Journal Home > Online First

Covalent organic framework (COF) monolayers, with atomically thin, ordered networks, and rich functionality, are widely studied due to their unusual structure/property relationships. However, synthesizing COF monolayer has remained an unmet challenge due to the difficulty of controlling reactions at the monolayer limit with large-scale uniformity. The identification and development of new reactions and polymerization conditions are critical for the further advancement of COF monolayer materials. Moreover, as one-molecule-thick a freestanding films, COF monolayer offers an ideal material system. Many advanced applications of COF monolayer have been explored in recent literature. This review provides an overview of the current state of precise synthetic strategies for COF monolayer, highlighting the advantages and limitations of different synthetic approaches and key challenges related to enhancing quality, and emphasizing the unique benefits of COF monolayer as both an ideal model system and for advanced applications.


menu
Abstract
Full text
Outline
About this article

Covalent organic framework monolayer: Accurate syntheses and advanced application

Show Author's information Guangyuan Feng1,§Xiaojuan Li1,§Miao Zhang1Jiabi Xu1Zhiping Liu1Lingli Wu2( )Shengbin Lei1,3( )
Key Laboratory of Organic Integrated Circuit, Ministry of Education and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
Medical College, Northwest Minzu University, Lanzhou 730000, China
School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China

§ Guangyuan Feng and Xiaojuan Li contributed equally to this work.

Abstract

Covalent organic framework (COF) monolayers, with atomically thin, ordered networks, and rich functionality, are widely studied due to their unusual structure/property relationships. However, synthesizing COF monolayer has remained an unmet challenge due to the difficulty of controlling reactions at the monolayer limit with large-scale uniformity. The identification and development of new reactions and polymerization conditions are critical for the further advancement of COF monolayer materials. Moreover, as one-molecule-thick a freestanding films, COF monolayer offers an ideal material system. Many advanced applications of COF monolayer have been explored in recent literature. This review provides an overview of the current state of precise synthetic strategies for COF monolayer, highlighting the advantages and limitations of different synthetic approaches and key challenges related to enhancing quality, and emphasizing the unique benefits of COF monolayer as both an ideal model system and for advanced applications.

Keywords: monolayer, covalent organic frameworks, accurate syntheses, advanced application

References(65)

[1]

Cui, D. L.; Perepichka, D. F.; MacLeod, J. M.; Rosei, F. Surface-confined single-layer covalent organic frameworks: Design, synthesis and application. Chem. Soc. Rev. 2020, 49, 2020–2038.

[2]

Perepichka, D. F.; Rosei, F. Extending polymer conjugation into the second dimension. Science 2009, 323, 216–217.

[3]

Servalli, M.; Schlüter, A. D. Synthetic two-dimensional polymers. Annu. Rev. Mater. Res. 2017, 47, 361–389.

[4]

Zhong, Y.; Cheng, B. R.; Park, C.; Ray, A.; Brown, S.; Mujid, F.; Lee, J. U.; Zhou, H.; Suh, J.; Lee, K. H. et al. Wafer-scale synthesis of monolayer two-dimensional porphyrin polymers for hybrid superlattices. Science 2019, 366, 1379–1384.

[5]

Côté, A. P.; Benin, A. I.; Ockwig, N. W.; O’Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Porous, crystalline, covalent organic frameworks. Science 2005, 310, 1166–1170.

[6]

Wayment, L. J.; Lei, Z. P.; Jin, Y. H.; Zhang, W. Recent progress in constructing structurally ordered polymeric architectures via dynamic covalent chemistry. CCS Chem. 2023, 5, 2194–2206.

[7]

Kubik, S. Dynamic covalent chemistry. Principles, reactions, and applications edited by Wei Zhang and Yinghua Jin. Angew. Chem., Int. Ed. 2018, 57, 3005–3005.

[8]

Jin, Y. H.; Yu, C.; Denman, R. J.; Zhang, W. Recent advances in dynamic covalent chemistry. Chem. Soc. Rev. 2013, 42, 6634–6654.

[9]

Jin, Y. H.; Hu, Y. M.; Ortiz, M.; Huang, S. F.; Ge, Y. Q.; Zhang, W. Confined growth of ordered organic frameworks at an interface. Chem. Soc. Rev. 2020, 49, 4637–4666.

