Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Alkene hydrosilylation is one of the most concise and atom-economical methods to synthesize organosilicon molecules. Herein, we reported the precise immobilization of metal single atoms (M-SAs; M = Ru, Rh, Ir, Pd, Pt, and Au) into a porphyrinic metal-organic framework (MOF) of PCN-222 (PCN = porous coordination network), and then applied the resultant MOF composites of M-SAs@PCN-222 to alkene hydrosilylation. Under solvent-free conditions, Pt-SAs@PCN-222 displayed an especially high catalytic efficiency with the turnover frequency up to 119 s−1 and the maximum turnover number of 906,250 at room temperature. Experimental and theoretical studies revealed that there existed strong interactions between Pt-SAs@PCN-222 and the substrates, which helped to condense the substrates in the cavities of the porous catalysts. Further density functional theory calculations and molecular dynamics simulations disclosed that PCN-222 could transfer electrons to Pt-SAs to enhance the silane oxidative addition and drive the reaction to proceed smoothly via Chalk–Harrod pathway.
Markó, I. E.; Stérin, S.; Buisine, O.; Mignani, G.; Branlard, P.; Tinant, B.; Declercq, J. P. Selective and efficient platinum(0)-carbene complexes as hydrosilylation catalysts. Science 2002, 298, 204–206.
Tondreau, A. M.; Atienza, C. C. H.; Weller, K. J.; Nye, S. A.; Lewis, K. M.; Delis, J. G. P.; Chirik, P. J. Iron catalysts for selective anti-markovnikov alkene hydrosilylation using tertiary silanes. Science 2012, 335, 567–570.
Obligacion, J. V.; Chirik, P. J. Earth-abundant transition metal catalysts for alkene hydrosilylation and hydroboration. Nat. Rev. Chem. 2018, 2, 15–34.
de Almeida, L. D.; Wang, H. L.; Junge, K.; Cui, X. J.; Beller, M. Recent advances in catalytic hydrosilylations: Developments beyond traditional platinum catalysts. Angew. Chem., Int. Ed. 2021, 60, 550–565.
Speier, J. L.; Webster, J. A.; Barnes, G. H. The addition of silicon hydrides to olefinic double bonds. Part II. The use of group VIII metal catalysts. J. Am. Chem. Soc. 1957, 79, 974–979.
Hitchcock, P. B.; Lappert, M. F.; Warhurst, N, J. W. Synthesis and Structure of a rac-tris(divinyldisiloxane) diplatinum(0) complex and its reaction with maleic anhydride. Angew. Chem., Int. Ed. 1991, 30, 438–440.
Stein, J.; Lewis, L. N.; Gao, Y.; Scott, R. A. In situ determination of the active catalyst in hydrosilylation reactions using highly reactive Pt(0) catalyst precursors. J. Am. Chem. Soc. 1999, 121, 3693–3703.
Zhao, E.; Li, M. M.; Xu, B. B.; Wang, X. L.; Jing, Y.; Ma, D.; Mitchell, S.; Pérez-Ramírez, J.; Chen, Z. P. Transfer hydrogenation with a carbon-nitride-supported palladium single-atom photocatalyst and water as a proton source. Angew. Chem., Int. Ed. 2022, 61, e2022074.
Li, Q. H.; Li, Z.; Zhang, Q. H.; Zheng, L. R.; Yan, W. S.; Liang, X.; Gu, L.; Chen, C.; Wang, D. S.; Peng, Q. et al. Porous γ-Fe2O3 nanoparticle decorated with atomically dispersed platinum: Study on atomic site structural change and gas sensor activity evolution. Nano Res. 2021, 14, 1435–1442.
Wang, A. Q.; Li, J.; Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2018, 2, 65–81.
Lang, R.; Du, X. R.; Huang, Y. K.; Jiang, X. Z.; Zhang, Q.; Guo, Y. L.; Liu, K. P.; Qiao, B. T.; Wang, A. Q.; Zhang, T. Single-atom catalysts based on the metal-oxide interaction. Chem. Rev. 2020, 120, 11986–12043.
