Journal Home > Online First

Aqueous zinc ion batteries (AZIBs), renowned for their high theoretical energy density, safety, cost-effectiveness and eco-friendliness, offer immense potential in the realm of energy storage and conversion, finding applications in renewable energy and portable devices. However, the development of AZIBs still faces several challenges related to the electrochemical behavior of zinc anodes in aqueous electrolytes, primarily zinc dendrite formation, which emphasize the critical need for a fundamental understanding of the interfacial phenomena between the electrode and electrolyte. This review focuses on the three models: the electric double layer (EDL) model, the solvation structure model, and the Zn/electrolyte interface model. They guide the design of the electrolyte system in AZIBs. These models provide a comprehensive understanding of the interactions between the electrode, electrolyte, and the solvated ions in the system. By optimizing the salt types, salt concentrations, solvents and additives based on these models, it is possible to enhance the performance of AZIBs, including their energy density, cycle life, and safety. The review also highlights recent research progress in electrolyte modification of AZIBs for understanding battery behavior, along with perspectives for the direction of further investigations.


menu
Abstract
Full text
Outline
About this article

Regulation of aqueous electrolyte interface via electrolyte strategies for uniform zinc deposition

Show Author's information Wei Zhong1,2,3,§Chaoqiang Tan2,3,§Laixi Li1,2Shichao Zhang2Xinyang Wang2,4Hao Cheng1,2,3( )Yingying Lu1,2,3( )
Institute of Wenzhou, Zhejiang University, Wenzhou 325006, China
State Key Laboratory of Chemical Engineering, Institute of Pharmaceutical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
Zhejiang Huayou Cobalt Company Limited, Tongxiang 314500, China

§ Wei Zhong and Chaoqiang Tan contributed equally to this work.

Abstract

Aqueous zinc ion batteries (AZIBs), renowned for their high theoretical energy density, safety, cost-effectiveness and eco-friendliness, offer immense potential in the realm of energy storage and conversion, finding applications in renewable energy and portable devices. However, the development of AZIBs still faces several challenges related to the electrochemical behavior of zinc anodes in aqueous electrolytes, primarily zinc dendrite formation, which emphasize the critical need for a fundamental understanding of the interfacial phenomena between the electrode and electrolyte. This review focuses on the three models: the electric double layer (EDL) model, the solvation structure model, and the Zn/electrolyte interface model. They guide the design of the electrolyte system in AZIBs. These models provide a comprehensive understanding of the interactions between the electrode, electrolyte, and the solvated ions in the system. By optimizing the salt types, salt concentrations, solvents and additives based on these models, it is possible to enhance the performance of AZIBs, including their energy density, cycle life, and safety. The review also highlights recent research progress in electrolyte modification of AZIBs for understanding battery behavior, along with perspectives for the direction of further investigations.

Keywords: electric double layer, electrolyte optimization, solvation structure, aqueous zinc ion batteries

References(130)

[1]

Poizot, P.; Dolhem, F. Clean energy new deal for a sustainable world: From non-CO2 generating energy sources to greener electrochemical storage devices. Energy Environ. Sci. 2011, 4, 2003–2019.

[2]

Zhong, W.; Zhang, J. H.; Li, Z. M.; Shen, Z. Y.; Zhang, S. C.; Wang, X. Y.; Lu, Y. Y. Issues and strategies of cathode materials for mild aqueous static zinc-ion batteries. Green Chem. Eng. 2023, 4, 264–284.

[3]

Fang, G. Z.; Zhou, J.; Pan, A. Q.; Liang, S. Q. Recent advances in aqueous zinc-ion batteries. ACS Energy Lett. 2018, 3, 2480–2501.

[4]

She, L. N.; Cheng, H.; Yuan, Z. Y.; Shen, Z. Y.; Wu, Q.; Zhong, W.; Zhang, S. C.; Zhang, B.; Liu, C. W.; Zhang, M. C. et al. Rechargeable aqueous zinc-halogen batteries: Fundamental mechanisms, research issues, and future perspectives. Adv. Sci. 2024, 11, 2305061.

[5]

Cheng, H.; Zhang, S. C.; Guo, W. X.; Wu, Q.; Shen, Z. Y.; Wang, L. L.; Zhong, W.; Li, D.; Zhang, B.; Liu, C. W. et al. Hydrolysis of solid buffer enables high-performance aqueous zinc ion battery. Adv. Sci. 2024, 11, 2307052.

[6]

Duan, G. S.; Wang, Y.; Sun, L. L.; Bao, Z. A.; Luo, B.; Zheng, S. N.; Ye, Z. Z.; Huang, J. Y.; Lu, Y. Y. Atomic pinning of trace additives induces interfacial solvation for highly reversible Zn metal anodes. ACS Nano 2023, 17, 22722–22732.

[7]

Olbasa, B. W.; Fenta, F. W.; Chiu, S. F.; Tsai, M. C.; Huang, C. J.; Jote, B. A.; Beyene, T. T.; Liao, Y. F.; Wang, C. H.; Su, W. N. et al. High-rate and long-cycle stability with a dendrite-free zinc anode in an aqueous Zn-ion battery using concentrated electrolytes. ACS Appl. Energy Mater. 2020, 3, 4499–4508.

[8]

Yi, Z. H.; Chen, G. Y.; Hou, F.; Wang, L. Q.; Liang, J. Strategies for the stabilization of Zn metal anodes for Zn-ion batteries. Adv. Energy Mater. 2021, 11, 2003065.

[9]

Zhu, Y. P.; Cui, Y.; Alshareef, H. N. An anode-free Zn-MnO2 battery. Nano Lett. 2021, 21, 1446–1453.

