Journal Home > Online First

Alkene hydrosilylation is one of the most concise and atom-economical methods to synthesize organosilicon molecules. Herein, we reported the precise immobilization of metal single atoms (M-SAs; M = Ru, Rh, Ir, Pd, Pt, and Au) into a porphyrinic metal-organic framework (MOF) of PCN-222 (PCN = porous coordination network), and then applied the resultant MOF composites of M-SAs@PCN-222 to alkene hydrosilylation. Under solvent-free conditions, Pt-SAs@PCN-222 displayed an especially high catalytic efficiency with the turnover frequency up to 119 s−1 and the maximum turnover number of 906,250 at room temperature. Experimental and theoretical studies revealed that there existed strong interactions between Pt-SAs@PCN-222 and the substrates, which helped to condense the substrates in the cavities of the porous catalysts. Further density functional theory calculations and molecular dynamics simulations disclosed that PCN-222 could transfer electrons to Pt-SAs to enhance the silane oxidative addition and drive the reaction to proceed smoothly via Chalk–Harrod pathway.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Precise immobilization of metal single atoms into a porphyrinic metal-organic framework for an efficient alkene hydrosilylation

Show Author's information Chun-Ying Chen,§Qi-Jie Mo,§Fu-Zhen LiHai-Li SongLi Zhang( )
MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China

§ Chun-Ying Chen and Qi-Jie Mo contributed equally to this work.

Abstract

Alkene hydrosilylation is one of the most concise and atom-economical methods to synthesize organosilicon molecules. Herein, we reported the precise immobilization of metal single atoms (M-SAs; M = Ru, Rh, Ir, Pd, Pt, and Au) into a porphyrinic metal-organic framework (MOF) of PCN-222 (PCN = porous coordination network), and then applied the resultant MOF composites of M-SAs@PCN-222 to alkene hydrosilylation. Under solvent-free conditions, Pt-SAs@PCN-222 displayed an especially high catalytic efficiency with the turnover frequency up to 119 s−1 and the maximum turnover number of 906,250 at room temperature. Experimental and theoretical studies revealed that there existed strong interactions between Pt-SAs@PCN-222 and the substrates, which helped to condense the substrates in the cavities of the porous catalysts. Further density functional theory calculations and molecular dynamics simulations disclosed that PCN-222 could transfer electrons to Pt-SAs to enhance the silane oxidative addition and drive the reaction to proceed smoothly via Chalk–Harrod pathway.

Keywords: metal-organic frameworks, single atom catalysts, synergistic catalysis, alkene hydrosilylation, precision chemistry

References(69)

[1]

Markó, I. E.; Stérin, S.; Buisine, O.; Mignani, G.; Branlard, P.; Tinant, B.; Declercq, J. P. Selective and efficient platinum(0)-carbene complexes as hydrosilylation catalysts. Science 2002, 298, 204–206.

[2]

Tondreau, A. M.; Atienza, C. C. H.; Weller, K. J.; Nye, S. A.; Lewis, K. M.; Delis, J. G. P.; Chirik, P. J. Iron catalysts for selective anti-markovnikov alkene hydrosilylation using tertiary silanes. Science 2012, 335, 567–570.

[3]

Obligacion, J. V.; Chirik, P. J. Earth-abundant transition metal catalysts for alkene hydrosilylation and hydroboration. Nat. Rev. Chem. 2018, 2, 15–34.

[4]

de Almeida, L. D.; Wang, H. L.; Junge, K.; Cui, X. J.; Beller, M. Recent advances in catalytic hydrosilylations: Developments beyond traditional platinum catalysts. Angew. Chem., Int. Ed. 2021, 60, 550–565.

[5]

Speier, J. L.; Webster, J. A.; Barnes, G. H. The addition of silicon hydrides to olefinic double bonds. Part II. The use of group VIII metal catalysts. J. Am. Chem. Soc. 1957, 79, 974–979.