Xu, Q.; Cheng, X. W.; Zhang, N. Q.; Tu, Y.; Wu, L. H.; Pan, H. B.; Hu, J.; Ding, H. H.; Zhu, J. F.; Li, Y. D. Unraveling the advantages of Pd/CeO2 single-atom catalysts in the NO + CO reaction by model catalysts. Nano Res. 2023, 16, 8882–8892.
Tian, Y. H.; Li, M.; Wu, Z. Z.; Sun, Q.; Yuan, D.; Johannessen, B.; Xu, L.; Wang, Y.; Dou, Y. H.; Zhao, H. J. et al. Edge-hosted atomic Co-N4 sites on hierarchical porous carbon for highly selective two-electron oxygen reduction reaction. Angew. Chem., Int. Ed. 2022, 61, e202213296.
Feng, C.; Zhang, Z. R.; Wang, D. D.; Kong, Y.; Wei, J.; Wang, R. Y.; Ma, P. Y.; Li, H. L.; Geng, Z. G.; Zuo, M. et al. Tuning the electronic and steric interaction at the atomic interface for enhanced oxygen evolution. J. Am. Chem. Soc. 2022, 144, 9271–9279.
Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842–1855.
Zhang, Z. R.; Feng, C.; Wang, D. D.; Zhou, S. M.; Wang, R. Y.; Hu, S. P.; Li, H. L.; Zuo, M.; Kong, Y.; Bao, J. et al. Selectively anchoring single atoms on specific sites of supports for improved oxygen evolution. Nat. Commun. 2022, 13, 2473.
Fan, Q. K.; Gao, P. F.; Ren, S.; Qu, Y. T.; Kong, C. C.; Yang, J.; Wu, Y. E. Total conversion of centimeter-scale nickel foam into single atom electrocatalysts with highly selective CO2 electrocatalytic reduction in neutral electrolyte. Nano Res. 2023, 16, 2003–2010.
Endo, K.; Saruyama, M.; Teranishi, T. Location-selective immobilisation of single-atom catalysts on the surface or within the interior of ionic nanocrystals using coordination chemistry. Nat. Commun. 2023, 14, 4241.
Verma, G.; Kumar, S.; Vardhan, H.; Ren, J. Y.; Niu, Z.; Pham, T.; Wojtas, L.; Butikofer, S.; Garcia, J. C. E.; Chen, Y. S. et al. A robust soc-MOF platform exhibiting high gravimetric uptake and volumetric deliverable capacity for on-board methane storage. Nano Res. 2021, 14, 512–517.
Li, L.; Fang, Z. B.; Deng, W. Z.; Yi, J. D.; Wang, R.; Liu, T. F. Precise construction of stable bimetallic metal-organic frameworks with single-site Ti(IV) incorporation in nodes for efficient photocatalytic oxygen evolution. CCS Chem. 2022, 4, 2782–2792.
Liu, J. W.; Chen, L. F.; Cui, H.; Zhang, J. Y.; Zhang, L.; Su, C. Y. Applications of metal-organic frameworks in heterogeneous supramolecular catalysis. Chem. Soc. Rev. 2014, 43, 6011–6061.
Shi, Y. S.; Wang, P. Y.; Li, M. C.; Zhang, T. X.; Han, G.; Duan, C. Y. A diode-like dye-Cu anisotropic junction in a coordination polymer as a logic state ratchet for intratumor redox photomodulation. Angew. Chem., Int. Ed. 2023, 62, e202219172.
Chen, C. X.; Xiong, Y. Y.; Zhong, X.; Lan, P. C.; Wei, Z. W.; Pan, H. J.; Su, P. Y.; Song, Y. J.; Chen, Y. F.; Nafady, A. et al. Enhancing photocatalytic hydrogen production via the construction of robust multivariate Ti-MOF/COF composites. Angew. Chem., Int. Ed. 2022, 61, e202114071.
Huang, G.; Yang, L.; Yin, Q.; Fang, Z. B.; Hu, X. J.; Zhang, A. A.; Jiang, J.; Liu, T. F.; Cao, R. A comparison of two isoreticular metal-organic frameworks with cationic and neutral skeletons: Stability, mechanism, and catalytic activity. Angew. Chem., Int. Ed. 2020, 59, 4385–4390.
