.; Petrucco, E.; Ellison, J. H. J.; Kim, G.; Jónsson, E.; Grey, C. P. Toward reversible and moisture-tolerant aprotic lithium-air batteries. Joule 2020, 4, 2501–2520.

[38]

Kwabi, D. G.; Batcho, T. P.; Amanchukwu, C. V.; Ortiz-Vitoriano, N.; Hammond, P.; Thompson, C. V.; Shao-Horn, Y. Chemical instability of dimethyl sulfoxide in lithium-air batteries. J. Phys. Chem. Lett. 2014, 5, 2850–2856.

[39]

Dutta, A.; Wong, R. A.; Park, W.; Yamanaka, K.; Ohta, T.; Jung, Y.; Byon, H. R. Nanostructuring one-dimensional and amorphous lithium peroxide for high round-trip efficiency in lithium-oxygen batteries. Nat. Commun. 2018, 9, 680.

[40]

Luo, Y. T.; Bai, Y.; Mistry, A.; Zhang, Y. W.; Zhao, D. X.; Sarkar, S.; Handy, J. V.; Rezaei, S.; Chuang, A. C.; Carrillo, L. et al. Effect of crystallite geometries on electrochemical performance of porous intercalation electrodes by multiscale operando investigation. Nat. Mater. 2022, 21, 217–227.

[41]

Tian, F.; Radin, M. D.; Siegel, D. J. Enhanced charge transport in amorphous Li2O2. Chem. Mater. 2014, 26, 2952–2959.

[42]

Li, J. J.; Han, K.; Huang, J. H.; Li, G. Y.; Peng, S. T.; Li, N.; Wang, J. C.; Zhang, W. B.; Du, Y.; Fan, Y. Q. et al. Polarized nucleation and efficient decomposition of Li2O2 for Ti2C MXene cathode catalyst under a mixed surface condition in lithium-oxygen batteries. Energy Storage Mater. 2021, 35, 669–678.

[43]

Kim, G.; Liu, T.; Temprano, I.; Petrucco, E. A.; Barrow, N.; Grey, C. P. Cycling non-aqueous lithium-air batteries with dimethyl sulfoxide and sulfolane co-solvent: Evaluating influence of sulfolane on cell chemistry. Johnson Matthey Technol. Rev. 2018, 62, 332–340.

[44]

Burke, C. M.; Pande, V.; Khetan, A.; Viswanathan, V.; McCloskey, B. D. Enhancing electrochemical intermediate solvation through electrolyte anion selection to increase nonaqueous Li-O2 battery capacity. Proc. Natl. Acad. Sci. U S A 2015, 112, 9293–9298.

[45]

Ma, T.; Ni, Y. X.; Wang, Q. R.; Zhang, W. J.; Jin, S.; Zheng, S. B.; Yang, X.; Hou, Y. P.; Tao, Z. L.; Chen, J. Optimize lithium deposition at low temperature by weakly solvating power solvent. Angew. Chem., Int. Ed. 2022, 61, 202207927.

[46]

Erlich, R. H.; Popov, A. I. Spectroscopic studies of ionic solvation. X. Study of the solvation of sodium ions in nonaqueous solvents by sodium-23 nuclear magnetic resonance. J. Am. Chem. Soc. 1971, 93, 5620–5623.

[47]

Johnson, L.; Li, C. M.; Liu, Z.; Chen, Y. H.; Freunberger, S. A.; Ashok, P. C.; Praveen, B. B.; Dholakia, K.; Tarascon, J. M.; Bruce, P. G. The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li-O2 batteries. Nat. Chem. 2014, 6, 1091–1099.

[48]

Prehal, C.; Mondal, S.; Lovicar, L.; Freunberger, S. A. Exclusive solution discharge in Li-O2 batteries. ACS Energy Lett. 2022, 7, 3112–3119.

[49]

Schroeder, M. A.; Pearse, A. J.; Kozen, A. C.; Chen, X. Y.; Gregorczyk, K.; Han, X. G.; Cao, A. Y.; Hu, L. B.; Lee, S. B.; Rubloff, G. W. et al. Investigation of the cathode–catalyst–electrolyte interface in aprotic Li-O2 batteries. Chem. Mater. 2015, 27, 5305–5313.

[50]

Zhou, H. M.; Guo, L.; Zhang, R. H.; Xie, L.; Qiu, Y.; Zhang, G. L.; Guo, Z. H.; Kong, B.; Dang, F. Precise engineering of octahedron-induced subcrystalline CoMoO4 cathode catalyst for high-performance Li-air batteries. Adv. Funct. Mater. 2023, 33, 2304154.

[51]

Qiu, Y.; Li, G. Y.; Zhou, H. M.; Zhang, G. L.; Guo, L.; Guo, Z. H.; Yang, R. N.; Fan, Y. Q.; Wang, W. L.; Du, Y. et al. Highly stable garnet Fe2Mo3O12 cathode boosts the lithium-air battery performance featuring a polyhedral framework and cationic vacancy concentrated surface. Adv. Sci. 2023, 10, 2300482.

File
6592_ESM.pdf (2.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 15 January 2024
Revised: 26 February 2024
Accepted: 26 February 2024
Published: 04 April 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

This work was financially supported by the National Key R&D Program of China (No. 2019YFA0705700), the National Natural Science Foundation of China (Nos. U22A20437, U23A20575, 52171194, 52271140, and 22209138), the CAS Project for Young Scientists in Basic Research (No. YSBR-058), the China Postdoctoral Science Foundation (No. 2022M713070), and the National Natural Science Foundation of China Outstanding Youth Science Foundation of China (Overseas).

Return