Journal Home > Online First

Advancing supercapacitor system performance hinges on the innovation of novel electrode materials seamlessly integrated within distinct architectures. Herein, we introduce a direct approach for crafting nanorod arrays featuring crystalline/amorphous CuO/MnO2−x. This reconfigured heterostructure results in an elevated content of electrochemically active MnO2. The nanorod arrays serve as efficient capacitive anodes and are easily prepared via low-potential electrochemical activation. The resulting structure spontaneously forms a p–n heterojunction, developing a built-in electric field that dramatically facilitates the charge transport process. The intrinsic electric field, in conjunction with the crystalline/amorphous architecture, enables a large capacitance of 1.0 F·cm−2 at 1.0 mA·cm−2, an ultrahigh rate capability of approximately 85.4% at 15 mA·cm−2, and stable cycling performance with 92.4% retention after 10,000 cycles. Theoretical calculations reveal that the presence of heterojunctions allows for the optimization of the electronic structure of this composite, leading to improved conductivity and optimized OH adsorption energy. This work provides new insights into the rational design of heterogeneous nanostructures, which hold great potential in energy storage applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Unlocking supercapacitive energy storage potential: Catalyzing electrochemically inactive manganese oxides to active MnO2 via heterostructure reconstruction

Show Author's information Baohong Zhang1,§Tao Jiang4,§Xinyan Zhou1Xiaoyu Fan3( )Binbin Jia2( )Lidong Li1( )
School of Chemistry, Beihang University, Beijing 100191, China
College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, ChinaThree Gorges University, Yichang 443002, China
Chinese Academy of Sciences (CAS) Key Laboratory of Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
Shanghai GTX Semiconductor Co., Ltd., Shanghai 201806, China

§ Baohong Zhang and Tao Jiang contributed equally to this work.

Abstract

Advancing supercapacitor system performance hinges on the innovation of novel electrode materials seamlessly integrated within distinct architectures. Herein, we introduce a direct approach for crafting nanorod arrays featuring crystalline/amorphous CuO/MnO2−x. This reconfigured heterostructure results in an elevated content of electrochemically active MnO2. The nanorod arrays serve as efficient capacitive anodes and are easily prepared via low-potential electrochemical activation. The resulting structure spontaneously forms a p–n heterojunction, developing a built-in electric field that dramatically facilitates the charge transport process. The intrinsic electric field, in conjunction with the crystalline/amorphous architecture, enables a large capacitance of 1.0 F·cm−2 at 1.0 mA·cm−2, an ultrahigh rate capability of approximately 85.4% at 15 mA·cm−2, and stable cycling performance with 92.4% retention after 10,000 cycles. Theoretical calculations reveal that the presence of heterojunctions allows for the optimization of the electronic structure of this composite, leading to improved conductivity and optimized OH adsorption energy. This work provides new insights into the rational design of heterogeneous nanostructures, which hold great potential in energy storage applications.

Keywords: reconfiguration, supercapacitor, p–n heterojunction, active MnO2, crystalline/amorphous structure

References(61)

[1]

Chen, C. R.; Feng, J. Y.; Li, J. X.; Guo, Y.; Shi, X.; Peng, H. S. Functional fiber materials to smart fiber devices. Chem. Rev. 2023, 123, 613–662.

[2]

Yang, N. J.; Yu, S. Y.; Zhang, W. J.; Cheng, H. M.; Simon, P.; Jiang, X. Electrochemical capacitors with confined redox electrolytes and porous electrodes. Adv. Mater. 2022, 34, 2202380.

[3]

Han, F. M.; Qian, O.; Meng, G. W.; Lin, D.; Chen, G.; Zhang, S. P.; Pan, Q. J.; Zhang, X.; Zhu, X. G.; Wei, B. Q. Structurally integrated 3D carbon tube grid-based high-performance filter capacitor. Science 2022, 377, 1004–1007.