Liu, J. W.; Chen, C. Y.; Zhang, K.; Zhang, L. Applications of metal-organic framework composites in CO2 capture and conversion. Chin. Chem. Lett. 2021, 32, 649–659.
Chen, Z. Y.; Li, S. H.; Mo, Q. J.; Zhang, L.; Su, C. Y. Dual-functional photocatalysis boosted by electrostatic assembly of porphyrinic metal-organic framework heterojunction composites with CdS quantum dots. Chin. Chem. Lett. 2023, 34, 108196.
Dong, J. R.; Wang, Y. F.; Lu, Y. L.; Zhang, L. Ultrathin two-dimensional porphyrinic metal-organic framework nanosheets induced by the axial aryl substituent. Chin. Chem. Lett. 2023, 34, 108052.
Sun, M. L.; Wang, Y. R.; He, W. W.; Zhong, R. L.; Liu, Q. Z.; Xu, S. Y.; Xu, J. M.; Han, X. L.; Ge, X. Y.; Li, S. L. et al. Efficient electron transfer from electron-sponge polyoxometalate to single-metal site metal-organic frameworks for highly selective electroreduction of carbon dioxide. Small 2021, 17, 2100762.
Tang, L. M.; Lin, Q. C.; Jiang, Z. X.; Hu, J. Y.; Liu, Z. Q.; Liao, W. M.; Zhou, H. Q.; Chung, L. H.; Xu, Z. T.; Yu, L. et al. Nanoscaling and heterojunction for photocatalytic hydrogen evolution by bimetallic metal-organic frameworks. Adv. Funct. Mater. 2023, 33, 2214450.
Liang, Z. Z.; Guo, H. B.; Zhou, G. J.; Guo, K.; Wang, B.; Lei, H. T.; Zhang, W.; Zheng, H. Q.; Apfel, U. P.; Cao, R. Metal-organic-framework-supported molecular electrocatalysis for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2021, 60, 8472–8476.
Zhang, W. J.; Liu, S. S.; Yang, Y.; Qi, H. F.; Xi, S. B.; Wei, Y. P.; Ding, J.; Wang, Z. J.; Li, Q. X.; Liu, B. et al. Exclusive Co-N4 sites confined in two-dimensional metal-organic layers enabling highly selective CO2 electroreduction at industrial-level current. Angew. Chem., Int. Ed. 2023, 62, e202219241.
Liu, J. W.; Fan, Y. Z.; Zhang, K.; Zhang, L.; Su, C. Y. Engineering porphyrin metal-organic framework composites as multifunctional platforms for CO2 adsorption and activation. J. Am. Chem. Soc. 2020, 142, 14548–14556.
Wei, R. J.; Xie, M.; Xia, R. Q.; Chen, J.; Hu, H. J.; Ning, G. H.; Li, D. Gold(I)-organic frameworks as catalysts for carboxylation of alkynes with CO2. J. Am. Chem. Soc. 2023, 145, 22720–22727.
Luo, J.; Luo, X.; Xie, M.; Li, H. Z.; Duan, H. Y.; Zhou, H. G.; Wei, R. J.; Ning, G. H.; Li, D. Selective and rapid extraction of trace amount of gold from complex liquids with silver(I)-organic frameworks. Nat. Commun. 2022, 13, 7771.
Chen, C. Y.; Mo, Q. J.; Fu, J.; Yang, Q. Y.; Zhang, L.; Su, C. Y. PtCu@Ir-PCN-222: Synergistic catalysis of bimetallic PtCu nanowires in hydrosilane-concentrated interspaces of an iridium(III)-porphyrin-based metal-organic framework. ACS Catal. 2022, 12, 3604–3614.
Li, L. Y.; Li, Z. X.; Yang, W. J.; Huang, Y. M.; Huang, G.; Guan, Q. Q.; Dong, Y. M.; Lu, J. L.; Yu, S. H.; Jiang, H. L. Integration of Pd nanoparticles with engineered pore walls in MOFs for enhanced catalysis. Chem 2021, 7, 686–698.