[10]

Colson, J. W.; Woll, A. R.; Mukherjee, A.; Levendorf, M. P.; Spitler, E. L.; Shields, V. B.; Spencer, M. G.; Park, J.; Dichtel, W. R. Oriented 2D covalent organic framework thin films on single-layer graphene. Science 2011, 332, 228–231.

[11]

Dai, W. Y.; Shao, F.; Szczerbiński, J.; McCaffrey, R.; Zenobi, R.; Jin, Y. H.; Schlüter, A. D.; Zhang, W. Synthesis of a two-dimensional covalent organic monolayer through dynamic imine chemistry at the air/water interface. Angew. Chem., Int. Ed. 2016, 55, 213–217.

[12]

Dey, K.; Pal, M.; Rout, K. C.; Kunjattu, H. S.; Das, A.; Mukherjee, R.; Kharul, U. K.; Banerjee, R. Selective molecular separation by interfacially crystallized covalent organic framework thin films. J. Am. Chem. Soc. 2017, 139, 13083–13091.

[13]

Feng, X. L.; Schlüter, A. D. Towards macroscopic crystalline 2D polymers. Angew. Chem., Int. Ed. 2018, 57, 13748–13763.

[14]

Colson, J. W.; Dichtel, W. R. Rationally synthesized two-dimensional polymers. Nat. Chem. 2013, 5, 453–465.

[15]

Rodríguez-San-Miguel, D.; Montoro, C.; Zamora, F. Covalent organic framework nanosheets: Preparation, properties and applications. Chem. Soc. Rev. 2020, 49, 2291–2302.

[16]

Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Neto, A. H. C. 2D materials and van der Waals heterostructures. Science 2016, 353, eaac9439

[17]

Geim, A. K.; Grigorieva, I. V. Van der Waals heterostructures. Nature 2013, 499, 419–425.

[18]

Shao, F.; Dai, W. Y.; Zhang, Y.; Zhang, W.; Schlüter, A. D.; Zenobi, R. Chemical mapping of nanodefects within 2D covalent monolayers by tip-enhanced Raman spectroscopy. ACS Nano 2018, 12, 5021–5029.

[19]

Fu, C. Y.; Mikšátko, J.; Assies, L.; Vrkoslav, V.; Orlandi, S.; Kalbáč, M.; Kovaříček, P.; Zeng, X. B.; Zhou, B. P.; Muccioli, L. et al. Surface-confined macrocyclization via dynamic covalent chemistry. ACS Nano 2020, 14, 2956–2965.

[20]

Clair, S.; De Oteyza, D. G. Controlling a chemical coupling reaction on a surface: Tools and strategies for on-surface synthesis. Chem. Rev. 2019, 119, 4717–4776.

[21]

Liu, X. H.; Guan, C. Z.; Ding, S. Y.; Wang, W.; Yan, H. J.; Wang, D.; Wan, L. J. On-surface synthesis of single-layered two-dimensional covalent organic frameworks via solid–vapor interface reactions. J. Am. Chem. Soc. 2013, 135, 10470–10474.

[22]

Zhan, G. L.; Cai, Z. F.; Strutyński, K.; Yu, L. H.; Herrmann, N.; Martínez-Abadía, M.; Melle-Franco, M.; Mateo-Alonso, A.; Feyter, S. D. Observing polymerization in 2D dynamic covalent polymers. Nature 2022, 603, 835–840.

[23]

Yu, Y. X.; Lin, J. B.; Wang, Y.; Zeng, Q. D.; Lei, S. B. Room temperature on-surface synthesis of two-dimensional imine polymers at the solid/liquid interface: Concentration takes control. Chem. Commun. 2016, 52, 6609–6612.

[24]

Lei, S. B.; Tahara, K.; De Schryver, F. C.; Van der Auweraer, M.; Tobe, Y.; De Feyter, S. One building block, two different supramolecular surface-confined patterns: Concentration in control at the solid–liquid interface. Angew. Chem., Int. Ed. 2008, 47, 2964–2968.

[25]

Mo, Y. P.; Liu, X. H.; Wang, D. Concentration-directed polymorphic surface covalent organic frameworks: Rhombus, parallelogram, and Kagome. ACS Nano 2017, 11, 11694–11700.

[26]

Cai, Z. F.; Zhan, G. L.; Daukiya, L.; Eyley, S.; Thielemans, W.; Severin, K.; De Feyter, S. Electric-field-mediated reversible transformation between supramolecular networks and covalent organic frameworks. J. Am. Chem. Soc. 2019, 141, 11404–11408.

