AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Mn-modified nitrogen-doped Pt-based electrocatalyst for efficient oxygen reduction in aluminum-air batteries

Li Gao1,2Yang Song2Xuebing Xu1,2Chang Li2Chaoquan Hu1,2( )
State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
Zhongke Nanjing Institute of Green Manufacturing Industry, Nanjing 211135, China
Show Author Information

Graphical Abstract

Efficient Pt-based electrocatalyst for oxygen reduction reaction was prepared with co-doping of Mn and N. Density functional theory (DFT) calculations demonstrated the oxygen-splitting and water-splitting pathways on the small and large particle surfaces, respectively.

Abstract

In this study, a Mn-modified Pt-based catalyst loaded on nitrogen-doped Ketjen black (Mn-Pt/NKB) is prepared using a simple ethylene glycol reduction method. The size of Pt nanoparticles (NPs) is effectively controlled by doping with Mn and N. With the smallest average particle size of 1.7 nm, Mn-Pt/NKB demonstrates half-wave potentials of 0.890 and 0.688 V in the alkaline and neutral electrolytes, respectively, which are superior to those of commercial platinum on activated carbon (Pt/C). When applied as an air cathode in aluminum-air battery, it exhibits ultra-high power densities of 190 (alkaline) and 26.2 mW·cm−2 (neutral). Moreover, the voltage remains stable after 5 h of discharge. The practical application performance of the Mn-Pt/NKB catalyst in an aluminum-air battery is better than that of commercial Pt/C. Furthermore, the oxygen reduction reaction (ORR) mechanism on surfaces with different particle sizes is analyzed using density functional theory. Oxygen cracking is the major pathway on the surface of the small particles with lower energy consumption of 0.5 eV, while water molecule cleavage is the major pathway on the surface of the large particles with higher energy consumption of 0.97 eV. The lower energy consumption of the oxygen cracking pathway further confirms the ORR mechanism for higher activity on small-sized surfaces. This study provides a direction for the rational design of Pt-based catalysts for ORR and sheds light on the commercial development of aluminum-air batteries.

Electronic Supplementary Material

Video
6573_ESM2.mp4
Download File(s)
6573_ESM1.pdf (881.6 KB)

References

[1]

Wu, S. G.; Hu, S. Y.; Zhang, Q.; Sun, D.; Wu, P. F.; Tang, Y. G.; Wang, H. Y. Hybrid high-concentration electrolyte significantly strengthens the practicability of alkaline aluminum-air battery. Energy Storage Mater. 2020, 31, 310–317.

[2]

Wu, S. G.; Zhang, Q.; Ma, J. J.; Sun, D.; Tang, Y. G.; Wang, H. Y. Interfacial design of Al electrode for efficient aluminum-air batteries: Issues and advances. Mater. Today Energy 2020, 18, 100499.

[3]

Liu, Y. S.; Sun, Q.; Li, W. Z.; Adair, K. R.; Li, J.; Sun, X. L. A comprehensive review on recent progress in aluminum-air batteries. Green Energy Environ. 2017, 2, 246–277.

[4]

Liu, D. P.; Tian, J.; Tang, Y. G.; Li, J. S.; Wu, S. A.; Yi, S. J.; Huang, X. B.; Sun, D.; Wang, H. Y. High-power double-face flow Al-air battery enabled by CeO2 decorated MnOOH nanorods catalyst. Chem. Eng. J. 2021, 406, 126772.

[5]

Wang, Y. Q.; Hao, J. Y.; Yu, J. W.; Yu, H. J.; Wang, K. K.; Yang, X. T.; Li, J.; Li, W. Z. Hierarchically porous N-doped carbon derived from biomass as oxygen reduction electrocatalyst for high-performance Al-air battery. J. Energy Chem. 2020, 45, 119–125.

[6]

Xiao, Q. F.; Cai, M.; Balogh, M. P.; Tessema, M. M.; Lu, Y. F. Symmetric growth of Pt ultrathin nanowires from dumbbell nuclei for use as oxygen reduction catalysts. Nano Res. 2012, 5, 145–151.

[7]

Ma, Y. L.; Kuhn, A. N.; Gao, W. P.; Al-Zoubi, T.; Du, H.; Pan, X. Q.; Yang, H. Strong electrostatic adsorption approach to the synthesis of sub-three nanometer intermetallic platinum–cobalt oxygen reduction catalysts. Nano Energy 2021, 79, 105465.