[4]

Russell, J. C.; Posey, V. A.; Gray, J.; May, R.; Reed, D. A.; Zhang, H.; Marbella, L. E.; Steigerwald, M. L.; Yang, Y.; Roy, X. et al. High-performance organic pseudocapacitors via molecular contortion. Nat. Mater. 2021, 20, 1136–1141.

[5]

Quek, G.; Roehrich, B.; Su, Y. D.; Sepunaru, L.; Bazan, G. C. Conjugated Polyelectrolytes: Underexplored materials for pseudocapacitive energy storage. Adv. Mater. 2022, 34, 2104206.

[6]

Gao, P.; Metz, P.; Hey, T.; Gong, Y. X.; Liu, D. W.; Edwards, D. D.; Howe, J. Y.; Huang, R.; Misture, S. T. The critical role of point defects in improving the specific capacitance of δ-MnO2 nanosheets. Nat. Commun. 2017, 8, 14559.

[7]

Yan, L. J.; Zhu, C.; Hao, J. Y.; Liang, X. Y.; Bai, Y. C.; Hu, Q.; Tan, B. C.; Liu, B. B.; Zou, X. F.; Xiang, B. A universal voltage design for triggering manganese dioxide defects construction to significantly boost the pseudocapacitance. Adv. Funct. Mater. 2021, 31, 2102693.

[8]

Ma, X. P.; Cheng, J. Y.; Dong, L. B.; Liu, W. B.; Mou, J.; Zhao, L.; Wang, J. J.; Ren, D. Y.; Wu, J. L.; Xu, C. J. et al. Multivalent ion storage towards high-performance aqueous zinc-ion hybrid supercapacitors. Energy Storage Mater. 2019, 20, 335–342.

[9]

Zhu, S. J.; Li, L.; Liu, J. B.; Wang, H. T.; Wang, T.; Zhang, Y. X.; Zhang, L. L.; Ruoff, R. S.; Dong, F. Structural directed growth of ultrathin parallel birnessite on β-MnO2 for high-performance asymmetric supercapacitors. ACS Nano 2018, 12, 1033–1042.

[10]

Xu, W. T.; Liu, L. M.; Weng, W. High-performance supercapacitor based on MnO/carbon nanofiber composite in extended potential windows. Electrochim. Acta 2021, 370, 137713.

[11]

Komaba, S.; Tsuchikawa, T.; Ogata, A.; Yabuuchi, N.; Nakagawa, D.; Tomita, M. Nano-structured birnessite prepared by electrochemical activation of manganese(III)-based oxides for aqueous supercapacitors. Electrochim. Acta 2012, 59, 455–463.

[12]

Lian, S. T.; Sun, C. L.; Xu, W. N.; Huo, W. C.; Luo, Y. Z.; Zhao, K. N.; Yao, G. A.; Xu, W. W.; Zhang, Y. X.; Li, Z. et al. Built-in oriented electric field facilitating durable Zn-MnO2 battery. Nano Energy 2019, 62, 79–84.

[13]

Jia, B. B.; Chen, W. X.; Luo, J.; Yang, Z.; Li, L. D.; Guo, L. Construction of MnO2 artificial leaf with atomic thickness as highly stable battery anodes. Adv. Mater. 2020, 32, 1906582.

[14]

Sun, T. J.; Nian, Q. S.; Zheng, S. B.; Shi, J. Q.; Tao, Z. L. Layered Ca0.28MnO2·0.5H2O as a high performance cathode for aqueous zinc-ion battery. Small 2020, 16, 2000597.

[15]

Chen, S. L.; Liu, F.; Xiang, Q. J.; Feng, X. H.; Qiu, G. H. Synthesis of Mn2O3 microstructures and their energy storage ability studies. Electrochim. Acta 2013, 106, 360–371.

[16]

Ma, Z. P.; Jing, F. Y.; Fan, Y. Q.; Hou, L. Y.; Su, L.; Fan, L. K.; Shao, G. J. High-stability MnO x Nanowires@C@MnO x nanosheet core–shell heterostructure pseudocapacitance electrode based on reversible phase transition mechanism. Small 2019, 15, 1900862.