[27]

Liang, Q.; Feng, G. Y.; Ni, H. Z.; Song, Y. R.; Zhang, X. Y.; Lei, S. B.; Hu, W. P. Room temperature spontaneous surface condensation of boronic acids observed by scanning tunneling microscopy. Chin. Chem. Lett. 2023, 34, 108006.

[28]

Fabozzi, F. G.; Severin, N.; Rabe, J. P.; Hecht, S. Room temperature on-surface synthesis of a vinylene-linked single layer covalent organic framework. J. Am. Chem. Soc. 2023, 145, 18205–18209.

[29]

Sun, K. W.; Silveira, O. J.; Ma, Y. J.; Hasegawa, Y.; Matsumoto, M.; Kera, S.; Krejčí, O.; Foster, A. S.; Kawai, S. On-surface synthesis of disilabenzene-bridged covalent organic frameworks. Nat. Chem. 2023, 15, 136–142.

[30]

Müller, V.; Hinaut, A.; Moradi, M.; Baljozovic, M.; Jung, T. A.; Shahgaldian, P.; Möhwald, H.; Hofer, G.; Kröger, M.; King, B. T. et al. A two-dimensional polymer synthesized at the air/water interface. Angew. Chem., Int. Ed. 2018, 57, 10584–10588.

[31]

Liu, L.; Geng, B. W.; Ji, W. Y.; Wu, L. L.; Lei, S. B.; Hu, W. P. A highly crystalline single layer 2D polymer for low variability and excellent scalability molecular memristors. Adv. Mater. 2023, 35, 2208377.

[32]

Mitra, S.; Sasmal, H. S.; Kundu, T.; Kandambeth, S.; Illath, K.; Díaz Díaz, D.; Banerjee, R. Targeted drug delivery in covalent organic nanosheets (CONs) via sequential postsynthetic modification. J. Am. Chem. Soc. 2017, 139, 4513–4520.

[33]

Wang, J.; Li, N.; Xu, Y. X.; Pang, H. Two-dimensional MOF and COF nanosheets: Synthesis and applications in electrochemistry. Chem.—Eur. J. 2020, 26, 6402–6422.

[34]

Li, X.; Xu, H. S.; Leng, K.; Chee, S. W.; Zhao, X. X.; Jain, N.; Xu, H.; Qiao, J. S.; Gao, Q.; Park, I. H. et al. Partitioning the interlayer space of covalent organic frameworks by embedding pseudorotaxanes in their backbones. Nat. Chem. 2020, 12, 1115–1122.

[35]

Liu, W. B.; Li, X. K.; Wang, C. M.; Pan, H. H.; Liu, W. P.; Wang, K.; Zeng, Q. D.; Wang, R. M.; Jiang, J. Z. A scalable general synthetic approach toward ultrathin imine-linked two-dimensional covalent organic framework nanosheets for photocatalytic CO2 reduction. J. Am. Chem. Soc. 2019, 141, 17431–17440.

[36]

Liu, C. L.; Wang, Z. Z.; Zhang, L.; Dong, Z. Y. Soft 2D covalent organic framework with compacted honeycomb topology. J. Am. Chem. Soc. 2022, 144, 18784–18789.

[37]

Liu, J.; Yang, F. X.; Cao, L. L.; Li, B. L.; Yuan, K.; Lei, S. B.; Hu, W. P. A robust nonvolatile resistive memory device based on a freestanding ultrathin 2D imine polymer film. Adv. Mater. 2019, 31, 1902264.

[38]

Zhao, H.; Dong, Z. P.; Tian, H.; DiMarzi, D.; Han, M. G.; Zhang, L. H.; Yan, X. D.; Liu, F. X.; Shen, L.; Han, S. J. et al. Atomically thin femtojoule memristive device. Adv. Mater. 2017, 29, 1703232.

[39]

Wang, C.; Cusin, L.; Ma, C.; Unsal, E.; Wang, H. L.; Consolaro, V. G.; Montes-García, V.; Han, B.; Vitale, S.; Dianat, A. et al. Enhancing the carrier transport in monolayer MoS2 through interlayer coupling with 2D covalent organic frameworks. Adv. Mater. 2024, 36, 2305882.

