Journal Home > Online First

The ordered membrane electrode assembly (MEA) has gained much attention because of its potential in improving mass transfer. Here, a comprehensive study was conducted on the influence of the patterned microporous layer (MPL) on the proton exchange membrane fuel cell performances. When patterned MPL is employed, grooves are generated between the catalyst layer and the gas diffusion layer. It is found that the grooves do not increase the contact resistance, and it is beneficial for water retention. When the MEA works under low humidity scenarios, the MEA with patterned MPL illustrated higher performance, due to the reduced inner resistance caused by improved water retention, leading to increased ionic conductivity. However, when the humidity is higher than 80% or working under high current density, the generated water accumulated in the grooves and hindered the oxygen mass transport, leading to a reduced MEA performance.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

The influence of patterned microporous layer on the proton exchange membrane fuel cell performances

Show Author's information Shunzhong Wang1,2Kadi Hu3Wei Chen2Yali Cao2Linan Wang2Zhichang Wang2Lirui Cui2Mingzheng Zhou2Wei Zhu1,4Hui Li3( )Zhongbin Zhuang1,3,4( )
State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
State Power Investment Corporation Hydrogen Energy Company, Ltd., Beijing 102600, China
Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029, China

Abstract

The ordered membrane electrode assembly (MEA) has gained much attention because of its potential in improving mass transfer. Here, a comprehensive study was conducted on the influence of the patterned microporous layer (MPL) on the proton exchange membrane fuel cell performances. When patterned MPL is employed, grooves are generated between the catalyst layer and the gas diffusion layer. It is found that the grooves do not increase the contact resistance, and it is beneficial for water retention. When the MEA works under low humidity scenarios, the MEA with patterned MPL illustrated higher performance, due to the reduced inner resistance caused by improved water retention, leading to increased ionic conductivity. However, when the humidity is higher than 80% or working under high current density, the generated water accumulated in the grooves and hindered the oxygen mass transport, leading to a reduced MEA performance.

Keywords: water reduction, humidity, proton exchange membrane fuel cell, mass transport, patterned, microporous layer

References(50)

[1]

Ren, X. F.; Wang, Y. R.; Liu, A. M.; Zhang, Z. H.; Lv, Q. Y.; Liu, B. H. Current progress and performance improvement of Pt/C catalysts for fuel cells. J. Mater. Chem. A 2020, 8, 24284–24306.

[2]

Wang, H. P.; Xu, Z. X.; Lin, W.; Yang, X.; Gu, X. R.; Zhu, W.; Zhuang, Z. B. Improving the water electrolysis performance by manipulating the generated nano/micro-bubbles using surfactants. Nano Res. 2023, 16, 420–426.

[3]

Singla, M. K.; Nijhawan, P.; Oberoi, A. S. Hydrogen fuel and fuel cell technology for cleaner future: A review. Environ. Sci. Pollut. Res. 2021, 28, 15607–15626.

[4]

Lü, X. Q.; Qu, Y.; Wang, Y. D.; Qin, C.; Liu, G. A comprehensive review on hybrid power system for PEMFC-HEV: Issues and strategies. Energy Convers. Manage. 2018, 171, 1273–1291.

[5]

Manoharan, Y.; Hosseini, S. E.; Butler, B.; Alzhahrani, H.; Senior, B. T. F.; Ashuri, T.; Krohn, J. Hydrogen fuel cell vehicles; current status and future prospect. Appl. Sci. 2019, 9, 2296.

[6]

Yang, P. F.; Xu, L. L.; Trogadas, P.; Coppens, M. O.; Lan, Y. Bioinspired supramolecular macrocycle hybrid membranes with enhanced proton conductivity. Nano Res. 2024, 17, 797–805.

[7]

Hosseini, M. G.; Mahmoodi, R. Preparation method of Ni@Pt/C nanocatalyst affects the performance of direct borohydride-hydrogen peroxide fuel cell: Improved power density and increased catalytic oxidation of borohydride. J. Colloid Interface Sci. 2017, 500, 264–275.

