Journal Home > Online First

Biological structural materials, despite consisting of limited kinds of compounds, display multifunctionalities due to their complex hierarchical architectures. While some biomimetic strategies have been applied in artificial materials to enhance their mechanical stability, the simultaneous optimization of other functions along with the mechanical properties via biomimetic designs has not been thoroughly investigated. Herein, iron oxide/carbon nanotube (CNT)-based artificial nacre with both improved mechanical and electromagnetic interference (EMI) shielding performance is fabricated via the mineralization of Fe3O4 onto a CNT-incorporated matrix. The micro- and nano-structures of the artificial nacre are similar to those of natural nacre, which in turn improves its mechanical properties. The alternating electromagnetic wave-reflective CNT layers and the wave-absorptive iron oxide layers can improve the multiple reflections of the waves on the surfaces of the reflection layers, which then allows sufficient interactions between the waves and the absorption layers. Consequently, compared with the reflection-dependent EMI-shielding of the non-structured material, the artificial nacre exhibits strong absorption-dependent shielding behavior even with a very low content of wave-absorptive phase. Owing to the high mechanical stability, the shielding effectiveness of the artificial nacre that deeply cut by a blade is still maintained at approximately 70%−96% depending on the incident wave frequency. The present work provides a new way for designing structural materials with concurrently enhanced mechanical and functional properties, and a path to combine structural design and intrinsic properties of specific materials via a biomimetic strategy.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Iron oxide/CNT-based artificial nacre for electromagnetic interference shielding

Show Author's information Cheng-Xin Yu1,2,§Yu-Feng Meng3,§Bo Yang3Jun Pang3Xiang-Sen Meng3Zi-Ye Zhao3Qing-Yue Wang3Li-Bo Mao3( )Zhi-Kun Wu1,2( )Shu-Hong Yu3( )
Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China
Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China

§ Cheng-Xin Yu and Yu-Feng Meng contributed equally to this work.

Abstract

Biological structural materials, despite consisting of limited kinds of compounds, display multifunctionalities due to their complex hierarchical architectures. While some biomimetic strategies have been applied in artificial materials to enhance their mechanical stability, the simultaneous optimization of other functions along with the mechanical properties via biomimetic designs has not been thoroughly investigated. Herein, iron oxide/carbon nanotube (CNT)-based artificial nacre with both improved mechanical and electromagnetic interference (EMI) shielding performance is fabricated via the mineralization of Fe3O4 onto a CNT-incorporated matrix. The micro- and nano-structures of the artificial nacre are similar to those of natural nacre, which in turn improves its mechanical properties. The alternating electromagnetic wave-reflective CNT layers and the wave-absorptive iron oxide layers can improve the multiple reflections of the waves on the surfaces of the reflection layers, which then allows sufficient interactions between the waves and the absorption layers. Consequently, compared with the reflection-dependent EMI-shielding of the non-structured material, the artificial nacre exhibits strong absorption-dependent shielding behavior even with a very low content of wave-absorptive phase. Owing to the high mechanical stability, the shielding effectiveness of the artificial nacre that deeply cut by a blade is still maintained at approximately 70%−96% depending on the incident wave frequency. The present work provides a new way for designing structural materials with concurrently enhanced mechanical and functional properties, and a path to combine structural design and intrinsic properties of specific materials via a biomimetic strategy.

Keywords: biomimetic material, electromagnetic interference shielding, hierarchical structure, biomineralization, artificial nacre

References(42)

[1]

Mao, L. B.; Gao, H. L.; Yao, H. B.; Liu, L.; Cölfen, H.; Liu, G.; Chen, S. M.; Li, S. K.; Yan, Y. X.; Liu, Y. Y. et al. Synthetic nacre by predesigned matrix-directed mineralization. Science 2016, 354, 107–110.