[17]

Xia, T.; Zhang, W.; Murowchick, J. B.; Liu, G.; Chen, X. B. A facile method to improve the photocatalytic and lithium-ion rechargeable battery performance of TiO2 nanocrystals. Adv. Energy Mater. 2013, 3, 1516–1523.

[18]

Ni, J. F.; Sun, M. L.; Li, L. Highly efficient sodium storage in iron oxide nanotube arrays enabled by built-in electric field. Adv. Mater. 2019, 31, 1902603.

[19]

Yang, C. H.; Liang, X. H.; Ou, X.; Zhang, Q. B.; Zheng, H. S.; Zheng, F. H.; Wang, J. H.; Huang, K.; Liu, M. L. Heterostructured nanocube-shaped binary sulfide (SnCo)S2 interlaced with S-doped graphene as a high-performance anode for advanced Na+ batteries. Adv. Funct. Mater. 2019, 29, 1807971.

[20]

Zheng, Y.; Zhou, T. F.; Zhao, X. D.; Pang, W. K.; Gao, H.; Li, S. A.; Zhou, Z.; Liu, H. K.; Guo, Z. P. Atomic Interface engineering and electric-field effect in ultrathin Bi2MoO6 nanosheets for superior lithium ion storage. Adv. Mater. 2017, 29, 1700396.

[21]

Jia, B. B.; Li, L. D.; Xue, C.; Kang, J. X.; Liu, L. M.; Guo, T. Q.; Wang, Z. C.; Huang, Q. Z.; Guo, S. J. Restraining interfacial Cu2+ by using amorphous SnO2 as sacrificial protection boosts CO2 electroreduction. Adv. Mater. 2023, 35, 2305587.

[22]

Wang, Z. H.; Song, Y.; Wang, J.; Lin, Y. L.; Meng, J. M.; Cui, W. B.; Liu, X. X. Vanadium oxides with amorphous-crystalline heterointerface network for aqueous zinc-ion batteries. Angew. Chem., Int. Ed. 2023, 62, e202216290.

[23]

Kim, J. S.; Park, I.; Jeong, E. S.; Jin, K.; Seong, W. M.; Yoon, G.; Kim, H.; Kim, B.; Nam, K. T.; Kang, K. Amorphous cobalt phyllosilicate with layered crystalline motifs as water oxidation catalyst. Adv. Mater. 2017, 29, 1606893.

[24]

Yang, M. Y.; Zhao, M. X.; Yuan, J.; Luo, J. X.; Zhang, J. J.; Lu, Z. G.; Chen, D. Z.; Fu, X. Z.; Wang, L.; Liu, C. Oxygen vacancies and interface engineering on amorphous/crystalline CrO x -Ni3N heterostructures toward high-durability and kinetically accelerated water splitting. Small 2022, 18, 2106554.

[25]

Zhang, B. H.; Jia, B. B.; Yan, C.; Li, Y. H.; Wei, S. Q.; Wang, K.; Zhang, Y. G.; Song, Y. X.; Wang, G. M.; Li, L. D. et al. Breaking the structural anisotropy of ZnO enables dendrite-free lithium-metal anode with ultra-long cycling lifespan. Cell Rep. Phys. Sci. 2022, 3, 101164.

[26]

Chen, Q.; Jin, J. L.; Kou, Z. K.; Jiang, J. M.; Fu, Y. L.; Liu, Z. A.; Zhou, L.; Mai, L. Q. Cobalt-doping in hierarchical Ni3S2 nanorod arrays enables high areal capacitance. J. Mater. Chem. A 2020, 8, 13114–13120.

[27]

Peng, K.; Zhang, W. Q.; Bhuvanendran, N.; Ma, Q.; Xu, Q.; Xing, L.; Khotseng, L.; Su, H. N. Pt-based (Zn, Cu) nanodendrites with enhanced catalytic efficiency and durability toward methanol electro-oxidation via trace Ir-doping engineering. J. Colloid Interface Sci. 2021, 598, 126–135.