[6]

Hitchcock, P. B.; Lappert, M. F.; Warhurst, N, J. W. Synthesis and Structure of a rac-tris(divinyldisiloxane) diplatinum(0) complex and its reaction with maleic anhydride. Angew. Chem., Int. Ed. 1991, 30, 438–440.

[7]

Stein, J.; Lewis, L. N.; Gao, Y.; Scott, R. A. In situ determination of the active catalyst in hydrosilylation reactions using highly reactive Pt(0) catalyst precursors. J. Am. Chem. Soc. 1999, 121, 3693–3703.

[8]

Zhao, E.; Li, M. M.; Xu, B. B.; Wang, X. L.; Jing, Y.; Ma, D.; Mitchell, S.; Pérez-Ramírez, J.; Chen, Z. P. Transfer hydrogenation with a carbon-nitride-supported palladium single-atom photocatalyst and water as a proton source. Angew. Chem., Int. Ed. 2022, 61, e2022074.

[9]

Li, Q. H.; Li, Z.; Zhang, Q. H.; Zheng, L. R.; Yan, W. S.; Liang, X.; Gu, L.; Chen, C.; Wang, D. S.; Peng, Q. et al. Porous γ-Fe2O3 nanoparticle decorated with atomically dispersed platinum: Study on atomic site structural change and gas sensor activity evolution. Nano Res. 2021, 14, 1435–1442.

[10]

Wang, A. Q.; Li, J.; Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2018, 2, 65–81.

[11]

Lang, R.; Du, X. R.; Huang, Y. K.; Jiang, X. Z.; Zhang, Q.; Guo, Y. L.; Liu, K. P.; Qiao, B. T.; Wang, A. Q.; Zhang, T. Single-atom catalysts based on the metal-oxide interaction. Chem. Rev. 2020, 120, 11986–12043.

[12]

Xu, Q.; Cheng, X. W.; Zhang, N. Q.; Tu, Y.; Wu, L. H.; Pan, H. B.; Hu, J.; Ding, H. H.; Zhu, J. F.; Li, Y. D. Unraveling the advantages of Pd/CeO2 single-atom catalysts in the NO + CO reaction by model catalysts. Nano Res. 2023, 16, 8882–8892.

[13]

Tian, Y. H.; Li, M.; Wu, Z. Z.; Sun, Q.; Yuan, D.; Johannessen, B.; Xu, L.; Wang, Y.; Dou, Y. H.; Zhao, H. J. et al. Edge-hosted atomic Co-N4 sites on hierarchical porous carbon for highly selective two-electron oxygen reduction reaction. Angew. Chem., Int. Ed. 2022, 61, e202213296.

[14]

Feng, C.; Zhang, Z. R.; Wang, D. D.; Kong, Y.; Wei, J.; Wang, R. Y.; Ma, P. Y.; Li, H. L.; Geng, Z. G.; Zuo, M. et al. Tuning the electronic and steric interaction at the atomic interface for enhanced oxygen evolution. J. Am. Chem. Soc. 2022, 144, 9271–9279.

[15]

Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842–1855.

[16]

Zhang, Z. R.; Feng, C.; Wang, D. D.; Zhou, S. M.; Wang, R. Y.; Hu, S. P.; Li, H. L.; Zuo, M.; Kong, Y.; Bao, J. et al. Selectively anchoring single atoms on specific sites of supports for improved oxygen evolution. Nat. Commun. 2022, 13, 2473.

[17]

Fan, Q. K.; Gao, P. F.; Ren, S.; Qu, Y. T.; Kong, C. C.; Yang, J.; Wu, Y. E. Total conversion of centimeter-scale nickel foam into single atom electrocatalysts with highly selective CO2 electrocatalytic reduction in neutral electrolyte. Nano Res. 2023, 16, 2003–2010.

[18]

Endo, K.; Saruyama, M.; Teranishi, T. Location-selective immobilisation of single-atom catalysts on the surface or within the interior of ionic nanocrystals using coordination chemistry. Nat. Commun. 2023, 14, 4241.