Chen, C. Y.; Mo, Q. J.; Huang, Y. S.; Zhang, L. Selective reduction of CO2 to methanol via hydrosilylation boosted by a porphyrinic metal-organic framework. ACS Catal. 2023, 13, 6837–6845.
Wang, Y. X.; Cui, H.; Wei, Z. W.; Wang, H. P.; Zhang, L.; Su, C. Y. Engineering catalytic coordination space in a chemically stable Ir-porphyrin MOF with a confinement effect inverting conventional Si-H insertion chemoselectivity. Chem. Sci. 2017, 8, 775–780.
Li, S.; Mei, H. M.; Yao, S. L.; Chen, Z. Y.; Lu, Y. L.; Zhang, L.; Su, C. Y. Well-distributed Pt-nanoparticles within confined coordination interspaces of self-sensitized porphyrin metal-organic frameworks: Synergistic effect boosting highly efficient photocatalytic hydrogen evolution reaction. Chem. Sci. 2019, 10, 10577–10585.
Mo, Q. J.; Zhang, L.; Li, S. H.; Song, H. L.; Fan, Y. N.; Su, C. Y. Engineering single-atom sites into pore-confined nanospaces of porphyrinic metal-organic frameworks for the highly efficient photocatalytic hydrogen evolution reaction. J. Am. Chem. Soc. 2022, 144, 22747–22758.
Li, W. H.; Yang, J. R.; Jing, H. Y.; Zhang, J.; Wang, Y.; Li, J.; Zhao, J.; Wang, D. S.; Li, Y. D. Creating high regioselectivity by electronic metal-support interaction of a single-atomic-site catalyst. J. Am. Chem. Soc. 2021, 143, 15453–15461.
Li, N.; Si, D. H.; Wu, Q. J.; Wu, Q.; Huang, Y. B.; Cao, R. Boosting electrocatalytic CO2 reduction with conjugated bimetallic Co/Zn polyphthalocyanine frameworks. CCS Chem. 2023, 5, 1130–1143.
Liu, B. Y.; Chen, X.; Huang, N.; Liu, S. X.; Shen, B. Y.; Wei, F.; Wang, T. F. Interaction between single metal atoms and UiO-66 framework revealed by low-dose imaging. Nano Lett. 2023, 23, 1787–1793.
Feng, D. W.; Gu, Z. Y.; Li, J. R.; Jiang, H. L.; Wei, Z. W.; Zhou, H. C. Zirconium-metalloporphyrin PCN-222: Mesoporous metal-organic frameworks with ultrahigh stability as biomimetic catalysts. Angew. Chem., Int. Ed. 2012, 51, 10307–10310.
Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868.
Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.
Tang, W.; Sanville, E.; Henkelman, G. A grid-based Bader analysis algorithm without lattice bias. J. Phys. Condens. Matter. 2009, 21, 084204.
Wang, V.; Xu, N.; Liu, J. C.; Tang, G.; Geng, W. T. VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 2021, 267, 108033.
Dubbeldam, D.; Calero, S.; Ellis, D. E.; Snurr, R. Q. RASPA: Molecular simulation software for adsorption and diffusion in flexible nanoporous materials. Mol. Simul. 2016, 42, 81–101
Rappé, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard III, W. A.; Skiff, W. M. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 1992, 114, 10024–10035.
Losey, J.; Sadus, R. J. The Widom line and the Lennard–Jones potential. J. Phys. Chem. B 2019, 123, 8268–8273.
Chen, L. F.; Cui, H.; Wang, Y. H.; Liang, X.; Zhang, L.; Su, C. Y. Carbene insertion into N–H bonds with size-selectivity induced by a microporous ruthenium-porphyrin metal-organic framework. Dalton Trans. 2018, 47, 3940–3946.
Liu, J. W.; Fan, Y. Z.; Li, X.; Xu, Y. W.; Zhang, L.; Su, C. Y. Catalytic space engineering of porphyrin metal-organic frameworks for combined CO2 capture and conversion at a low concentration. ChemSusChem 2018, 11, 2340–2347.
Liu, G.; Cui, H.; Wang, S. J.; Zhang, L.; Su, C. Y. A series of highly stable porphyrinic metal-organic frameworks based on iron-oxo chain clusters: Design, synthesis and biomimetic catalysis. J. Mater. Chem. A 2020, 8, 8376–8382.