[10]

Fan, X. Y.; Yang, H.; Feng, B.; Zhu, Y. Q.; Wu, Y.; Sun, R. B.; Gou, L.; Xie, J.; Li, D. L.; Ding, Y. L. Rationally designed In@Zn@In trilayer structure on 3D porous Cu towards high-performance Zn-ion batteries. Chem. Eng. J. 2022, 445, 136799.

[11]

Zeng, L.; He, J.; Yang, C. Y.; Luo, D.; Yu, H. B.; He, H. N.; Zhang, C. H. Direct 3D printing of stress-released Zn powder anodes toward flexible dendrite-free Zn batteries. Energy Stor. Mater. 2023, 54, 469–477.

[12]

Liu, B. T.; Wang, S. J.; Wang, Z. L.; Lei, H.; Chen, Z. T.; Mai, W. J. Novel 3D nanoporous Zn-Cu alloy as long-life anode toward high-voltage double electrolyte aqueous zinc-ion batteries. Small 2020, 16, 2001323.

[13]

Mu, Y. B.; Li, Z.; Wu, B. K.; Huang, H. D.; Wu, F. H.; Chu, Y. Q.; Zou, L. F.; Yang, M.; He, J. F.; Ye, L. et al. 3D hierarchical graphene matrices enable stable Zn anodes for aqueous Zn batteries. Nat. Commun. 2023, 14, 4205

[14]

Chen, X. J.; Li, W.; Hu, S. S.; Akhmedov, N. G.; Reed, D.; Li, X. L.; Liu, X. B. Polyvinyl alcohol coating induced preferred crystallographic orientation in aqueous zinc battery anodes. Nano Energy 2022, 98, 107269.

[15]
Gao, L.; Qin, L.; Wang, B.; Bao, M. D.; Cao, Y. W.; Duan, X. D.; Yang, W. Y.; Yang, X. D.; Shi, Q. Highly-efficient and robust Zn anodes enabled by sub-1-µm zincophilic CrN coatings. Small, in press, DOI: 10.1002/smll.202308818.
DOI
[16]

Ren, Q. Q.; Tang, X. Y.; Zhao, X. C.; Wang, Y.; Li, C. H.; Wang, S.; Yuan, Y. F. A zincophilic interface coating for the suppression of dendrite growth in zinc anodes. Nano Energy 2023, 109, 108306.

[17]

Guo, Z. K.; Fan, L. S.; Zhao, C. Y.; Chen, A. S.; Liu, N. N.; Zhang, Y.; Zhang, N. Q. A dynamic and self-adapting interface coating for stable Zn-metal anodes. Adv. Mater. 2022, 34, 2105133.

[18]

Zhang, Y.; Yang, G.; Lehmann, M. L.; Wu, C. S.; Zhao, L. H.; Saito, T.; Liang, Y. L.; Nanda, J.; Yao, Y. Separator effect on zinc electrodeposition behavior and its implication for zinc battery lifetime. Nano Lett. 2021, 21, 10446–10452.

[19]

Wang, X.; Feng, K. Q.; Sang, B. Y.; Li, G. J.; Zhang, Z. C. Y.; Zhou, G. W.; Xi, B. J.; An, X. G.; Xiong, S. L. Highly reversible zinc metal anodes enabled by solvation structure and interface chemistry modulation. Adv. Energy Mater. 2023, 13, 2301670.

[20]

Fang, Y.; Xie, X. S.; Zhang, B. Y.; Chai, Y. Z.; Lu, B. A.; Liu, M. K.; Zhou, J.; Liang, S. Q. Regulating zinc deposition behaviors by the conditioner of PAN separator for zinc-ion batteries. Adv. Funct. Mater. 2022, 32, 2109671.

[21]

Hao, J. N.; Li, X. L.; Zhang, S. L.; Yang, F. H.; Zeng, X. H.; Zhang, S.; Bo, G. Y.; Wang, C. S.; Guo, Z. P. Designing dendrite-free zinc anodes for advanced aqueous zinc batteries. Adv. Funct. Mater. 2020, 30, 2001263.

[22]

Lu, H. F.; Zhang, D.; Jin, Q. Z.; Zhang, Z. L.; Lyu, N. W.; Zhu, Z. J.; Duan, C. X.; Qin, Y.; Jin, Y. Gradient electrolyte strategy achieving long-life zinc anodes. Adv. Mater. 2023, 35, 2300620.

[23]

An, Y. L.; Tian, Y.; Zhang, K.; Liu, Y. P.; Liu, C. K.; Xiong, S. L.; Feng, J. K.; Qian, Y. T. Stable aqueous anode-free zinc batteries enabled by interfacial engineering. Adv. Funct. Mater. 2021, 31, 2101886.

[24]

Wang, R.; Ma, Q. W.; Zhang, L. H.; Liu, Z. X.; Wan, J. D.; Mao, J. F.; Li, H. B.; Zhang, S. L.; Hao, J. N.; Zhang, L. et al. An aqueous electrolyte regulator for highly stable zinc anode under −35 to 65 °C. Adv. Energy Mater. 2023, 13, 2302543.

[25]

Zhang, N.; Cheng, F. Y.; Liu, Y. C.; Zhao, Q.; Lei, K. X.; Chen, C. C.; Liu, X. S.; Chen, J. Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery. J. Am. Chem. Soc. 2016, 138, 12894–12901.

[26]

Chen, S. Q.; Nian, Q. S.; Zheng, L.; Xiong, B. Q.; Wang, Z. H.; Shen, Y. B.; Ren, X. D. Highly reversible aqueous zinc metal batteries enabled by fluorinated interphases in localized high concentration electrolytes. J. Mater. Chem. A 2021, 9, 22347–22352.

[27]

Wang, F.; Borodin, O.; Gao, T.; Fan, X. L.; Sun, W.; Han, F. D.; Faraone, A.; Dura, J. A.; Xu, K.; Wang, C. S. Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 2018, 17, 543–549.