[8]

Christmann, K.; Friedrich, K. A.; Zamel, N. Activation mechanisms in the catalyst coated membrane of PEM fuel cells. Prog. Energy Combust. Sci. 2021, 85, 100924.

[9]

Xu, X. Q.; Cao, L. H.; Yang, Y.; Zhao, F.; Bai, X. T.; Zang, S. Q. Hybrid nafion membranes of ionic hydrogen-bonded organic framework materials for proton conduction and PEMFC applications. ACS Appl. Mater. Interfaces 2021, 13, 56566–56574.

[10]

Han, A.; Sun, W. M.; Wan, X.; Cai, D. D.; Wang, X. J.; Li, F.; Shui, J. L.; Wang, D. S. Construction of Co4 atomic clusters to enable Fe-N4 motifs with highly active and durable oxygen reduction performance. Angew. Chem., Int. Ed. 2023, 62, e202303185.

[11]

Zhu, P.; Xiong, X.; Wang, X. L.; Ye, C. L.; Li, J. Z.; Sun, W. M.; Sun, X. H.; Jiang, J. J.; Zhuang, Z. B.; Wang, D. S. et al. Regulating the FeN4 moiety by constructing Fe-Mo dual-metal atom sites for efficient electrochemical oxygen reduction. Nano Lett. 2022, 22, 9507–9515.

[12]

Chen, R. Z.; Chen, S. H.; Wang, L. Q.; Wang, D. S. Nanoscale metal particle modified single-atom catalyst: Synthesis, characterization, and application. Adv. Mater. 2024, 36, 2304713.

[13]

Cao, S.; Sun, T.; Li, J. R.; Li, Q. Z.; Hou, C. C.; Sun, Q. The cathode catalysts of hydrogen fuel cell: From laboratory toward practical application. Nano Res. 2023, 16, 4365–4380.

[14]

Chen, M.; Zhao, C.; Sun, F. M.; Fan, J. T.; Li, H.; Wang, H. J. Research progress of catalyst layer and interlayer interface structures in membrane electrode assembly (MEA) for proton exchange membrane fuel cell (PEMFC) system. eTransportation 2020, 5, 100075.

[15]

Athanasaki, G.; Jayakumar, A.; Kannan, A. M. Gas diffusion layers for PEM fuel cells: Materials, properties and manufacturing—A review. Int. J. Hydrogen Energy 2023, 48, 2294–2313.

[16]

Reshetenko, T.; Ben, B. L. Impact of a gas diffusion layer's structural and textural properties on oxygen mass transport resistance in the cathode and performance of proton exchange membrane fuel cells. Electrochim. Acta 2021, 371, 137752.

[17]

Prass, S.; Hasanpour, S.; Sow, P. K.; Phillion, A. B.; Mérida, W. Microscale X-ray tomographic investigation of the interfacial morphology between the catalyst and micro porous layers in proton exchange membrane fuel cells. J. Power Sources 2016, 319, 82–89.

[18]

Mason, T. J.; Millichamp, J.; Neville, T. P.; El-Kharouf, A.; Pollet, B. G.; Brett, D. J. L. Effect of clamping pressure on ohmic resistance and compression of gas diffusion layers for polymer electrolyte fuel cells. J. Power Sources 2012, 219, 52–59.

[19]

Chen, Q.; Niu, Z. Q.; Li, H. K.; Jiao, K.; Wang, Y. Recent progress of gas diffusion layer in proton exchange membrane fuel cell: Two-phase flow and material properties. Int. J. Hydrogen Energy 2021, 46, 8640–8671.

[20]

Flick, S.; Schwager, M.; McCarthy, E.; Mérida, W. Designed experiments to characterize PEMFC material properties and performance. Appl. Energy 2014, 129, 135–146.

[21]

Iranzo, A.; Boillat, P. CFD simulation of the transient gas transport in a PEM fuel cell cathode during AC impedance testing considering liquid water effects. Energy 2018, 158, 449–457.

[22]

Li, H. Y.; Cheng, X. J.; Yan, X. H.; Shen, S. Y.; Zhang, J. L. A perspective on influences of cathode material degradation on oxygen transport resistance in low Pt PEMFC. Nano Res. 2023, 16, 377–390.