Fang, X. Z.; Shang, Q. C.; Wang, Y.; Jiao, L.; Yao, T.; Li, Y. F.; Zhang, Q.; Luo, Y.; Jiang, H. L. Single Pt atoms confined into a metal-organic framework for efficient photocatalysis. Adv. Mater. 2018, 30, 1705112.
He, T.; Chen, S. M.; Ni, B.; Gong, Y.; Wu, Z.; Song, L.; Gu, L.; Hu, W. P.; Wang, X. Zirconium-porphyrin-based metal-organic framework hollow nanotubes for immobilization of noble-metal single atoms. Angew. Chem., Int. Ed. 2018, 57, 3493–3498.
Wu, L. H.; Luo, Y.; Wang, C. F.; Wu, S. L.; Zheng, Y. F.; Li, Z. Y.; Cui, Z. D.; Liang, Y. Q.; Zhu, S. L.; Shen, J. et al. Self-driven electron transfer biomimetic enzymatic catalysis of bismuth-doped PCN-222 MOF for rapid therapy of bacteria-infected wounds. ACS Nano 2023, 17, 1448–1463.
Smeltz, A. D.; Delgass, W. N.; Ribeiro, F. H. Oxidation of NO with O2 on Pt (111) and Pt (321) large single crystals. Langmuir 2010, 26, 16578–16588.
Sołoducho, J.; Zając, D.; Spychalska, K.; Baluta, S.; Cabaj, J. Conducting silicone-based polymers and their application. Molecules 2021, 26, 2012.
Dhiman, M.; Chalke, B.; Polshettiwar, V. Organosilane oxidation with a half million turnover number using fibrous nanosilica supported ultrasmall nanoparticles and pseudo-single atoms of gold. J. Mater. Chem. A 2017, 5, 1935–1940.
Grunthaner, P. J.; Grunthaner, F, J.; Madhukar, A. An XPS study of silicon/noble metal interfaces: Bonding trends and correlations with the Schottky barrier heights. Physica B+C 1983, 117–118, 831–833
Liu, J. L.; Uhlman, M. B.; Montemore, M. M.; Trimpalis, A.; Giannakakis, G.; Shan, J. J.; Cao, S. F.; Hannagan, R. T.; Sykes, E. C. H.; Flytzani-Stephanopoulos, M. Integrated catalysis-surface science-theory approach to understand selectivity in the hydrogenation of 1-hexyne to 1-hexene on PdAu single-atom alloy catalysts. ACS Catal. 2019, 9, 8757–8765.
He, C. H.; Wang, Y.; Chen, Y.; Wang, X. Q.; Yang, J. F.; Li, L. B.; Li, J. P. Microregulation of pore channels in covalent-organic frameworks used for the selective and efficient separation of ethane. ACS Appl. Mater. Interfaces 2020, 12, 52819–52825.
Boyd, P. D. W.; Hodgson, M. C.; Rickard, C. E. F.; Oliver, A. G.; Chaker, L.; Brothers, P. J.; Bolskar, R. D.; Tham, F. S.; Reed, C. A. Selective supramolecular porphyrin/fullerene interactions. J. Am. Chem. Soc. 1999, 121, 10487–10495.
Harrod, J. F.; Chalk, A. J. Homogeneous catalysis. I. Double bond migration in n-olefins, catalyzed by group VIII metal complexes. J. Am. Chem. Soc. 1964, 86, 1776–1779.
Chalk, A. J.; Harrod, J. F. Homogeneous catalysis. II. The mechanism of the hydrosilation of olefins catalyzed by group VIII metal complexes. J. Am. Chem. Soc. 1965, 87, 16–21.
Miao, X.; Chen, W. X.; Lv, S. N.; Li, A. R.; Li, Y. H.; Zhang, Q. H.; Yue, Y. H.; Zhao, H. W.; Liu, L. M.; Guo, S. J. et al. Stabilizing single-atomic Pt by forming Pt–Fe bonds for efficient diboration of alkynes. Adv. Mater. 2023, 35, 2211790.