[28]

Cai, Z.; Li, L. D.; Zhang, Y. W.; Yang, Z.; Yang, J.; Guo, Y. J.; Guo, L. Amorphous Nanocages of Cu-Ni-Fe hydr(oxy)oxide prepared by photocorrosion for highly efficient oxygen evolution. Angew. Chem., Int. Ed. 2019, 58, 4189–4194.

[29]

Guo, W.; Yu, C.; Li, S. F.; Song, X. D.; Huang, H. W.; Han, X. T.; Wang, Z.; Liu, Z. B.; Yu, J. H.; Tan, X. Y. et al. A universal converse voltage process for triggering transition metal hybrids in situ phase restruction toward ultrahigh-rate supercapacitors. Adv. Mater. 2019, 31, 1901241.

[30]

Ouyang, Q.; Cheng, S. C.; Yang, C. H.; Lei, Z. T. Vertically grown p–n heterojunction FeCoNi LDH/CuO arrays with modulated interfacial charges to facilitate the electrocatalytic oxygen evolution reaction. J. Mater. Chem. A 2022, 10, 11938–11947.

[31]

Anantharaj, S.; Sugime, H.; Chen, B. Z.; Akagi, N.; Noda, S. Boosting the oxygen evolution activity of copper foam containing trace Ni by intentionally supplementing Fe and forming nanowires in anodization. Electrochim. Acta 2020, 364, 137170.

[32]

Wei, F. J.; Liu, L. F.; Wang, C.; Wu, X.; Du, Y. L. Cu(Mn)MgAl mixed oxides with enhanced performance for simultaneous removal of NO x and toluene: Insight into the better collaboration of CuO and MnO x via layered double hydroxides (LDHs) precursor template. Chem. Eng. J. 2023, 462, 142150.

[33]

Deng, T.; Zhang, W.; Arcelus, O.; Kim, J. G.; Carrasco, J.; Yoo, S. J.; Zheng, W. T.; Wang, J. F.; Tian, H. W.; Zhang, H. B. et al. Atomic-level energy storage mechanism of cobalt hydroxide electrode for pseudocapacitors. Nat. Commun. 2017, 8, 15194.

[34]

Li, Q.; Meng, M.; Xian, H.; Tsubaki, N.; Li, X. G.; Xie, Y. N.; Hu, T. D.; Zhang, J. Hydrotalcite-derived Mn x Mg3− x AlO catalysts used for soot combustion, NO x storage and simultaneous soot-NO x removal. Environ. Sci. Technol. 2010, 44, 4747–4752.

[35]

Yang, S. H.; Liu, Y. Y.; Hao, Y. F.; Yang, X. P.; Goddard III, W. A.; Zhang, X. L.; Cao, B. Q. Oxygen-vacancy abundant ultrafine Co3O4/graphene composites for high-rate supercapacitor electrodes. Adv. Sci. 2018, 5, 1700659.

[36]

Kim, H. S.; Cook, J. B.; Lin, H.; Ko, J. S.; Tolbert, S. H.; Ozolins, V.; Dunn, B. Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3− x . Nat. Mater. 2017, 16, 454–460.

[37]

Zhai, T.; Sun, S.; Liu, X. J.; Liang, C. L.; Wang, G. M.; Xia, H. Achieving insertion-like capacity at ultrahigh rate via tunable surface pseudocapacitance. Adv. Mater. 2018, 30, 1706640.

[38]

Zhang, Y.; Hu, Y. X.; Wang, Z. L.; Lin, T. E.; Zhu, X. B.; Luo, B.; Hu, H.; Xing, W.; Yan, Z. F.; Wang, L. Z. Lithiation-induced vacancy engineering of Co3O4 with improved faradic reactivity for high-performance supercapacitor. Adv. Funct. Mater. 2020, 30, 2004172.