[8]

Wang, Z. C.; Chen, S. H.; Wu, W.; Chen, R. Z.; Zhu, Y.; Jiang, H. R.; Yu, L. Y.; Cheng, N. C. Tailored lattice compressive strain of Pt-skins by the L12-Pt3M intermetallic core for highly efficient oxygen reduction. Adv. Mater. 2023, 35, 2301310.

[9]

Hsu, S. P.; Liu, C. W.; Chen, H. S.; Chen, T. Y.; Lai, C. M.; Lee, C. H.; Lee, J. F.; Chan, T. S.; Tsai, L. D.; Wang, K. W. The effect of Mn addition on the promotion of oxygen reduction reaction performance for PtCo/C catalysts. Electrochim. Acta 2013, 105, 180–187.

[10]

Gupta, S.; Zhao, S.; Wang, X. X.; Hwang, S.; Karakalos, S.; Devaguptapu, S. V.; Mukherjee, S.; Su, D.; Xu, H.; Wu, G. Quaternary FeCoNiMn-based nanocarbon electrocatalysts for bifunctional oxygen reduction and evolution: Promotional role of Mn doping in stabilizing carbon. ACS Catal. 2017, 7, 8386–8393.

[11]

Melke, J.; Peter, B.; Habereder, A.; Ziegler, J.; Fasel, C.; Nefedov, A.; Sezen, H.; Wöll, C.; Ehrenberg, H.; Roth, C. Metal–support interactions of platinum nanoparticles decorated N-doped carbon nanofibers for the oxygen reduction reaction. ACS Appl. Mater. Interfaces 2016, 8, 82–90.

[12]

Li, F. Z.; Li, J. S.; Feng, Q. J.; Yan, J.; Tang, Y. G.; Wang, H. Y. Significantly enhanced oxygen reduction activity of Cu/CuN x C y co-decorated ketjenblack catalyst for Al-air batteries. J. Energy Chem. 2018, 27, 419–425.

[13]

Si, Y. J.; Park, M. G.; Cano, Z. P.; Xiong, Z. P.; Chen, Z. W. Heavily nitrogen-doped acetylene black as a high-performance catalyst for oxygen reduction reaction. Carbon 2017, 117, 12–19.

[14]

Fu, C. R.; Liu, C.; Li, T.; Zhang, X. F.; Wang, F. L.; Yang, J. J.; Jiang, Y. Y.; Cui, P.; Li, H. DFT calculations: A powerful tool for better understanding of electrocatalytic oxygen reduction reactions on Pt-based metallic catalysts. Comput. Mater. Sci. 2019, 170, 109202.

[15]

Wu, Z. P.; Shan, S. Y.; Xie, Z. H.; Kang, N.; Park, K.; Hopkins, E.; Yan, S.; Sharma, A.; Luo, J.; Wang, J. et al. Revealing the role of phase structures of bimetallic nanocatalysts in the oxygen reduction reaction. ACS Catal. 2018, 8, 11302–11313.

[16]

Yu, D.; Liu, Q.; Chen, B.; Zhao, Y. S.; Jia, P.; Sun, K. J.; Gao, F. M. Twin PdPtIr porous nanotubes as a dual-functional catalyst for oxygen reduction and evolution reactions. J. Mater. Chem. A 2022, 10, 11354–11362.

[17]

Bott-Neto, J. L.; Martins, T. S.; Machado, S. A. S.; Ticianelli, E. A. Electrocatalytic oxidation of methanol, ethanol, and glycerol on Ni(OH)2 nanoparticles encapsulated with poly[Ni( salen)] film. ACS Appl. Mater. Interfaces 2019, 11, 30810–30818.

[18]

Kresse, G.; Furthmüller, J. Efficiency of ab- initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

[19]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[20]

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

[21]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[22]

Henkelman, G.; Jónsson, H. A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives. J. Chem. Phys. 1999, 111, 7010–7022.

[23]

Henkelman, G.; Jónsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 2000, 113, 9978–9985.

[24]

Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901–9904.

[25]

Liu, Z.; Wang, Y.; Feng, L. G. A facile approach for constructing nitrogen-doped carbon layers over carbon nanotube surface for oxygen reduction reaction. J. Solid State Electrochem. 2018, 22, 3467–3474.

[26]

Liang, J. F.; Zhang, X. M.; Jing, L. Y.; Yang, H. Q. N-doped ordered mesoporous carbon as a multifunctional support of ultrafine Pt nanoparticles for hydrogenation of nitroarenes. Chin. J. Catal. 2017, 38, 1252–1260.