[2]

Wang, T. X.; Xiong, C. Y.; Zhang, Y. K.; Wang, B.; Xiong, Q.; Zhao, M. J.; Ni, Y. H. Multi-layer hierarchical cellulose nanofibers/carbon nanotubes/vinasse activated carbon composite materials for supercapacitors and electromagnetic interference shielding. Nano Res. 2024, 17, 904–912.

[3]

Xiong, C. Y.; Wang, T. X.; Zhou, L. F.; Zhang, Y. K.; Dai, L.; Zhou, Q. S.; Ni, Y. H. Fabrication of dual-function conductive cellulose-based composites with layered conductive network structures for supercapacitors and electromagnetic shielding. Chem. Eng. J. 2023, 472, 144958.

[4]

Feng, L.; Li, S.; Li, Y.; Li, H.; Zhang, L.; Zhai, J.; Song, Y.; Liu, B.; Jiang, L.; Zhu, D. B. Super-hydrophobic surfaces: From natural to artificial. Adv. Mater. 2002, 14, 1857–1860.

[5]

Lu, L. L.; Lu, Y. Y.; Xiao, Z. J.; Zhang, T. W.; Zhou, F.; Ma, T.; Ni, Y.; Yao, H. B.; Yu, S. H.; Cui, Y. Wood-inspired high-performance ultrathick bulk battery electrodes. Adv. Mater. 2018, 30, 1706745.

[6]

Sander, J. S.; Erb, R. M.; Li, L.; Gurijala, A.; Chiang, Y. M. High-performance battery electrodes via magnetic templating. Nat. Energy 2016, 1, 16099.

[7]

Billaud, J.; Bouville, F.; Magrini, T.; Villevieille, C.; Studart, A. R. Magnetically aligned graphite electrodes for high-rate performance Li-ion batteries. Nat. Energy 2016, 1, 16097.

[8]

Bakkar, S.; Thapliyal, S.; Ku, N.; Berman, D.; Aouadi, S. M.; Brennan, R. E.; Young, M. L. Controlling anisotropy of porous B4C structures through magnetic field-assisted freeze-casting. Ceram. Int. 2022, 48, 6750–6757.

[9]

Le Ferrand, H.; Bouville, F.; Niebel, T. P.; Studart, A. R. Magnetically assisted slip casting of bioinspired heterogeneous composites. Nat. Mater. 2015, 14, 1172–1179.

[10]

Yin, L.; Hannard, F.; Barthelat, F. Impact-resistant nacre-like transparent materials. Science 2019, 364, 1260–1263.

[11]

Raut, H. K.; Schwartzman, A. F.; Das, R.; Liu, F.; Wang, L. F.; Ross, C. A.; Fernandez, J. G. Tough and strong: Cross-lamella design imparts multifunctionality to biomimetic nacre. ACS Nano 2020, 14, 9771–9779.

[12]

Meng, Y. F.; Zhu, Y. B.; Zhou, L. C.; Meng, X. S.; Yang, Y. L.; Zhao, R.; Xia, J.; Yang, B.; Lu, Y. J.; Wu, H. A. et al. Artificial nacre with high toughness amplification factor: Residual stress-engineering sparks enhanced extrinsic toughening mechanisms. Adv. Mater. 2022, 34, 2108267.

[13]

Mao, L. B.; Meng, Y. F.; Meng, X. S.; Yang, B.; Yang, Y. L.; Lu, Y. J.; Yang, Z. Y.; Shang, L. M.; Yu, S. H. Matrix-directed mineralization for bulk structural materials. J. Am. Chem. Soc. 2022, 144, 18175–18194.

[14]

Wang, L. N.; Meng, Y. F.; Feng, Y. H. Z.; Wang, H. C.; Mao, L. B.; Yu, S. H.; Wang, Z. L. Amorphous precursor-mediated calcium phosphate coatings with tunable microstructures for customized bone implants. Adv. Healthc. Mater. 2022, 11, 2201248.

[15]

Meng, Y. F.; Yu, C. X.; Zhou, L. C.; Shang, L. M.; Yang, B.; Wang, Q. Y.; Meng, X. S.; Mao, L. B.; Yu, S. H. Nanograded artificial nacre with efficient energy dissipation. Innovation 2023, 4, 100505.