[23]

Shrestha, P.; Ouellette, D.; Lee, J.; Ge, N.; Wong, A. K. C.; Muirhead, D.; Liu, H.; Banerjee, R.; Bazylak, A. Graded microporous layers for enhanced capillary-driven liquid water removal in polymer electrolyte membrane fuel cells. Adv. Mater. Interfaces 2019, 6, 1901157.

[24]

Yin, B. F.; Xu, S.; Yang, S. Y.; Dong, F. Influence of microelliptical groove gas diffusion layer (GDL) on transport behavior of proton exchange membrane fuel cell (PEMFC). Int. J. Heat Mass Transf. 2021, 180, 121793.

[25]

Sassin, M. B.; Garsany, Y.; Gould, B. D.; Swider-Lyons, K. Impact of compressive stress on MEA pore structure and its consequence on PEMFC performance. J. Electrochem. Soc. 2016, 163, F808–F815.

[26]

Simon, C.; Hasché, F.; Gasteiger, H. A. Influence of the gas diffusion layer compression on the oxygen transport in PEM fuel cells at high water saturation levels. J. Electrochem. Soc. 2017, 164, F591–F599.

[27]

Millichamp, J.; Mason, T. J.; Neville, T. P.; Rajalakshmi, N.; Jervis, R.; Shearing, P. R.; Brett, D. J. L. Mechanisms and effects of mechanical compression and dimensional change in polymer electrolyte fuel cells—A review. J. Power Sources 2015, 284, 305–320.

[28]

Wu, N. R.; Liu, Y.; Zhang, S. P.; Hou, D. D.; Yang, R. Z.; Qi, Y.; Wang, L. D. Modulation of transport at the interface in the microporous layer for high power density proton exchange membrane fuel cells. J. Colloid Interface Sci. 2024, 657, 428–437.

[29]

Nouri-Khorasani, A.; Bonakdarpour, A.; Fang, B. Z.; Wilkinson, D. P. Rational design of multimodal porous carbon for the interfacial microporous layer of fuel cell oxygen electrodes. ACS Appl. Mater. Interfaces 2022, 14, 9084–9096.

[30]

Lin, R.; Chen, L.; Zheng, T.; Tang, S. H.; Yu, X. T.; Dong, M. C.; Hao, Z. X. Interfacial water management of gradient microporous layer for self-humidifying proton exchange membrane fuel cells. Int. J. Heat Mass Transf. 2021, 175, 121340.

[31]

Lee, J.; Liu, H.; George, M. G.; Banerjee, R.; Ge, N.; Chevalier, S.; Kotaka, T.; Tabuchi, Y.; Bazylak, A. Microporous layer to carbon fibre substrate interface impact on polymer electrolyte membrane fuel cell performance. J. Power Sources 2019, 422, 113–121.

[32]

Alrwashdeh, S. S.; Manke, I.; Markötter, H.; Haußmann, J.; Arlt, T.; Hilger, A.; Al-falahat, A. M.; Klages, M.; Scholta, J.; Banhart, J. Improved performance of polymer electrolyte membrane fuel cells with modified microporous layer structures. Energy Technol. 2017, 5, 1612–1618.

[33]

Song, H. Y.; Liu, Y. T.; Zhang, W. S.; Zhang, X. F.; Yin, X.; Li, J. F.; Wu, G. P. Rational design of carbon network structure in microporous layer toward enhanced mass transport of proton exchange membrane fuel cell. J. Power Sources 2022, 539, 231623.

[34]

El Oualid, S.; Lachat, R.; Candusso, D.; Meyer, Y. Characterization process to measure the electrical contact resistance of gas diffusion layers under mechanical static compressive loads. Int. J. Hydrogen Energy 2017, 42, 23920–23931.

[35]

Vikram, A.; Chowdhury, P. R.; Phillips, R. K.; Hoorfar, M. Measurement of effective bulk and contact resistance of gas diffusion layer under inhomogeneous compression—Part I: Electrical conductivity. J. Power Sources 2016, 320, 274–285.