[28]

Dong, D. J.; Wang, T. R.; Sun, Y.; Fan, J.; Lu, Y. C. Hydrotropic solubilization of zinc acetates for sustainable aqueous battery electrolytes. Nat. Sustain. 2023, 6, 1474–1484.

[29]

Wan, F.; Zhang, L. L.; Dai, X.; Wang, X. Y.; Niu, Z. Q.; Chen, J. Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers. Nat. Commun. 2018, 9, 1656.

[30]

Naveed, A.; Yang, H. J.; Yang, J.; Nuli, Y.; Wang, J. L. Highly reversible and rechargeable safe Zn batteries based on a triethyl phosphate electrolyte. Angew. Chem., Int. Ed. 2019, 58, 2760–2764.

[31]

Qiu, H. Y.; Du, X. F.; Zhao, J. W.; Wang, Y. T.; Ju, J. W.; Chen, Z.; Hu, Z. L.; Yan, D. P.; Zhou, X. H.; Cui, G. L. Zinc anode-compatible in-situ solid electrolyte interphase via cation solvation modulation. Nat. Commun. 2019, 10, 5374.

[32]

Qiu, M. J.; Sun, P.; Wang, Y.; Ma, L.; Zhi, C. Y.; Mai, W. J. Anion-trap engineering toward remarkable crystallographic reorientation and efficient cation migration of Zn ion batteries. Angew. Chem., Int. Ed. 2022, 61, e202210979.

[33]

Yuan, L. B.; Hao, J. N.; Kao, C. C.; Wu, C.; Liu, H. K.; Dou, S. X.; Qiao, S. Z. Regulation methods for the Zn/electrolyte interphase and the effectiveness evaluation in aqueous Zn-ion batteries. Energy Environ. Sci. 2021, 14, 5669–5689.

[34]

Luo, J. R.; Xu, L.; Zhou, Y. J.; Yan, T. R.; Shao, Y. Y.; Yang, D. Z.; Zhang, L.; Xia, Z.; Wang, T. H.; Zhang, L. et al. Regulating the inner helmholtz plane with a high donor additive for efficient anode reversibility in aqueous Zn-ion batteries. Angew. Chem., Int. Ed. 2023, 62, e202302302.

[35]

Cui, P.; Hu, J. G.; Luo, Y. Q.; Zhu, P. F.; Hou, H. S.; Zou, G. Q.; Ji, X. B. Trace tea polyphenols enabling reversible dendrite-free zinc anode. J. Colloid Interface Sci. 2022, 624, 450–459.

[36]

Cao, L. S.; Li, D.; Hu, E. Y.; Xu, J. J.; Deng, T.; Ma, L.; Wang, Y.; Yang, X. Q.; Wang, C. S. Solvation structure design for aqueous Zn metal batteries. J. Am. Chem. Soc. 2020, 142, 21404–21409.

[37]
Wang, Y.; Zeng, X. H.; Huang, H. J.; Xie, D. M.; Sun, J. Y.; Zhao, J. C.; Rui, Y. C.; Wang, J. G.; Yuwono, J. A.; Mao, J. F. Manipulating the solvation structure and interface via a bio-based green additive for highly stable Zn metal anode. Small Methods, in press, DOI: 10.1002/smtd.202300804.
DOI
[38]

Li, X. Q.; Xiang, J.; Liu, H.; Wang, P. F.; Chen, C.; Gao, T. T.; Guo, Y. Q.; Xiao, D.; Jin, Z. Y. Molecularly modulating solvation structure and electrode interface enables dendrite-free zinc-ion batteries. J. Colloid Interface Sci. 2024, 654, 476–485.

[39]

Liu, Y.; An, Y. K.; Wu, L.; Sun, J. G.; Xiong, F. Y.; Tang, H.; Chen, S. L.; Guo, Y.; Zhang, L.; An, Q. Y. et al. Interfacial chemistry modulation via amphoteric glycine for a highly reversible zinc anode. ACS Nano 2023, 17, 552–560.

[40]

Lebègue, E. Allen J. Bard, Larry. R. Faulkner, Henry S. White: Electrochemical methods: Fundamentals and applications, 3rd edition, wiley. Transit. Met. Chem. 2023, 48, 433–436.

[41]

Zhang, M. K.; Cai, J.; Chen, Y. X. On the electrode charge at the metal/solution interface with specific adsorption. Curr. Opin. Electrochem. 2022, 36, 101161.

[42]

Wu, J. Z. Understanding the electric double-layer structure, capacitance, and charging dynamics. Chem. Rev. 2022, 122, 10821–10859.

[43]

Jiang, L.; Li, D. M.; Xie, X.; Ji, D. D.; Li, L. W.; Li, L.; He, Z. X.; Lu, B. A.; Liang, S. Q.; Zhou, J. Electric double layer design for Zn-based batteries. Energy Storage Mater. 2023, 62, 102932.

[44]

Huang, J. Zooming into the inner helmholtz plane of Pt(111)-aqueous solution interfaces: Chemisorbed water and partially charged ions. JACS Au 2023, 3, 550–564.

[45]

Sudnitsyn, I. I.; Smagin, A. V.; Shvarov, A. P. The theory of Maxwell-Boltzmann-Helmholtz-Gouy about the double electric layer in disperse systems and its application to soil science (on the 100th anniversary of the paper published by Gouy). Eurasian Soil Sci. 2012, 45, 452–457.

[46]

Chapman, D. L. A contribution to the theory of electrocapillarity. London, Edinburgh, Dublin Philos. Mag. J. Sci. 1913, 25, 475–481.