[39]

Augustyn, V.; Come, J.; Lowe, M. A.; Kim, J. W.; Taberna, P. L.; Tolbert, S. H.; Abruña, H. D.; Simon, P.; Dunn, B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 2013, 12, 518–522.

[40]

Yang, J.; Yu, C.; Hu, C.; Wang, M.; Li, S. F.; Huang, H. W.; Bustillo, K.; Han, X. T.; Zhao, C. T.; Guo, W. et al. Surface-confined fabrication of ultrathin nickel cobalt-layered double hydroxide nanosheets for high-performance supercapacitors. Adv. Funct. Mater. 2018, 28, 1803272.

[41]

Zheng, J. H.; Zhang, L. Incorporation of CoO nanoparticles in 3D marigold flower-like hierarchical architecture MnCo2O4 for highly boosting solar light photo-oxidation and reduction ability. Appl. Catal. B: Environ. 2018, 237, 1–8.

[42]

Qiu, B. C.; Wang, C.; Zhang, N.; Cai, L. J.; Xiong, Y. J.; Chai, Y. CeO2-induced interfacial Co2+ octahedral sites and oxygen vacancies for water oxidation. ACS Catal. 2019, 9, 6484–6490.

[43]

Hu, J.; Al-Salihy, A.; Wang, J.; Li, X.; Fu, Y. F.; Li, Z. H.; Han, X. J.; Song, B.; Xu, P. Improved interface charge transfer and redistribution in CuO-CoOOH p–n heterojunction nanoarray electrocatalyst for enhanced oxygen evolution reaction. Adv. Sci. 2021, 8, 2103314.

[44]

Hussain, I.; Iqbal, S.; Hussain, T.; Chen, Y. T.; Ahmad, M.; Javed, M. S.; AlFantazi, A.; Zhang, K. L. An oriented Ni-Co-MOF anchored on solution-free 1D CuO: A p–n heterojunction for supercapacitive energy storage. J. Mater. Chem. A 2021, 9, 17790–17800.

[45]

Gao, M.; Wang, W. K.; Rong, Q.; Jiang, J.; Zhang, Y. J.; Yu, H. Q. Porous ZnO-coated Co3O4 nanorod as a high-energy-density supercapacitor material. ACS Appl. Mater. Interfaces 2018, 10, 23163–23173.

[46]

Tang, Y. Q.; Shen, H. M.; Cheng, J. Q.; Liang, Z. B.; Qu, C.; Tabassum, H.; Zou, R. Q. Fabrication of oxygen-vacancy abundant NiMn-layered double hydroxides for ultrahigh capacity supercapacitors. Adv. Funct. Mater. 2020, 30, 1908223.

[47]

Wang, J. M.; Huang, Y.; Du, X. P.; Zhang, S.; Zong, M. Hollow 1D carbon tube core anchored in Co3O4@SnS2 multiple shells for constructing binder-free electrodes of flexible supercapacitors. Chem. Eng. J. 2023, 464, 142741.

[48]

Zhang, B. H.; Gao, L. X.; Bai, H. Z.; Li, Y. H.; Jia, B. B.; Zhou, X. Y.; Li, A. R.; Li, L. D. Construction of oxygen-vacancy abundant Co3O4 nanorods for high-performance solid-state supercapacitor. J. Alloys Compd. 2023, 934, 167979.

[49]

Zhang, B. H.; Li, Y. H.; Bai, H. Z.; Jia, B. B.; Liu, D.; Li, L. D. Advance in 3D self-supported amorphous nanomaterials for energy storage and conversion. Nano Res. 2023, 16, 10597–10616.

[50]

Yu, J.; Xiao, J. W.; Li, A. R.; Yang, Z.; Zeng, L.; Zhang, Q. F.; Zhu, Y. J.; Guo, L. Enhanced multiple anchoring and catalytic conversion of polysulfides by amorphous MoS3 nanoboxes for high-performance Li-S batteries. Angew. Chem., Int. Ed. 2020, 59, 13071–13078.