[27]

Zhang, W. Q.; Xi, R. F.; Li, Y. Y.; Zhang, Y.; Wang, P.; Hu, D. M. Recent development of transition metal doped carbon materials derived from biomass for hydrogen evolution reaction. Int. J. Hydrog. Energy 2022, 47, 32436–32454.

[28]

Fuertes, A. B.; Lota, G.; Centeno, T. A.; Frackowiak, E. Frackowiak Templated mesoporous carbons for supercapacitor application. Electrochim. Acta 2005, 50, 2799–2805.

[29]

Liang, J.; Du, X.; Gibson, C.; Du, X. W.; Qiao, S. Z. N-doped graphene natively grown on hierarchical ordered porous carbon for enhanced oxygen reduction. Adv. Mater. 2013, 25, 6226–6231.

[30]

Han, X. F.; Batool, N.; Wang, W. T.; Teng, H. T.; Zhang, L.; Yang, R. Z.; Tian, J. H. Templated-assisted synthesis of structurally ordered intermetallic Pt3Co with ultralow loading supported on 3D porous carbon for oxygen reduction reaction. ACS Appl. Mater. Interfaces 2021, 13, 37133–37141.

[31]

Marrocchi, A.; Lanari, D.; Facchetti, A.; Vaccaro, L. Poly(3-hexylthiophene): Synthetic methodologies and properties in bulk heterojunction solar cells. Energy Environ. Sci. 2012, 5, 8457–8474.

[32]

Wang, B. F.; Chen, B. X.; Sun, Y. H.; Xiao, H. L.; Xu, X. X.; Fu, M. L.; Wu, J. L.; Chen, L. M.; Ye, D. Q. Effects of dielectric barrier discharge plasma on the catalytic activity of Pt/CeO2 catalysts. Appl. Catal. B: Environ. 2018, 238, 328–338.

[33]

Lu, Z. J.; Yao, S. D.; Dong, Y. Z.; Wu, D. L.; Pan, H. R.; Huang, X. N.; Wang, T.; Sun, Z. Y.; Chen, X. X. Earth-abundant coal-derived carbon nanotube/carbon composites as efficient bifunctional oxygen electrocatalysts for rechargeable zinc-air batteries. J. Energy Chem. 2021, 56, 87–97.

[34]

Vivek, J. P.; Berry, N. G.; Zou, J. L.; Nichols, R. J.; Hardwick, L. J. In situ surface-enhanced infrared spectroscopy to identify oxygen reduction products in nonaqueous metal-oxygen batteries. J. Phys. Chem. C 2017, 121, 19657–19667.

[35]

Diemant, T.; Hartmann, H.; Bansmann, J.; Behm, R. J. CO adsorption energy on planar Au/TiO2 model catalysts under catalytically relevant conditions. J. Catal. 2007, 252, 171–177.

[36]

Gautier, S.; Sautet, P. Coadsorption of butadiene and hydrogen on the (111) surfaces of Pt and Pt2Sn surface alloy: Understanding the cohabitation from first-principles calculations. J. Phys. Chem. C 2017, 121, 25152–25163.

[37]

Shao, M. Y.; Hu, C. Q.; Xu, X. B.; Song, Y.; Zhu, Q. S. Pt/TS-1 catalysts: Effect of the platinum loading method on the dehydrogenation of n-butane. Appl. Catal. A: Gen. 2021, 621, 118194.

[38]

Song, Y.; Hu, C. Q.; Li, C.; Xu, X. B. Effects of n-butane coverage on its catalytic dehydrogenation: A density functional theory study on the Pt(111) surface. J. Phys. Chem. C 2023, 127, 20004–20013.

[39]

Chen, X.; Ge, F.; Chen, T. T.; Lai, N. J. The effect of GGA functionals on the oxygen reduction reaction catalyzed by Pt(111) and FeN4 doped graphene. J. Mol. Model. 2019, 25, 180.

Nano Research
Pages 7126-7135
Cite this article:
Gao L, Song Y, Xu X, et al. Mn-modified nitrogen-doped Pt-based electrocatalyst for efficient oxygen reduction in aluminum-air batteries. Nano Research, 2024, 17(8): 7126-7135. https://doi.org/10.1007/s12274-024-6573-x
Topics:

564

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 04 January 2024
Revised: 02 February 2024
Accepted: 18 February 2024
Published: 24 June 2024
© Tsinghua University Press 2024
Return