[16]

Wan, S. J.; Li, X.; Chen, Y.; Liu, N. N.; Dou, S. X.; Jiang, L.; Cheng, Q. F. High-strength scalable MXene films through bridging-induced densification. Science 2021, 374, 96–99.

[17]

Wang, H. G.; Lu, R. J.; Yan, J.; Peng, J. S.; Tomsia, A. P.; Liang, R.; Sun, G. X.; Liu, M. J.; Jiang, L.; Cheng, Q. F. Tough and conductive nacre-inspired MXene/epoxy layered bulk nanocomposites. Angew. Chem., Int. Ed. 2023, 62, e202216874.

[18]

Chen, Z. P.; Xu, C.; Ma, C. Q.; Ren, W. C.; Cheng, H. M. Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater. 2013, 25, 1296–1300.

[19]

Fu, H.; Bai, Y. A.; Duan, S. Q.; Zhou, H. F.; Gong, W. Structure design of multi-layered ABS/CNTs composite foams for EMI shielding application with low reflection and high absorption characteristics. Appl. Surf. Sci. 2023, 624, 157168.

[20]

Yang, Y. F.; Li, B.; Wu, N.; Liu, W.; Zhao, S. Y.; Zhang, C. F. J.; Liu, J. R.; Zeng, Z. H. Biomimetic porous MXene-based hydrogel for high-performance and multifunctional electromagnetic interference shielding. ACS Mater. Lett. 2022, 4, 2352–2361.

[21]

Yang, Y. F.; Wu, N.; Li, B.; Liu, W.; Pan, F.; Zeng, Z. H.; Liu, J. R. Biomimetic porous MXene sediment-based hydrogel for high-performance and multifunctional electromagnetic interference shielding. ACS Nano 2022, 16, 15042–15052.

[22]

Wei, J. J.; Zhu, C. L.; Zeng, Z. H.; Pan, F.; Wan, F. Q.; Lei, L. W.; Nyström, G.; Fu, Z. Y. Bioinspired cellulose-integrated MXene-based hydrogels for multifunctional sensing and electromagnetic interference shielding. Interdiscip. Mater. 2022, 1, 495–506.

[23]

Zhang, Y. L.; Ruan, K. P.; Zhou, K.; Gu, J. W. Controlled distributed Ti3C2T x hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 2023, 35, 2211642.

[24]

Wang, Y. L.; Li, B. Q.; Zhou, Y.; Jia, D. C. In situ mineralization of magnetite nanoparticles in chitosan hydrogel. Nanoscale Res. Lett. 2009, 4, 1041.

[25]

Chaunchaiyakul, S.; Yano, T.; Khoklang, K.; Krukowski, P.; Akai-Kasaya, M.; Saito, A.; Kuwahara, Y. Nanoscale analysis of multiwalled carbon nanotube by tip-enhanced Raman spectroscopy. Carbon 2016, 99, 642–648.

[26]

Laudenbach, J.; Schmid, D.; Herziger, F.; Hennrich, F.; Kappes, M.; Muoth, M.; Haluska, M.; Hof, F.; Backes, C.; Hauke, F.; et al. Diameter dependence of the defect-induced Raman modes in functionalized carbon nanotubes. Carbon 2017, 112, 1–7.

[27]

Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.

[28]

Stubrov, Y.; Nikolenko, A.; Gubanov, V.; Strelchuk, V. Manifestation of structure of electron bands in double-resonant Raman spectra of single-walled carbon nanotubes. Nanoscale Res. Lett. 2016, 11, 2.

[29]

Xiao, W. C.; Gu, H. C.; Li, D.; Chen, D. D.; Deng, X. Y.; Jiao, Z.; Lin, J. Microwave-assisted synthesis of magnetite nanoparticles for MR blood pool contrast agents. J. Magn. Magn. Mater. 2012, 324, 488–494.