[51]

Li, M.; Jia, C.; Zhang, D. Y.; Luo, Y. Y.; Wang, L.; Yang, P.; Luo, G. X.; Zhao, L. B.; Boukherroub, R.; Jiang, Z. D. Facile assembly of hybrid micro-supercapacitors for a sunlight-powered energy storage system. ACS Appl. Mater. Interfaces 2022, 14, 47595–47604.

[52]

Liu, D. M.; Ma, J. X.; Zheng, S. H.; Shao, W. L.; Zhang, T. P.; Liu, S. Y.; Jian, X. G.; Wu, Z. S.; Hu, F. Y. High-performance and flexible Co-planar integrated microsystem of carbon-based all-solid-state micro-supercapacitor and real-time temperature sensor. Energy Environ. Mater. 2023, 6, e12445.

[53]

Li, S.; Chang, T. H.; Li, Y.; Ding, M.; Yang, J.; Chen, P. Y. Stretchable Ti3C2T x mxene microsupercapacitors with high areal capacitance and quasi-solid-state multivalent neutral electrolyte. J. Mater. Chem. A 2021, 9, 4664–4672.

[54]

Qin, J. Q.; Wang, S.; Zhou, F.; Das, P.; Zheng, S. H.; Sun, C. L.; Bao, X. H.; Wu, Z. S. 2D mesoporous MnO2 nanosheets for high-energy asymmetric micro-supercapacitors in water-in-salt gel electrolyte. Energy Storage Mater. 2019, 18, 397–404

[55]

Zhang, C. F.; Kremer, M. P.; Seral-Ascaso, A.; Park, S. H.; McEvoy, N.; Anasori, B.; Gogotsi, Y.; Nicolosi, V. Stamping of flexible, coplanar micro-supercapacitors using MXene inks. Adv. Funct. Mater. 2018, 28, 1705506.

[56]

Bellani, S.; Petroni, E.; Del Rio Castillo, A. E.; Curreli, N.; Martín-García, B.; Oropesa-Nuñez, R.; Prato, M.; Bonaccorso, F. Scalable production of graphene inks via wet-jet milling exfoliation for screen-printed micro-supercapacitors. Adv. Funct. Mater. 2019, 29, 1807659.

[57]

Kou, L.; Huang, T. Q.; Zheng, B. N.; Han, Y.; Zhao, X. L.; Gopalsamy, K.; Sun, H. Y.; Gao, C. Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics. Nat. Commun. 2014, 5, 3754.

[58]

Liu, Y. Q.; Zhang, B. B.; Xu, Q.; Hou, Y. Y.; Seyedin, S.; Qin, S.; Wallace, G. G.; Beirne, S.; Razal, J. M.; Chen, J. Development of graphene oxide/polyaniline inks for high performance flexible microsupercapacitors via extrusion printing. Adv. Funct. Mater. 2018, 28, 1706592.

[59]

El-Kady, M. F.; Strong, V.; Dubin, S.; Kaner, R. B. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 2012, 335, 1326–1330.

[60]

Yuan, S. J.; Fan, W.; Wang, D.; Zhang, L. S.; Miao, Y. E.; Lai, F. L.; Liu, T. X. 3D printed carbon aerogel microlattices for customizable supercapacitors with high areal capacitance. J. Mater. Chem. A 2021, 9, 423–432.

[61]

Strambini, L.; Paghi, A.; Mariani, S.; Sood, A.; Kalliomäki, J.; Järvinen, P.; Toia, F.; Scurati, M.; Morelli, M.; Lamperti, A. et al. Three-dimensional silicon-integrated capacitor with unprecedented areal capacitance for on-chip energy storage. Nano Energy 2020, 68, 104281.

File
6577_ESM.pdf (3.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 25 December 2023
Revised: 11 February 2024
Accepted: 19 February 2024
Published: 19 April 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 52272181, 51872016, and 52201261).

Return