[40]

Fa, D. J.; Tao, Y. H.; Pan, X.; Wang, D. J.; Feng, G. Y.; Yuan, J. Y.; Luo, Q. Q.; Song, Y. R.; Gao, X. J.; Yang, L. et al. Spatial well-defined bimetallic two-dimensional polymers with single-layer thickness for electrocatalytic oxygen evolution reaction. Angew. Chem., Int. Ed. 2022, 61, e202207845.

[41]

Fa, D. J.; Yuan, J. Y.; Feng, G. Y.; Lei, S. B.; Hu, W. P. Regulating the synergistic effect in bimetallic two-dimensional polymer oxygen evolution reaction catalysts by adjusting the coupling strength between metal centers. Angew. Chem., Int. Ed. 2023, 62, e202300532.

[42]

Shen, R. C.; Qin, C. C.; Hao, L.; Li, X. Z.; Zhang, P.; Li, X. Realizing photocatalytic overall water splitting by modulating the thickness-induced reaction energy barrier of fluorenone-based covalent organic frameworks. Adv. Mater. 2023, 35, 2305397.

[43]

Li, T. J.; Zhu, X. F.; Ouyang, G. H.; Liu, M. H. Circularly polarized luminescence from chiral macrocycles and their supramolecular assemblies. Mater. Chem. Front. 2023, 7, 3879–3903.

[44]

Hu, L. Y.; Zhu, X. F.; Yang, C. C.; Liu, M. H. Two-dimensional chiral polyrotaxane monolayer with emergent and steerable circularly polarized luminescence. Angew. Chem., Int. Ed. 2022, 61, e202114759.

[45]

Logan, B. E.; Elimelech, M. Membrane-based processes for sustainable power generation using water. Nature 2012, 488, 313–319.

[46]

Park, H. B.; Kamcev, J.; Robeson, L. M.; Elimelech, M.; Freeman, B. D. Maximizing the right stuff: The trade-off between membrane permeability and selectivity. Science 2017, 356, eaab0530.

[47]

Huang, Z. W.; Fang, M. N.; Tu, B.; Yang, J. L.; Yan, Z.; Alemayehu, H. G.; Tang, Z. Y.; Li, L. S. Essence of the enhanced osmotic energy conversion in a covalent organic framework monolayer. ACS Nano 2022, 16, 17149–17156.

[48]

Yang, J. L.; Tu, B.; Zhang, G. J.; Liu, P. C.; Hu, K.; Wang, J. R.; Yan, Z.; Huang, Z. W.; Fang, M. N.; Hou, J. J. et al. Advancing osmotic power generation by covalent organic framework monolayer. Nat. Nanotechnol. 2022, 17, 622–628.

[49]

Zhang, X. P.; Tu, B.; Cao, Z. W.; Fang, M. N.; Zhang, G. J.; Yang, J. L.; Ying, Y.; Sun, Z. F.; Hou, J. J.; Fang, Q. J. et al. Anomalous mechanical and electrical interplay in a covalent organic framework monolayer membrane. J. Am. Chem. Soc. 2023, 145, 17786–17794.

[50]

Hao, W. Z.; Zhao, Y. S.; Miao, L. L.; Cheng, G.; Zhao, G. X.; Li, J. J.; Sang, Y. N.; Li, J. X.; Zhao, C. X.; He, X. D. et al. Multiple impact-resistant 2D covalent organic framework. Nano Lett. 2023, 23, 1416–1423.

[51]

Tan, S. C.; Wang, K. P.; Zeng, Q. D.; Liu, Y. H. Insight into the nanotribological mechanism of two-dimensional covalent organic frameworks. ACS Appl. Mater. Interfaces 2022, 14, 40173–40181.

[52]

Liu, C. H.; Park, E.; Jin, Y. H.; Liu, J.; Yu, Y. X.; Zhang, W.; Lei, S. B.; Hu, W. P. Separation of arylenevinylene macrocycles with a surface-confined two-dimensional covalent organic framework. Angew. Chem., Int. Ed. 2018, 57, 8984–8988.

[53]

He, Y.; Li, N.; Castelli, I. E.; Li, R. N.; Zhang, Y. J.; Zhang, X.; Li, C.; Wang, B. W.; Gao, S.; Peng, L. M. et al. Observation of biradical spin coupling through hydrogen bonds. Phys. Rev. Lett. 2022, 128, 236401.

[54]

Cai, Z. F.; Zheng, L. Q.; Zhang, Y.; Zenobi, R. Molecular-scale chemical imaging of the orientation of an on-surface coordination complex by tip-enhanced Raman spectroscopy. J. Am. Chem. Soc. 2021, 143, 12380–12386.