[30]

Hanesch, M. Raman spectroscopy of iron oxides and (oxy)hydroxides at low laser power and possible applications in environmental magnetic studies. Geophys. J. Int. 2009, 177, 941–948.

[31]

Sun, W. B.; Han, Z. M.; Yue, X.; Zhang, H. Y.; Yang, K. P.; Liu, Z. X.; Li, D. H.; Zhao, Y. X.; Ling, Z. C.; Yang, H. B. et al. Nacre-inspired bacterial cellulose/mica nanopaper with excellent mechanical and electrical insulating properties by biosynthesis. Adv. Mater. 2023, 35, 2300241.

[32]

Shahzad, F.; Alhabeb, M.; Hatter, C. B.; Anasori, B.; Hong, S. M.; Koo, C. M.; Gogotsi, Y. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 2016, 353, 1137–1140.

[33]

Al-Saleh, M. H.; Saadeh, W. H.; Sundararaj, U. EMI shielding effectiveness of carbon based nanostructured polymeric materials: A comparative study. Carbon 2013, 60, 146–156.

[34]

Chung, D. D. L. Materials for electromagnetic interference shielding. Mater. Chem. Phys. 2020, 255, 123587.

[35]

Yan, D. X.; Pang, H.; Li, B.; Vajtai, R.; Xu, L.; Ren, P. G.; Wang, J. H.; Li, Z. M. Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding. Adv. Funct. Mater. 2015, 25, 559–566.

[36]

Zhao, H.; Yun, J.; Zhang, Y. L.; Ruan, K. P.; Huang, Y. S.; Zheng, Y. P.; Chen, L. X.; Gu, J. W. Pressure-induced self-interlocked structures for expanded graphite composite papers achieving prominent EMI shielding effectiveness and outstanding thermal conductivities. ACS Appl. Mater. Interfaces 2022, 14, 3233–3243.

[37]

Zhou, T. Z.; Cao, C.; Yuan, S. X.; Wang, Z.; Zhu, Q.; Zhang, H.; Yan, J.; Liu, F.; Xiong, T.; Cheng, Q. F. et al. Interlocking-governed ultra-strong and highly conductive MXene fibers through fluidics-assisted thermal drawing. Adv. Mater. 2023, 35, 2305807.

[38]

Zhuang, Z. T.; Chen, H. W.; Li, C. Robust pristine MXene films with superhigh electromagnetic interference shielding effectiveness via spatially confined evaporation. ACS Nano 2023, 17, 10628–10636.

[39]

Liu, J.; Zhang, H. B.; Sun, R. H.; Liu, Y. F.; Liu, Z. S.; Zhou, A. G.; Yu, Z. Z. Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 2017, 29, 1702367.

[40]

Chung, D. D. L. Electromagnetic interference shielding effectiveness of carbon materials. Carbon 2001, 39, 279–285.

[41]

Chung, D. D. L.; Ozturk, M. Electromagnetic skin depth of cement paste and its thickness dependence. J. Build. Eng. 2022, 52, 104393.

[42]

Ahmad, H. S.; Hussain, T.; Nawab, Y.; Salamat, S. Effect of dielectric and magnetic nanofillers on electromagnetic interference shielding effectiveness of carbon/epoxy composites. J. Compos. Mater. 2022, 56, 69–82.

File
6567_ESM.pdf (2.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 27 December 2023
Revised: 08 February 2024
Accepted: 12 February 2024
Published: 03 April 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Nos. XDB 0470303 and XDB 0450402), the National Key Research and Development Program of China (Nos. 2018YFE0202201 and 2021YFA0715700), the National Natural Science Foundation of China (Nos. 22293044, U1932213, and 22305240), and the New Cornerstone Investigator Program. Y.-F. M. acknowledges the Major Basic Research Project of Anhui Province (No. 2023z04020009) and the Double First-Class University Construction Fund from USTC (No. YD2060002037). This work was partially carried out at the USTC Center for Micro and Nanoscale Research and Fabrication.

Return