[19]

Verma, G.; Kumar, S.; Vardhan, H.; Ren, J. Y.; Niu, Z.; Pham, T.; Wojtas, L.; Butikofer, S.; Garcia, J. C. E.; Chen, Y. S. et al. A robust soc-MOF platform exhibiting high gravimetric uptake and volumetric deliverable capacity for on-board methane storage. Nano Res. 2021, 14, 512–517.

[20]

Li, L.; Fang, Z. B.; Deng, W. Z.; Yi, J. D.; Wang, R.; Liu, T. F. Precise construction of stable bimetallic metal-organic frameworks with single-site Ti(IV) incorporation in nodes for efficient photocatalytic oxygen evolution. CCS Chem. 2022, 4, 2782–2792.

[21]

Liu, J. W.; Chen, L. F.; Cui, H.; Zhang, J. Y.; Zhang, L.; Su, C. Y. Applications of metal-organic frameworks in heterogeneous supramolecular catalysis. Chem. Soc. Rev. 2014, 43, 6011–6061.

[22]

Shi, Y. S.; Wang, P. Y.; Li, M. C.; Zhang, T. X.; Han, G.; Duan, C. Y. A diode-like dye-Cu anisotropic junction in a coordination polymer as a logic state ratchet for intratumor redox photomodulation. Angew. Chem., Int. Ed. 2023, 62, e202219172.

[23]

Chen, C. X.; Xiong, Y. Y.; Zhong, X.; Lan, P. C.; Wei, Z. W.; Pan, H. J.; Su, P. Y.; Song, Y. J.; Chen, Y. F.; Nafady, A. et al. Enhancing photocatalytic hydrogen production via the construction of robust multivariate Ti-MOF/COF composites. Angew. Chem., Int. Ed. 2022, 61, e202114071.

[24]

Huang, G.; Yang, L.; Yin, Q.; Fang, Z. B.; Hu, X. J.; Zhang, A. A.; Jiang, J.; Liu, T. F.; Cao, R. A comparison of two isoreticular metal-organic frameworks with cationic and neutral skeletons: Stability, mechanism, and catalytic activity. Angew. Chem., Int. Ed. 2020, 59, 4385–4390.

[25]

Liu, J. W.; Chen, C. Y.; Zhang, K.; Zhang, L. Applications of metal-organic framework composites in CO2 capture and conversion. Chin. Chem. Lett. 2021, 32, 649–659.

[26]

Chen, Z. Y.; Li, S. H.; Mo, Q. J.; Zhang, L.; Su, C. Y. Dual-functional photocatalysis boosted by electrostatic assembly of porphyrinic metal-organic framework heterojunction composites with CdS quantum dots. Chin. Chem. Lett. 2023, 34, 108196.

[27]

Dong, J. R.; Wang, Y. F.; Lu, Y. L.; Zhang, L. Ultrathin two-dimensional porphyrinic metal-organic framework nanosheets induced by the axial aryl substituent. Chin. Chem. Lett. 2023, 34, 108052.

[28]

Sun, M. L.; Wang, Y. R.; He, W. W.; Zhong, R. L.; Liu, Q. Z.; Xu, S. Y.; Xu, J. M.; Han, X. L.; Ge, X. Y.; Li, S. L. et al. Efficient electron transfer from electron-sponge polyoxometalate to single-metal site metal-organic frameworks for highly selective electroreduction of carbon dioxide. Small 2021, 17, 2100762.

[29]

Tang, L. M.; Lin, Q. C.; Jiang, Z. X.; Hu, J. Y.; Liu, Z. Q.; Liao, W. M.; Zhou, H. Q.; Chung, L. H.; Xu, Z. T.; Yu, L. et al. Nanoscaling and heterojunction for photocatalytic hydrogen evolution by bimetallic metal-organic frameworks. Adv. Funct. Mater. 2023, 33, 2214450.