[36]

Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1–19.

[37]

Hu, K. D.; Luo, L.; Sun, X. M.; Li, H. Unraveling the effects of gas species and surface wettability on the morphology of interfacial nanobubbles. Nanoscale Adv. 2022, 4, 2893–2901.

[38]

Gao, Y.; Montana, A.; Chen, F. X. Evaluation of porosity and thickness on effective diffusivity in gas diffusion layer. J. Power Sources 2017, 342, 252–265.

[39]

Song, H. Y.; Liu, Y.; Zhang, X. F.; Zhang, W. S.; Wu, G. P. Bimodal effect on mass transport of proton exchange membrane fuel cells by regulating the content of whisker-like carbon nanotubes in microporous layer. J. Power Sources 2023, 560, 232714.

[40]

Wang, S. Z.; Wang, L. N.; Chen, W.; Cao, Y. L.; Cui, L. R.; Zhou, M. Z.; Zhu, W.; Zhuang, Z. B. Estimation of oxygen transport properties in proton exchange membrane fuel cells under dry and wet operating conditions. Int. J. Hydrogen Energy 2024, 57, 616–624.

[41]

Zenyuk, I. V.; Kumbur, E. C.; Litster, S. Deterministic contact mechanics model applied to electrode interfaces in polymer electrolyte fuel cells and interfacial water accumulation. J. Power Sources 2013, 241, 379–387.

[42]

Ozden, A.; Shahgaldi, S.; Li, X. G.; Hamdullahpur, F. A graphene-based microporous layer for proton exchange membrane fuel cells: Characterization and performance comparison. Renew. Energy 2018, 126, 485–494.

[43]

Kleemann, J.; Finsterwalder, F.; Tillmetz, W. Characterisation of mechanical behaviour and coupled electrical properties of polymer electrolyte membrane fuel cell gas diffusion layers. J. Power Sources 2009, 190, 92–102.

[44]

Hu, M. R.; Cao, G. Y. The effect of the backing layer design on the mass transfer in a proton exchange membrane fuel cell. Energy Convers. Manage. 2022, 269, 116086.

[45]

Qiu, D. K.; Janßen, H.; Peng, L. F.; Irmscher, P.; Lai, X. M.; Lehnert, W. Electrical resistance and microstructure of typical gas diffusion layers for proton exchange membrane fuel cell under compression. Appl. Energy 2018, 231, 127–137.

[46]

Yan, X. H.; Lin, C.; Zheng, Z. F.; Chen, J. R.; Wei, G. H.; Zhang, J. L. Effect of clamping pressure on liquid-cooled PEMFC stack performance considering inhomogeneous gas diffusion layer compression. Appl. Energy 2020, 258, 114073.

[47]

Ramaswamy, N.; Gu, W. B.; Ziegelbauer, J. M.; Kumaraguru, S. Carbon support microstructure impact on high current density transport resistances in PEMFC cathode. J. Electrochem. Soc. 2020, 167, 064515.

[48]

Wang, S. Z.; Li, X. H.; Wan, Z. H.; Chen, Y. N.; Tan, J. T.; Pan, M. Effect of hydrophobic additive on oxygen transport in catalyst layer of proton exchange membrane fuel cells. J. Power Sources 2018, 379, 338–343.

[49]

Owejan, J. P.; Trabold, T. A.; Mench, M. M. Oxygen transport resistance correlated to liquid water saturation in the gas diffusion layer of PEM fuel cells. Int. J. Heat Mass Transf. 2014, 71, 585–592.

[50]

Muirhead, D.; Banerjee, R.; George, M. G.; Ge, N.; Shrestha, P.; Liu, H.; Lee, J.; Bazylak, A. Liquid water saturation and oxygen transport resistance in polymer electrolyte membrane fuel cell gas diffusion layers. Electrochim. Acta 2018, 274, 250–265.

File
6569_ESM.pdf (566.3 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 13 January 2024
Revised: 07 February 2024
Accepted: 13 February 2024
Published: 21 March 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

This work was supported by Beijing Natural Science Foundation (No. Z210016).

Return