[47]

Stern, O. Zur theorie der elektrolytischen doppelschicht. Z. Elektrochem. Angew. Phys. Chem. 1924, 30, 508–516.

[48]

Grahame, D. C. The electrical double layer and the theory of electrocapillarity. Chem. Rev. 1947, 41, 441–501.

[49]

Frumkin, A.; Damaskin, B.; Grigoryev, N.; Bagotskaya, I. Potentials of zero charge, interaction of metals with water and adsorption of organic substances-I. Potentials of zero charge and hydrophilicity of metals. Electrochim. Acta 1974, 19, 69–74.

[50]

Cao, J.; Zhang, D. D.; Zhang, X. Y.; Zeng, Z. Y.; Qin, J. Q.; Huang, Y. H. Strategies of regulating Zn2+ solvation structures for dendrite-free and side reaction-suppressed zinc-ion batteries. Energy Environ. Sci. 2022, 15, 499–528.

[51]

Miao, L. C.; Guo, Z. P.; Jiao, L. F. Insights into the design of mildly acidic aqueous electrolytes for improved stability of Zn anode performance in zinc-ion batteries. Energy Mater. 2023, 3, 300014.

[52]

Gao, S. S.; Zhang, Z.; Mao, F. F.; Liu, P. G.; Zhou, Z. Advances and strategies of electrolyte regulation in Zn-ion batteries. Mater. Chem. Front. 2023, 7, 3232–3258.

[53]

Li, X. M.; Wang, X. Y.; Ma, L. T.; Huang, W. Solvation structures in aqueous metal-ion batteries. Adv. Energy Mater. 2022, 12, 2202068.

[54]

Sun, P.; Ma, L.; Zhou, W. H.; Qiu, M. J.; Wang, Z. L.; Chao, D. L.; Mai, W. J. Simultaneous regulation on solvation shell and electrode interface for dendrite-free Zn ion batteries achieved by a low-cost glucose additive. Angew. Chem., Int. Ed. 2021, 60, 18247–18255.

[55]

Li, C.; Shyamsunder, A.; Hoane, A. G.; Long, D. M.; Kwok, C. Y.; Kotula, P. G.; Zavadil, K. R.; Gewirth, A. A.; Nazar, L. F. Highly reversible Zn anode with a practical areal capacity enabled by a sustainable electrolyte and superacid interfacial chemistry. Joule 2022, 6, 1103–1120.

[56]

Sun, W.; Wang, F.; Zhang, B.; Zhang, M. Y.; Küpers, V.; Ji, X.; Theile, C.; Bieker, P.; Xu, K.; Wang, C. S. et al. A rechargeable zinc-air battery based on zinc peroxide chemistry. Science 2021, 371, 46–51.

[57]

Xing, Z. H.; Huang, C. D.; Hu, Z. L. Advances and strategies in electrolyte regulation for aqueous zinc-based batteries. Coord. Chem. Rev. 2022, 452, 214299.

[58]

Wang, D. H.; Li, Q.; Zhao, Y. W.; Hong, H.; Li, H. F.; Huang, Z. D.; Liang, G. J.; Yang, Q.; Zhi, C. Y. Insight on organic molecules in aqueous Zn-ion batteries with an emphasis on the Zn anode regulation. Adv. Energy Mater. 2022, 12, 2102707.

[59]

Geng, Y. F.; Pan, L.; Peng, Z. Y.; Sun, Z. F.; Lin, H. C.; Mao, C. W.; Wang, L.; Dai, L.; Liu, H. D.; Pan, K. M. et al. Electrolyte additive engineering for aqueous Zn ion batteries. Energy Storage Mater. 2022, 51, 733–755.

[60]

Miao, L. C.; Wang, R. H.; Xin, W. L.; Zhang, L.; Geng, Y. H.; Peng, H. L.; Yan, Z. C.; Jiang, D. T.; Qian, Z. F.; Zhu, Z. Q. Three-functional ether-based co-solvents for suppressing water-induced parasitic reactions in aqueous Zn-ion batteries. Energy Storage Mater. 2022, 49, 445–453.

[61]

Li, Y. H.; Yao, H.; Liu, X. J.; Yang, X. T.; Yuan, D. Roles of electrolyte additive in Zn chemistry. Nano Res. 2023, 16, 9179–9194.

[62]

Chang, N. N.; Li, T. Y.; Li, R.; Wang, S. N.; Yin, Y. B.; Zhang, H. M.; Li, X. F. An aqueous hybrid electrolyte for low-temperature zinc-based energy storage devices. Energy Environ. Sci. 2020, 13, 3527–3535.

[63]

Ma, L.; Pollard, T. P.; Zhang, Y.; Schroeder, M. A.; Ding, M. S.; Cresce, A. V.; Sun, R. M.; Baker, D. R.; Helms, B. A.; Maginn, E. J. et al. Functionalized phosphonium cations enable zinc metal reversibility in aqueous electrolytes. Angew. Chem., Int. Ed. 2021, 60, 12438–12445.

[64]

Afanasyev, B. N.; Akulova, Y. P.; Kotlyar, M. M. Dependence of the energy of surface-active substances/metal interaction on their ionization potentials. Evaluation of hydrophilicity of metal. J. Solid State Electrochem. 1997, 1, 68–76.

[65]

Du, H. R.; Dong, Y. H.; Li, Q. J.; Zhao, R. R.; Qi, X. Q.; Kan, W. H.; Suo, L. M.; Qie, L.; Li, J.; Huang, Y. H. A new zinc salt chemistry for aqueous zinc-metal batteries. Adv. Mater. 2023, 35, 2210055.

[66]

Li, P.; Wang, Y. Q.; Xiong, Q.; Hou, Y.; Yang, S.; Cui, H. L.; Zhu, J. X.; Li, X. L.; Wang, Y. B.; Zhang, R. et al. Manipulating coulombic efficiency of cathodes in aqueous zinc batteries by anion chemistry. Angew. Chem., Int. Ed. 2023, 62, e202303292.