[30]

Liang, Z. Z.; Guo, H. B.; Zhou, G. J.; Guo, K.; Wang, B.; Lei, H. T.; Zhang, W.; Zheng, H. Q.; Apfel, U. P.; Cao, R. Metal-organic-framework-supported molecular electrocatalysis for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2021, 60, 8472–8476.

[31]

Zhang, W. J.; Liu, S. S.; Yang, Y.; Qi, H. F.; Xi, S. B.; Wei, Y. P.; Ding, J.; Wang, Z. J.; Li, Q. X.; Liu, B. et al. Exclusive Co-N4 sites confined in two-dimensional metal-organic layers enabling highly selective CO2 electroreduction at industrial-level current. Angew. Chem., Int. Ed. 2023, 62, e202219241.

[32]

Liu, J. W.; Fan, Y. Z.; Zhang, K.; Zhang, L.; Su, C. Y. Engineering porphyrin metal-organic framework composites as multifunctional platforms for CO2 adsorption and activation. J. Am. Chem. Soc. 2020, 142, 14548–14556.

[33]

Wei, R. J.; Xie, M.; Xia, R. Q.; Chen, J.; Hu, H. J.; Ning, G. H.; Li, D. Gold(I)-organic frameworks as catalysts for carboxylation of alkynes with CO2. J. Am. Chem. Soc. 2023, 145, 22720–22727.

[34]

Luo, J.; Luo, X.; Xie, M.; Li, H. Z.; Duan, H. Y.; Zhou, H. G.; Wei, R. J.; Ning, G. H.; Li, D. Selective and rapid extraction of trace amount of gold from complex liquids with silver(I)-organic frameworks. Nat. Commun. 2022, 13, 7771.

[35]

Chen, C. Y.; Mo, Q. J.; Fu, J.; Yang, Q. Y.; Zhang, L.; Su, C. Y. PtCu@Ir-PCN-222: Synergistic catalysis of bimetallic PtCu nanowires in hydrosilane-concentrated interspaces of an iridium(III)-porphyrin-based metal-organic framework. ACS Catal. 2022, 12, 3604–3614.

[36]

Li, L. Y.; Li, Z. X.; Yang, W. J.; Huang, Y. M.; Huang, G.; Guan, Q. Q.; Dong, Y. M.; Lu, J. L.; Yu, S. H.; Jiang, H. L. Integration of Pd nanoparticles with engineered pore walls in MOFs for enhanced catalysis. Chem 2021, 7, 686–698.

[37]

Chen, C. Y.; Mo, Q. J.; Huang, Y. S.; Zhang, L. Selective reduction of CO2 to methanol via hydrosilylation boosted by a porphyrinic metal-organic framework. ACS Catal. 2023, 13, 6837–6845.

[38]

Wang, Y. X.; Cui, H.; Wei, Z. W.; Wang, H. P.; Zhang, L.; Su, C. Y. Engineering catalytic coordination space in a chemically stable Ir-porphyrin MOF with a confinement effect inverting conventional Si-H insertion chemoselectivity. Chem. Sci. 2017, 8, 775–780.

[39]

Li, S.; Mei, H. M.; Yao, S. L.; Chen, Z. Y.; Lu, Y. L.; Zhang, L.; Su, C. Y. Well-distributed Pt-nanoparticles within confined coordination interspaces of self-sensitized porphyrin metal-organic frameworks: Synergistic effect boosting highly efficient photocatalytic hydrogen evolution reaction. Chem. Sci. 2019, 10, 10577–10585.

[40]

Mo, Q. J.; Zhang, L.; Li, S. H.; Song, H. L.; Fan, Y. N.; Su, C. Y. Engineering single-atom sites into pore-confined nanospaces of porphyrinic metal-organic frameworks for the highly efficient photocatalytic hydrogen evolution reaction. J. Am. Chem. Soc. 2022, 144, 22747–22758.

