AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Li2ZnTi3O8 as the host–separator modifier with efficient polysulfides trapping and fast Li+ diffusion for lithium-sulfur batteries

Mao Qian1Yakun Tang1Lang Liu1( )Yue Zhang1Xiaohui Li1JiaJia Chen2( )
State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Xinjiang University, Urumqi 830017, China
State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
Show Author Information

Graphical Abstract

Well-dispersed Li2ZnTi3O8 particles were synthesized via a simple sol-gel method, which were simultaneously served as the sulfur host and the separator modifier in cathode side, asignificantly improving the electrochemical performance in lithium-sulfur batteries (LSBs). The Li2ZnTi3O8 host with the polar chemical bonds help to improve the utilization of sulfur and the Li2ZnTi3O8 modified separator can simultaneously facilitate ion transport and alleviate shuttle effect of LiPSs.

Abstract

The diffusion and loss of lithium polysulfides (LiPSs) in lithium-sulfur batteries (LSBs) reduce the sulfur utilization rate and the catalytic conversion efficiency of sulfur species, resulting in early battery failure. Li2ZnTi3O8 (LZTO), characterized by its stable spinel structure, exhibits high Li+ conductivity and holds great potential as an effective adsorbent for LiPSs. This study proposes a collaborative design concept of LZTO host–separator modifier, which offers a complementary and matching approach in the cathode side, effectively addressing the challenges associated with dissolution and inadequate conversion of LiPSs. Density functional theory (DFT) calculation substantiates the pronounced chemical affinity of LZTO towards LiPSs. More importantly, the high efficiency ion transport channels are achieved in separator coating due to the presence of the LZTO particles. Furthermore, the catalytic efficacy of LZTO is validated through meticulous analysis of symmetric batteries and Tafel curves. Consequently, the LZTO host–separator modifier-based cell displays satisfactory rate capability (1449 and 1166 mAh·g−1 at 0.1 and 0.5 C) and an impressively capacity (606 mAh·g−1 after 500 cycles at 1 C). The coordinated strategy of host–separator modifier is supposed to have wide applications in LSBs.

Electronic Supplementary Material

Download File(s)
6563_ESM.pdf (1 MB)

References

[1]

Manthiram, A.; Fu, Y. Z.; Su, Y. S. Challenges and prospects of lithium-sulfur batteries. Acc. Chem. Res. 2013, 46, 1125–1134.

[2]

Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2012, 11, 19–29.

[3]

Zhang, Q.; Ding, Z. G.; Liu, G. Z.; Wan, H. L.; Mwizerwa, J. P.; Wu, J. H.; Yao, X. Y. Molybdenum trisulfide based anionic redox driven chemistry enabling high-performance all-solid-state lithium metal batteries. Energy Storage Mater. 2019, 23, 168–180.

[4]

Li, T.; Bai, X.; Gulzar, U.; Bai, Y. J.; Capiglia, C.; Deng, W.; Zhou, X. F.; Liu, Z. P.; Feng, Z. F.; Zaccaria, R. P. A comprehensive understanding of lithium-sulfur battery technology. Adv. Funct. Mater. 2019, 29, 1901730.

[5]

He, Y. B.; Qiao, Y.; Chang, Z.; Cao, X.; Jia, M.; He, P.; Zhou, H. S. Developing a “polysulfide-phobic” strategy to restrain shuttle effect in lithium-sulfur batteries. Angew. Chem., Int. Ed. 2019, 58, 11774–11778.

[6]

Xu, R.; Tang, H. A.; Zhou, Y. Y.; Wang, F. Z.; Wang, H. R.; Shao, M. H.; Li, C. P.; Wei, Z. D. Enhanced catalysis of LiS3 radical-to-polysulfide interconversion via increased sulfur vacancies in lithium-sulfur batteries. Chem. Sci. 2022, 13, 6224–6232.

[7]

Zuo, M. G.; Liu, H.; Feng, Y. Q.; Li, J. Q.; He, X. M.; Tian, X. 3D hollow reduced graphene oxide coated TiO2 heterostructures as an advanced host-interlayer integrated electrode for enhanced Li-S batteries. Solid State Ionics. 2022, 381, 115948

[8]

Ma, C.; Feng, Y. M.; Liu, X. J.; Yang, Y.; Zhou, L. J.; Chen, L. B.; Yan, C. L.; Wei, W. F. Dual-engineered separator for highly robust, all-climate lithium-sulfur batteries. Energy Storage Mater. 2020, 32, 46–54.

[9]

Li, Z. H.; Zhou, C.; Hua, J. H.; Hong, X. F.; Sun, C. L.; Li, H. W.; Xu, X.; Mai, L. Q. Engineering oxygen vacancies in a polysulfide-blocking layer with enhanced catalytic ability. Adv. Mater. 2020, 32, 1907444.