[67]

Huang, J. H.; Guo, Z. W.; Ma, Y. Y.; Bin, D.; Wang, Y. G.; Xia, Y. Y. Recent progress of rechargeable batteries using mild aqueous electrolytes. Small Methods 2019, 3, 1800272.

[68]

Jiang, H.; Tang, L. T.; Fu, Y. K.; Wang, S. T.; Sandstrom, S. K.; Scida, A. M.; Li, G. X.; Hoang, D.; Hong, J. J.; Chiu, N. C. et al. Chloride electrolyte enabled practical zinc metal battery with a near-unity coulombic efficiency. Nat. Sustain. 2023, 6, 806–815.

[69]

Kasiri, G.; Trócoli, R.; Bani Hashemi, A.; La Mantia, F. An electrochemical investigation of the aging of copper hexacyanoferrate during the operation in zinc-ion batteries. Electrochim. Acta 2016, 222, 74–83.

[70]

Wang, L. J.; Zhang, Y.; Hu, H. L.; Shi, H. Y.; Song, Y.; Guo, D.; Liu, X. X.; Sun, X. Q. A Zn(ClO4)2 electrolyte enabling long-life zinc metal electrodes for rechargeable aqueous zinc batteries. ACS Appl. Mater. Interfaces 2019, 11, 42000–42005.

[71]

Xu, X. N.; Song, M.; Li, M.; Xu, Y.; Sun, L. M.; Shi, L. L.; Su, Y. Q.; Lai, C.; Wang, C. A novel bifunctional zinc gluconate electrolyte for a stable Zn anode. Chem. Eng. J. 2023, 454, 140364.

[72]

Zhang, Q.; Ma, Y. L.; Lu, Y.; Li, L.; Wan, F.; Zhang, K.; Chen, J. Modulating electrolyte structure for ultralow temperature aqueous zinc batteries. Nat. Commun. 2020, 11, 4463.

[73]

Clarisza, A.; Bezabh, H. K.; Jiang, S. K.; Huang, C. J.; Olbasa, B. W.; Wu, S. H.; Su, W. N.; Hwang, B. J. Highly concentrated salt electrolyte for a highly stable aqueous dual-ion zinc battery. ACS Appl. Mater. Interfaces 2022, 14, 36644–36655.

[74]

Huang, J. Q.; Chi, X. W.; Wu, J.; Liu, J. J.; Liu, Y. High-concentration dual-complex electrolyte enabled a neutral aqueous zinc-manganese electrolytic battery with superior stability. Chem. Eng. J. 2022, 430, 133058.

[75]

Yamada, Y.; Wang, J. H.; Ko, S.; Watanabe, E.; Yamada, A. Advances and issues in developing salt-concentrated battery electrolytes. Nat. Energy 2019, 4, 269–280.

[76]

Olbasa, B. W.; Huang, C. J.; Fenta, F. W.; Jiang, S. K.; Chala, S. A.; Tao, H. C.; Nikodimos, Y.; Wang, C. C.; Sheu, H. S.; Yang, Y. W. et al. Highly reversible Zn metal anode stabilized by dense and anion-derived passivation layer obtained from concentrated hybrid aqueous electrolyte. Adv. Funct. Mater. 2022, 32, 2103959.

[77]

Han, J.; Mariani, A.; Zarrabeitia, M.; Jusys, Z.; Behm, R. J.; Varzi, A.; Passerini, S. Zinc-ion hybrid supercapacitors employing acetate-based water-in-salt electrolytes. Small 2022, 18, 2201563.

[78]

Li, T. C.; Lim, Y.; Li, X. L.; Luo, S. Z.; Lin, C. J.; Fang, D. L.; Xia, S. W.; Wang, Y.; Yang, H. Y. A universal additive strategy to reshape electrolyte solvation structure toward reversible Zn storage. Adv. Energy Mater. 2022, 12, 2103231.

[79]

Meng, C.; He, W. D.; Kong, Z.; Liang, Z. Y.; Zhao, H. P.; Lei, Y.; Wu, Y. Z.; Hao, X. P. Multifunctional water-organic hybrid electrolyte for rechargeable zinc ions batteries. Chem. Eng. J. 2022, 450, 138265.

[80]

Hu, Q.; Hu, J. S.; Li, L.; Ran, Q. W.; Ji, Y. Y.; Liu, X. Q.; Zhao, J. X.; Xu, B. G. In-depth study on the regulation of electrode interface and solvation structure by hydroxyl chemistry. Energy Storage Mater. 2023, 54, 374–381.

[81]

Wang, Y.; Wang, T. R.; Bu, S. Y.; Zhu, J. X.; Wang, Y. B.; Zhang, R.; Hong, H.; Zhang, W. J.; Fan, J.; Zhi, C. Y. Sulfolane-containing aqueous electrolyte solutions for producing efficient ampere-hour-level zinc metal battery pouch cells. Nat. Commun. 2023, 14, 1828.

[82]

Shen, Z. Y.; Mao, J. L.; Yu, G. P.; Zhang, W. D.; Mao, S. L.; Zhong, W.; Cheng, H.; Guo, J. Z.; Zhang, J. H.; Lu, Y. Y. Electrocrystallization regulation enabled stacked hexagonal platelet growth toward highly reversible zinc anodes. Angew. Chem., Int. Ed. 2023, 62, e202218452.

[83]

Li, M.; Wang, X. P.; Hu, J. S.; Zhu, J. X.; Niu, C. J.; Zhang, H. Z.; Li, C.; Wu, B. K.; Han, C. H.; Mai, L. Q. Comprehensive H2O molecules regulation via deep eutectic solvents for ultra-stable zinc metal anode. Angew. Chem., Int. Ed. 2023, 62, e202215552.