[41]

Li, W. H.; Yang, J. R.; Jing, H. Y.; Zhang, J.; Wang, Y.; Li, J.; Zhao, J.; Wang, D. S.; Li, Y. D. Creating high regioselectivity by electronic metal-support interaction of a single-atomic-site catalyst. J. Am. Chem. Soc. 2021, 143, 15453–15461.

[42]

Li, N.; Si, D. H.; Wu, Q. J.; Wu, Q.; Huang, Y. B.; Cao, R. Boosting electrocatalytic CO2 reduction with conjugated bimetallic Co/Zn polyphthalocyanine frameworks. CCS Chem. 2023, 5, 1130–1143.

[43]

Liu, B. Y.; Chen, X.; Huang, N.; Liu, S. X.; Shen, B. Y.; Wei, F.; Wang, T. F. Interaction between single metal atoms and UiO-66 framework revealed by low-dose imaging. Nano Lett. 2023, 23, 1787–1793.

[44]

Feng, D. W.; Gu, Z. Y.; Li, J. R.; Jiang, H. L.; Wei, Z. W.; Zhou, H. C. Zirconium-metalloporphyrin PCN-222: Mesoporous metal-organic frameworks with ultrahigh stability as biomimetic catalysts. Angew. Chem., Int. Ed. 2012, 51, 10307–10310.

[45]

Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.

[46]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[47]

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

[48]

Tang, W.; Sanville, E.; Henkelman, G. A grid-based Bader analysis algorithm without lattice bias. J. Phys. Condens. Matter. 2009, 21, 084204.

[49]

Wang, V.; Xu, N.; Liu, J. C.; Tang, G.; Geng, W. T. VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 2021, 267, 108033.

[50]
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A. et al. Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford, 2013.
[51]

Dubbeldam, D.; Calero, S.; Ellis, D. E.; Snurr, R. Q. RASPA: Molecular simulation software for adsorption and diffusion in flexible nanoporous materials. Mol. Simul. 2016, 42, 81–101

[52]

Rappé, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard III, W. A.; Skiff, W. M. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 1992, 114, 10024–10035.

[53]

Losey, J.; Sadus, R. J. The Widom line and the Lennard–Jones potential. J. Phys. Chem. B 2019, 123, 8268–8273.

[54]

Chen, L. F.; Cui, H.; Wang, Y. H.; Liang, X.; Zhang, L.; Su, C. Y. Carbene insertion into N–H bonds with size-selectivity induced by a microporous ruthenium-porphyrin metal-organic framework. Dalton Trans. 2018, 47, 3940–3946.

[55]

Liu, J. W.; Fan, Y. Z.; Li, X.; Xu, Y. W.; Zhang, L.; Su, C. Y. Catalytic space engineering of porphyrin metal-organic frameworks for combined CO2 capture and conversion at a low concentration. ChemSusChem 2018, 11, 2340–2347.

[56]

Liu, G.; Cui, H.; Wang, S. J.; Zhang, L.; Su, C. Y. A series of highly stable porphyrinic metal-organic frameworks based on iron-oxo chain clusters: Design, synthesis and biomimetic catalysis. J. Mater. Chem. A 2020, 8, 8376–8382.

[57]

Fang, X. Z.; Shang, Q. C.; Wang, Y.; Jiao, L.; Yao, T.; Li, Y. F.; Zhang, Q.; Luo, Y.; Jiang, H. L. Single Pt atoms confined into a metal-organic framework for efficient photocatalysis. Adv. Mater. 2018, 30, 1705112.

[58]

He, T.; Chen, S. M.; Ni, B.; Gong, Y.; Wu, Z.; Song, L.; Gu, L.; Hu, W. P.; Wang, X. Zirconium-porphyrin-based metal-organic framework hollow nanotubes for immobilization of noble-metal single atoms. Angew. Chem., Int. Ed. 2018, 57, 3493–3498.