[10]

Tian, S. H.; Liu, G.; Xu, S. X.; Han, C.; Tao, K.; Huang, J. J.; Peng, S. L. Deposition mode design of Li2S: Transmitted orbital overlap strategy in highly stable lithium-sulfur battery. Adv. Funct. Mater. 2023, 34, 2309437.

[11]

Peng, L. L.; Wei, Z. Y.; Wan, C. Z.; Li, J.; Chen, Z.; Zhu, D.; Baumann, D.; Liu, H. T.; Allen, C. S.; Xu, X. et al. A fundamental look at electrocatalytic sulfur reduction reaction. Nat. Catal. 2020, 3, 762–770.

[12]

Ding, X. W.; Yang, S.; Zhou, S. Y.; Zhan, Y. X.; Lai, Y. C.; Zhou, X. M.; Xu, X. J.; Nie, H. G.; Huang, S. M.; Yang, Z. Biomimetic molecule catalysts to promote the conversion of polysulfides for advanced lithium-sulfur batteries. Adv. Funct. Mater. 2020, 30, 2003354.

[13]

Wang, S. X.; Liu, X. Y.; Zou, K. X.; Deng, Y. F.; Chen, G. H. Toward a practical Li-S battery enabled by synergistic confinement of a nitrogen-enriched porous carbon as a multifunctional interlayer and sulfur-host material. J. Electroanal. Chem. 2020, 858, 113797.

[14]

Zhang, B. W.; Sun, B.; Fu, P.; Liu, F.; Zhu, C.; Xu, B. M.; Pan, Y.; Chen, C. A review of the application of modified separators in inhibiting the “shuttle effect” of lithium-sulfur batteries. Membranes 2022, 12, 790.

[15]

Wei, Z. H.; Ren, Y. Q.; Sokolowski, J.; Zhu, X. D.; Wu, G. Mechanistic understanding of the role separators playing in advanced lithium-sulfur batteries. InfoMat 2020, 2, 483–508.

[16]

Zheng, B. B.; Yu, L. W.; Zhao, Y.; Xi, J. Y. Ultralight carbon flakes modified separator as an effective polysulfide barrier for lithium-sulfur batteries. Electrochim. Acta. 2019, 295, 910–917.

[17]

Chen, X.; Zhao, C. C.; Yang, K.; Sun, S. Y.; Bi, J. X.; Zhu, N. R.; Cai, Q.; Wang, J. A.; Yan, W. Conducting polymers meet lithium-sulfur batteries: Progress, challenges, and perspectives. Energy Environ. Mater. 2022, 6, e12483.

[18]

Wu, J. H.; Liu, S. F.; Han, F. D.; Yao, X. Y.; Wang, C. S. Lithium/sulfide all-solid-state batteries using sulfide electrolytes. Adv. Mater. 2021, 33, 2000751.

[19]

Wan, H. L.; Liu, G. Z.; Li, Y. L.; Weng, W.; Mwizerwa, J. P.; Tian, Z. Q.; Chen, L.; Yao, X. Y. Transitional metal catalytic pyrite cathode enables ultrastable four-electron-based all-solid-state lithium batteries. ACS Nano 2019, 13, 9551–9560.

[20]

Liu, Z. C.; Zhang, F.; Gu, S. C.; Lv, W. Applications of titanium-based compounds for lithium-sulfur batteries (in Chinese). Inorg. Chem. Ind. 2021, 53, 14–22.

[21]

Zhang, X. Q.; Yuan, W.; Yang, Y.; Yang, S. Z.; Wang, C.; Yuan, Y. H.; Wu, Y. P.; Kang, W. Q.; Tang, Y. Green and facile fabrication of porous titanium dioxide as efficient sulfur host for advanced lithium-sulfur batteries: An air oxidation strategy. J. Colloid Interface Sci. 2021, 583, 157–165.

[22]

Li, T. T.; Guo, R. S.; Sun, X. H.; Li, F. Y.; Zhao, X. Q.; Wang, S. H.; Meng, L. C.; Luo, H. L.; Wan, Y. Z. Chemisorption of polysulfides by keto groups modified Li4Ti5O12 nanofibers with 3D interwove network structure for LSBs. Chem. Eng. J. 2022, 429, 132202.

[23]

Cheng, Z. B.; Chen, Y. L.; Yang, Y. S.; Zhang, L. J.; Pan, H.; Fan, X.; Xiang, S. C.; Zhang, Z. J. Metallic MoS2 Nanoflowers decorated graphene nanosheet catalytically boosts the volumetric capacity and cycle life of lithium-sulfur batteries. Adv. Energy Mater. 2021, 11, 2003718.