[84]

Zhuang, W. M.; Chen, Q. W.; Hou, Z.; Sun, Z. Z.; Zhang, T. X.; Wan, J. Y.; Huang, L. M. Examining concentration-reliant Zn deposition/stripping behavior in organic alcohol/sulfones-modified aqueous electrolytes. Small 2023, 19, 2300274.

[85]

Xie, C. L.; Liu, S. F.; Wu, H.; Zhang, Q.; Hu, C.; Yang, Z. F.; Li, H. H.; Tang, Y. G.; Wang, H. Y. Weak solvent chemistry enables stable aqueous zinc metal batteries over a wide temperature range from −50 to 80 °C. Sci. Bull. 2023, 68, 1531–1539.

[86]

Ming, F. W.; Zhu, Y. P.; Huang, G.; Emwas, A. H.; Liang, H. F.; Cui, Y.; Alshareef, H. N. Co-solvent electrolyte engineering for stable anode-free zinc metal batteries. J. Am. Chem. Soc. 2022, 144, 7160–7170.

[87]

Liu, L. Y.; Lu, H. Y.; Han, C.; Chen, X. F.; Liu, S. C.; Zhang, J. K.; Chen, X. H.; Wang, X. Y.; Wang, R.; Xu, J. T. et al. Salt anion amphiphilicity-activated electrolyte cosolvent selection strategy toward durable Zn metal anode. ACS Nano 2023, 17, 23065–23078.

[88]

Wang, J. W.; Zhu, Q. N.; Li, F.; Chen, J. C.; Yuan, H.; Li, Y. M.; Hu, P. F.; Kurbanov, M. S.; Wang, H. Low-temperature and high-rate Zn metal batteries enabled by mitigating Zn2+ concentration polarization. Chem. Eng. J. 2022, 433, 134589.

[89]

Huang, Z. M.; Li, Z. Z.; Wang, Y. D.; Cong, J. L.; Wu, X. L.; Song, X. H.; Ma, Y. X.; Xiang, H. F.; Huang, Y. H. Regulating Zn(002) deposition toward long cycle life for Zn metal batteries. ACS Energy Lett. 2023, 8, 372–380.

[90]

You, C. L.; Wu, R. Y.; Yuan, X. H.; Liu, L. L.; Ye, J. L.; Fu, L. J.; Han, P.; Wu, Y. P. An inexpensive electrolyte with double-site hydrogen bonding and a regulated Zn2+ solvation structure for aqueous Zn-ion batteries capable of high-rate and ultra-long low-temperature operation. Energy Environ. Sci. 2023, 16, 5096–5107.

[91]

Li, M. Y.; Feng, X.; Yin, J. Y.; Cui, T. Y.; Li, F. X.; Chen, J. Z.; Lin, Y. Y.; Xu, X.; Ding, S. J.; Wang, J. H. Regulating the solvation structure with N,N-dimethylacetamide co-solvent for high-performance zinc-ion batteries. J. Mater. Chem. A 2023, 11, 25545–25554.

[92]

Wu, W. B.; Liang, Y. H.; Li, D. P.; Bo, Y. Y.; Wu, D.; Ci, L. J.; Li, M. Y.; Zhang, J. H. A competitive solvation of ternary eutectic electrolytes tailoring the electrode/electrolyte interphase for lithium metal batteries. ACS Nano 2022, 16, 14558–14568.

[93]

Lin, X. D.; Zhou, G. D.; Robson, M. J.; Yu, J.; Kwok, S. C. T.; Ciucci, F. Hydrated deep eutectic electrolytes for high-performance Zn-ion batteries capable of low-temperature operation. Adv. Funct. Mater. 2022, 32, 2109322.

[94]

Yang, Y. Q.; Liang, S. Q.; Lu, B. A.; Zhou, J. Eutectic electrolyte based on N-methylacetamide for highly reversible zinc-iodine battery. Energy Environ. Sci. 2022, 15, 1192–1200.

[95]

Wang, S. H.; Liu, G. X.; Wan, W.; Li, X. Y.; Li, J.; Wang, C. Acetamide-caprolactam deep eutectic solvent-based electrolyte for stable Zn-metal batteries. Adv. Mater. 2024, 36, 2306546.

[96]

Wang, J.; Qiu, H. Y.; Zhang, Q. W.; Ge, X. S.; Zhao, J. W.; Wang, J. Z.; Ma, Y. L.; Fan, C.; Wang, X. J.; Chen, Z. et al. Eutectic electrolytes with leveling effects achieving high depth-of-discharge of rechargeable zinc batteries. Energy Storage Mater. 2023, 58, 9–19.

[97]

Lu, X. J.; Hansen, E. J.; He, G. J.; Liu, J. Eutectic electrolytes chemistry for rechargeable Zn batteries. Small 2022, 18, 2200550.

[98]

Zhu, C. H.; He, X. Y.; Shi, Y.; Wang, Z. K.; Hao, B. J.; Chen, W. H.; Yang, H.; Zhang, L. F.; Ji, H. Q.; Liu, J. et al. Strong replaces weak: Design of H-bond interactions enables cryogenic aqueous Zn metal batteries. ACS Nano 2023, 17, 21614–21625.

[99]

Huang, C.; Zhao, X.; Hao, Y. S.; Yang, Y. J.; Qian, Y.; Chang, G.; Zhang, Y.; Tang, Q. L.; Hu, A. P.; Chen, X. H. Selection criteria for electrical double layer structure regulators enabling stable Zn metal anodes. Energy Environ. Sci. 2023, 16, 1721–1731.