[59]

Wu, L. H.; Luo, Y.; Wang, C. F.; Wu, S. L.; Zheng, Y. F.; Li, Z. Y.; Cui, Z. D.; Liang, Y. Q.; Zhu, S. L.; Shen, J. et al. Self-driven electron transfer biomimetic enzymatic catalysis of bismuth-doped PCN-222 MOF for rapid therapy of bacteria-infected wounds. ACS Nano 2023, 17, 1448–1463.

[60]

Smeltz, A. D.; Delgass, W. N.; Ribeiro, F. H. Oxidation of NO with O2 on Pt (111) and Pt (321) large single crystals. Langmuir 2010, 26, 16578–16588.

[61]

Sołoducho, J.; Zając, D.; Spychalska, K.; Baluta, S.; Cabaj, J. Conducting silicone-based polymers and their application. Molecules 2021, 26, 2012.

[62]

Dhiman, M.; Chalke, B.; Polshettiwar, V. Organosilane oxidation with a half million turnover number using fibrous nanosilica supported ultrasmall nanoparticles and pseudo-single atoms of gold. J. Mater. Chem. A 2017, 5, 1935–1940.

[63]

Grunthaner, P. J.; Grunthaner, F, J.; Madhukar, A. An XPS study of silicon/noble metal interfaces: Bonding trends and correlations with the Schottky barrier heights. Physica B+C 1983, 117–118, 831–833

[64]

Liu, J. L.; Uhlman, M. B.; Montemore, M. M.; Trimpalis, A.; Giannakakis, G.; Shan, J. J.; Cao, S. F.; Hannagan, R. T.; Sykes, E. C. H.; Flytzani-Stephanopoulos, M. Integrated catalysis-surface science-theory approach to understand selectivity in the hydrogenation of 1-hexyne to 1-hexene on PdAu single-atom alloy catalysts. ACS Catal. 2019, 9, 8757–8765.

[65]

He, C. H.; Wang, Y.; Chen, Y.; Wang, X. Q.; Yang, J. F.; Li, L. B.; Li, J. P. Microregulation of pore channels in covalent-organic frameworks used for the selective and efficient separation of ethane. ACS Appl. Mater. Interfaces 2020, 12, 52819–52825.

[66]

Boyd, P. D. W.; Hodgson, M. C.; Rickard, C. E. F.; Oliver, A. G.; Chaker, L.; Brothers, P. J.; Bolskar, R. D.; Tham, F. S.; Reed, C. A. Selective supramolecular porphyrin/fullerene interactions. J. Am. Chem. Soc. 1999, 121, 10487–10495.

[67]

Harrod, J. F.; Chalk, A. J. Homogeneous catalysis. I. Double bond migration in n-olefins, catalyzed by group VIII metal complexes. J. Am. Chem. Soc. 1964, 86, 1776–1779.

[68]

Chalk, A. J.; Harrod, J. F. Homogeneous catalysis. II. The mechanism of the hydrosilation of olefins catalyzed by group VIII metal complexes. J. Am. Chem. Soc. 1965, 87, 16–21.

[69]

Miao, X.; Chen, W. X.; Lv, S. N.; Li, A. R.; Li, Y. H.; Zhang, Q. H.; Yue, Y. H.; Zhao, H. W.; Liu, L. M.; Guo, S. J. et al. Stabilizing single-atomic Pt by forming Pt–Fe bonds for efficient diboration of alkynes. Adv. Mater. 2023, 35, 2211790.

File
6580_ESM.pdf (5.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 12 December 2023
Revised: 31 January 2024
Accepted: 16 February 2024
Published: 11 April 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

The authors acknowledge the support from the National Natural Science Foundation of China (Nos. 22371306 and 21821003) and Guangdong Basic and Applied Basic Research Foundation (No. 2019B151502017). We appreciate the support of TH-2 of National supercomputer center in Guangzhou.

Return