[55]

Feng, G. Y.; Luo, Q. Q.; Li, M. Q.; Song, Y. R.; Shen, Y. T.; Lei, S. B.; Hu, W. P. Construction and nanotribological study of a glassy covalent organic network on surface. Nano Res. 2022, 15, 4682–4686.

[56]

Jiang, S. Y.; Zhou, Z. B.; Gan, S. X.; Lu, Y.; Liu, C.; Qi, Q. Y.; Yao, J.; Zhao, X. Creating amphiphilic porosity in two-dimensional covalent organic frameworks via steric-hindrance-mediated precision hydrophilic-hydrophobic microphase separation. Nat. Commun. 2024, 15, 698.

[57]

Zhou, Z. B.; Tian, P. J.; Yao, J.; Lu, Y.; Qi, Q. Y.; Zhao, X. Toward azo-linked covalent organic frameworks by developing linkage chemistry via linker exchange. Nat. Commun. 2022, 13, 2180.

[58]

Liang, R. R.; A, R. H.; Xu, S. Q.; Qi, Q. Y.; Zhao, X. Fabricating organic nanotubes through selective disassembly of two-dimensional covalent organic frameworks. J. Am. Chem. Soc. 2020, 142, 70–74.

[59]

Wang, S. T.; Li, X. X.; Da, L.; Wang, Y. Q.; Xiang, Z. H.; Wang, W.; Zhang, Y. B.; Cao, D. P. A three-dimensional sp2 carbon-conjugated covalent organic framework. J. Am. Chem. Soc. 2021, 143, 15562–15566.

[60]

Liu, M. J.; Liu, J. N.; Li, J.; Zhao, Z. H.; Zhou, K.; Li, Y. M.; He, P. P.; Wu, J. S.; Bao, Z. B.; Yang, Q. W. et al. Blending aryl ketone in covalent organic frameworks to promote photoinduced electron transfer. J. Am. Chem. Soc. 2023, 145, 9198–9206.

[61]

Yue, Y.; Cai, P. Y.; Xu, K.; Li, H. Y.; Chen, H. Z.; Zhou, H. C.; Huang, N. Stable bimetallic polyphthalocyanine covalent organic frameworks as superior electrocatalysts. J. Am. Chem. Soc. 2021, 143, 18052–18060.

[62]

Tang, J. Q.; Liang, Z. Z.; Qin, H. N.; Liu, X. Q.; Zhai, B. B.; Su, Z.; Liu, Q. Q.; Lei, H. T.; Liu, K. Q.; Zhao, C. et al. Large-area free-standing metalloporphyrin-based covalent organic framework films by liquid-air interfacial polymerization for oxygen electrocatalysis. Angew. Chem., Int. Ed. 2023, 62, e202214449.

[63]

Jiang, M. H.; Han, L. K.; Peng, P.; Hu, Y.; Xiong, Y.; Mi, C. X.; Tie, Z.; Xiang, Z. H.; Jin, Z. Quasi-phthalocyanine conjugated covalent organic frameworks with nitrogen-coordinated transition metal centers for high-efficiency electrocatalytic ammonia synthesis. Nano Lett. 2022, 22, 372–379.

[64]

Zhou, W.; Deng, Q. W.; He, H. J.; Yang, L.; Liu, T. Y.; Wang, X.; Zheng, D. Y.; Dai, Z. B.; Sun, L.; Liu, C. C. et al. Heterogenization of Salen metal molecular catalysts in covalent organic frameworks for photocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2023, 62, e202214143.

[65]

Yan, X. D.; Zheng, Z. R.; Sangwan, V. K.; Qian, J. H.; Wang, X. Q.; Liu, S. E.; Watanabe, K.; Taniguchi, T.; Xu, S. Y.; Jarillo-Herrero, P. et al. Moiré synaptic transistor with room-temperature neuromorphic functionality. Nature 2023, 624, 551–556.

Publication history
Copyright
Acknowledgements

Publication history

Received: 07 January 2024
Revised: 20 February 2024
Accepted: 21 February 2024
Published: 30 April 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 52073208), the China Postdoctoral Science Foundation (No. 2022M722356), Seed Foundation of Tianjin University (Nos. 2023XQM-0028 and 2023XSU-0020), and the Fundamental Research Funds for the Central Universities.

Return