[100]

Hu, B.; Wang, Y.; Qian, X. H.; Chen, W.; Liang, G. J.; Chen, J. Y.; Zhao, J.; Li, W. Q.; Chen, T.; Fu, J. J. Colloid electrolyte with weakly solvated structure and optimized electrode/electrolyte interface for zinc metal batteries. ACS Nano 2023, 17, 12734–12746.

[101]

Cao, J.; Zhang, D. D.; Chanajaree, R.; Yue, Y. L.; Zhang, X. Y.; Yang, X. L.; Cheng, C.; Li, S.; Qin, J. Q.; Zhou, J. et al. Highly reversible Zn metal anode with low voltage hysteresis enabled by tannic acid chemistry. ACS Appl. Mater. Interfaces 2023, 15, 45045–45054.

[102]

Huang, C.; Zhao, X.; Liu, S.; Hao, Y. S.; Tang, Q. L.; Hu, A. P.; Liu, Z. X.; Chen, X. H. Stabilizing zinc anodes by regulating the electrical double layer with saccharin anions. Adv. Mater. 2021, 33, 2100445.

[103]

Hao, J. N.; Yuan, L. B.; Ye, C.; Chao, D. L.; Davey, K.; Guo, Z. P.; Qiao, S. Z. Boosting zinc electrode reversibility in aqueous electrolytes by using low-cost antisolvents. Angew. Chem., Int. Ed. 2021, 60, 7366–7375.

[104]

Wang, K.; Qiu, T.; Lin, L.; Liu, F. M.; Zhu, J. Q.; Liu, X. X.; Sun, X. Q. Interface solvation regulation stabilizing the Zn metal anode in aqueous Zn batteries. Chem. Sci. 2023, 14, 8076–8083.

[105]

Cao, H.; Zhang, X. Q.; Xie, B.; Huang, X. M.; Xie, F. Y.; Huo, Y.; Zheng, Q. J.; Zhao, R. Y.; Hu, Q.; Kang, L. et al. Unraveling the solvation structure and electrolyte interface through carbonyl chemistry for durable and dendrite-free Zn anode. Adv. Funct. Mater. 2023, 33, 2305683.

[106]

Wang, Y.; Huang, H. J.; Xie, D. M.; Wang, H.; Zhao, J. C.; Zeng, X. H.; Mao, J. F. Sulfolane as an additive to regulate Zn anode in aqueous Zn-ion batteries. J. Alloys Compd. 2023, 966, 171655.

[107]

Hao, Y. S.; Huang, C.; Yang, Y. J.; Qian, Y.; Chang, G.; Zhang, Y.; Hu, A. P.; Tang, Q. L.; Chen, X. H. Hybrid electrolyte engineering enables reversible Zn metal anodes at ultralow current densities. J. Power Sources. 2023, 584, 233631.

[108]

Gao, Y.; Wang, M. S.; Wang, H.; Li, X. P.; Chu, Y. W.; Tang, Z. C.; Feng, Y. L.; Wang, J. Q.; Pan, Y.; Ma, Z. Y. et al. Kinetic and thermodynamic synergy of organic small molecular additives enables constructed stable zinc anode. J. Energy Chem. 2023, 84, 62–72.

[109]

Liu, H.; Xin, Z. J.; Cao, B.; Xu, Z. J.; Xu, B.; Zhu, Q. Z.; Yang, J. L.; Zhang, B.; Fan, H. J. Polyhydroxylated organic molecular additives for durable aqueous zinc battery. Adv. Funct. Mater. 2024, 34, 2309840.

[110]

Li, C. Z. S.; Gou, Q. Z.; Tang, R.; Deng, J. B.; Wang, K. X.; Luo, H. R.; Cui, J. Y.; Geng, Y.; Xiao, J. X.; Zheng, Y. J. et al. Electrolyte modulation of biological chelation additives toward a dendrite-free Zn metal anode. J. Phys. Chem. Lett. 2023, 14, 9150–9158.

[111]

Qiu, M. J.; Sun, P.; Cui, G. F.; Mai, W. J. Chaotropic polymer additive with ion transport tunnel enable dendrite-free zinc battery. ACS Appl. Mater. Interfaces 2022, 14, 40951–40958.

[112]

Nian, Q. S.; Wang, J. Y.; Liu, S.; Sun, T. J.; Zheng, S. B.; Zhang, Y.; Tao, Z. L.; Chen, J. Aqueous batteries operated at −50 °C. Angew. Chem., Int. Ed. 2019, 58, 16994–16999.

[113]

Huang, X. M.; Li, Q. P.; Zhang, X. Q.; Cao, H.; Zhao, J. X.; Liu, Y.; Zheng, Q. J.; Huo, Y.; Xie, F. Y.; Xu, B. G. et al. Critical triple roles of sodium iodide in tailoring the solventized structure, anode-electrolyte interface and crystal plane growth to achieve highly reversible zinc anodes for aqueous zinc-ion batteries. J. Colloid Interface Sci. 2023, 650, 875–882.

[114]

Li, C. C.; Wu, Q.; Ma, J.; Pan, H. G.; Liu, Y. X.; Lu, Y. Y. Regulating zinc metal anodes via novel electrolytes in rechargeable zinc-based batteries. J. Mater. Chem. A 2022, 10, 14692–14708.

[115]

Jiao, M. L.; Dai, L. X.; Ren, H. R.; Zhang, M. T.; Xiao, X.; Wang, B. R.; Yang, J. L.; Liu, B. L.; Zhou, G. M.; Cheng, H. M. A polarized gel electrolyte for wide-temperature flexible zinc-air batteries. Angew. Chem., Int. Ed. 2023, 62, e202301114.

[116]

Zhong, X. W.; Zheng, Z. Y.; Xu, J. H.; Xiao, X.; Sun, C. B.; Zhang, M. T.; Ma, J. B.; Xu, B. M.; Yu, K.; Zhang, X. et al. Flexible zinc-air batteries with ampere-hour capacities and wide-temperature adaptabilities. Adv. Mater. 2023, 35, 2209980.

[117]

Wan, F.; Zhou, X. Z.; Lu, Y.; Niu, Z. Q.; Chen, J. Energy storage chemistry in aqueous zinc metal batteries. ACS Energy Lett. 2020, 5, 3569–3590.

[118]

Li, C. P.; Xie, X. S.; Liu, H.; Wang, P. J.; Deng, C. B.; Lu, B. A.; Zhou, J.; Liang, S. Q. Integrated "all-in-one" strategy to stabilize zinc anodes for high-performance zinc-ion batteries. Natl. Sci. Rev. 2022, 9, nwab177.

[119]

Xie, X. S.; Li, J. J.; Xing, Z. Y.; Lu, B. A.; Liang, S. Q.; Zhou, J. Biocompatible zinc battery with programmable electro-cross-linked electrolyte. Natl. Sci. Rev. 2023, 10, nwac281.

[120]

Li, J. J.; Liu, Z. X.; Han, S. H.; Zhou, P.; Lu, B. A.; Zhou, J. D.; Zeng, Z. Y.; Chen, Z. Z.; Zhou, J. Hetero nucleus growth stabilizing zinc anode for high-biosecurity zinc-ion batteries. Nano-Micro Lett. 2023, 15, 237.

[121]

Fan, L. L.; Hu, X. Y.; Jiao, Y. M.; Cao, L.; Xiong, S. X.; Gu, F.; Wang, S. F. Advances of designing effective and functional electrolyte system for high-stability aqueous Zn ion battery. Chem. Eng. J. 2024, 479, 147763.

[122]

Wang, P. J.; Xie, X. S.; Xing, Z. Y.; Chen, X. H.; Fang, G. Z.; Lu, B. A.; Zhou, J.; Liang, S. Q.; Fan, H. J. Mechanistic insights of Mg2+-electrolyte additive for high-energy and long-life zinc-ion hybrid capacitors. Adv. Energy Mater. 2021, 11, 2101158.

[123]

Hu, Z. Q.; Zhang, F. L.; Zhao, Y.; Wang, H. R.; Huang, Y. X.; Wu, F.; Chen, R. J.; Li, L. A self-regulated electrostatic shielding layer toward dendrite-free Zn batteries. Adv. Mater. 2022, 34, 2203104.

[124]

Wang, D. D.; Lv, D.; Peng, H. L.; Wang, C.; Liu, H. X.; Yang, J.; Qian, Y. T. Solvation modulation enhances anion-derived solid electrolyte interphase for deep cycling of aqueous zinc metal batteries. Angew. Chem., Int. Ed. 2023, 62, e202310290.

[125]

Liu, Z. X.; Wang, R.; Gao, Y. C.; Zhang, S. L.; Wan, J. D.; Mao, J. F.; Zhang, L. H.; Li, H. B.; Hao, J. N.; Li, G. J. et al. Low-cost multi-function electrolyte additive enabling highly stable interfacial chemical environment for highly reversible aqueous zinc ion batteries. Adv. Funct. Mater. 2023, 33, 2308463.

[126]

Zhou, W. J.; Chen, M. F.; Quan, Y. H.; Ding, J.; Cheng, H. L.; Han, X.; Chen, J. Z.; Liu, B.; Shi, S. Q.; Xu, X. W. Stabilizing zinc deposition through solvation sheath regulation and preferential adsorption by electrolyte additive of lithium difluoro(oxalato) borate. Chem. Eng. J. 2023, 457, 141328.

[127]

Cao, J.; Zhang, D. D.; Yue, Y. L.; Chanajaree, R.; Wang, S. M.; Han, J. T.; Zhang, X. Y.; Qin, J. Q.; Huang, Y. H. Regulating solvation structure to stabilize zinc anode by fastening the free water molecules with an inorganic colloidal electrolyte. Nano Energy 2022, 93, 106839.

[128]

Zheng, Z. Y.; Zhong, X. W.; Zhang, Q.; Zhang, M. T.; Dai, L. X.; Xiao, X.; Xu, J. H.; Jiao, M. L.; Wang, B. R.; Li, H. et al. An extended substrate screening strategy enabling a low lattice mismatch for highly reversible zinc anodes. Nat. Commun. 2024, 15, 753.

[129]

Li, H.; Chen, B.; Gao, R. H.; Xu, F. G.; Wen, X. Z.; Zhong, X. W.; Li, C.; Piao, Z. H.; Hu, N. T.; Xiao, X. et al. Integrating molybdenum sulfide selenide-based cathode with C–O–Mo heterointerface design and atomic engineering for superior aqueous Zn-ion batteries. Nano Res. 2023, 16, 4933–4940.

[130]

Zhong, X. W.; Shao, Y. F.; Chen, B.; Li, C.; Sheng, J. Z.; Xiao, X.; Xu, B. M.; Li, J.; Cheng, H. M.; Zhou, G. M. Rechargeable zinc-air batteries with an ultralarge discharge capacity per cycle and an ultralong cycle life. Adv. Mater. 2023, 35, 2301952.

Publication history
Copyright
Acknowledgements

Publication history

Received: 14 January 2024
Revised: 23 February 2024
Accepted: 26 February 2024
Published: 16 April 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 22022813), the Zhejiang Provincial Natural Science Foundation of China (No. LQ24B030002), the China Postdoctoral Science Foundation (Nos. 2022M722729 and 2023T160571), and the technology project of Institute of Wenzhou (Nos. XMGL-CX-202204 and XMGL-KJZX-202208).

Return