[24]

Deng, S. G.; Shi, X. T.; Zhao, Y.; Wang, C.; Wu, J. H.; Yao, X. Y. Catalytic Mo2C decorated N-doped honeycomb-like carbon network for high stable lithium-sulfur batteries. Chem. Eng. J. 2022, 433, 133683.

[25]

Ma, W. J.; Shao, Z. T.; Yao, J.; Zhao, K. X.; Ma, X. Z.; Wu, L. L.; Zhang, X. T. Mott–Schottky electrocatalyst selectively mediates the sulfur species conversion in lithium-sulfur batteries. J. Colloid Interface Sci. 2023, 631, 114–124.

[26]

Yuan, W.; Qiu, Z. Q.; Wang, C.; Yuan, Y. H.; Yang, Y.; Zhang, X. Q.; Ye, Y. T.; Tang, Y. Design and interface optimization of a sandwich-structured cathode for lithium-sulfur batteries. Chem. Eng. J. 2020, 381, 122648.

[27]

Wang, T.; He, J. R.; Zhu, Z.; Cheng, X. B.; Zhu, J.; Lu, B. G.; Wu, Y. P. Heterostructures regulating lithium polysulfides for advanced lithium-sulfur batteries. Adv. Mater. 2023, 35, 2303520.

[28]

Hernandez, V. S.; Martinez, L. M. T.; Mather, G. C.; West, A. R. Stoichiometry, structures and polymorphism of spinel-like phases, Li1.33 x Zn2−2 x Ti1+0.67 x O4. J. Mater. Chem. 1996, 6, 1533–1536.

[29]

Zhang, L. L.; Wang, Y. J.; Niu, Z. Q.; Chen, J. Advanced nanostructured carbon-based materials for rechargeable lithium-sulfur batteries. Carbon 2019, 141, 4003–416.

[30]

Zhao, S. P.; Li, Y. P.; Zhang, F. X.; Guo, J. L. Li4Ti5O12 nanowire array as a sulfur host for high performance lithium sulfur battery. J. Alloys Compd. 2019, 805, 873–879.

[31]

Wang, R.; Qin, J. L.; Pei, F.; Li, Z. Z.; Xiao, P.; Huang, Y. H.; Yuan, L. X.; Wang, D. L. Ni single atoms on hollow nanosheet assembled carbon flowers optimizing polysulfides conversion for Li-S batteries. Adv. Funct. Mater. 2023, 33, 2305991.

[32]

Zuo, Y. Z.; Zhu, Y. J.; Tang, X. S.; Zhao, M.; Ren, P. J.; Su, W. M.; Tang, Y. F.; Chen, Y. F. MnO2 supported on acrylic cloth as functional separator for high-performance lithium-sulfur batteries. J. Power Sources. 2020, 464, 228181.

[33]

Jung, H. G.; Hassoun, J.; Park, J. B.; Sun, Y. K.; Scrosati, B. An improved high-performance lithium-air battery. Nat. Chem. 2012, 4, 579–585.

[34]
Bard, A. J.; Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications, 2nd ed.; Wiley: New York, 2000.
[35]

Li, Z. J.; Zhou, Y. C.; Wang, Y.; Lu, Y. C. Solvent-mediated Li2S electrodeposition: A critical manipulator in lithium-sulfur batteries. Adv. Energy Mater. 2019, 9, 1802207.

[36]

Xiao, R.; Yu, T.; Yang, S.; Zhang, X. Y.; Hu, T. Z.; Xu, R. G.; Qu, Z. Y.; Hu, G. J.; Sun, Z. H.; Li, F. Non-carbon-dominated catalyst architecture enables double-high-energy-density lithium-sulfur batteries. Adv. Funct. Mater. 2023, 34, 2308210.

[37]

Yang, Y.; Zheng, G. Y.; Cui, Y. Nanostructured sulfur cathodes. Chem. Soc. Rev. 2013, 42, 3018–3032.

[38]

An, D. C.; Shen, L.; Lei, D. N.; Wang, L. H.; Ye, H.; Li, B. H.; Kang, F. Y.; He, Y. B. An ultrathin and continuous Li4Ti5O12 coated carbon nanofiber interlayer for high rate lithium sulfur battery. J. Energy Chem. 2019, 31, 19–26.

[39]

Wang, Z. Y.; Zhang, B. H.; Liu, S.; Li, G. R.; Yan, T. Y.; Gao, X. P. Nicke-platinum alloy nanocrystallites with high-index facets as highly effective core catalyst for lithium-sulfur batteries. Adv. Funct. Mater. 2022, 32, 2200893.

[40]

Hagen, M.; Schiffels, P.; Hammer, M.; Dörfler, S.; Tübke, J.; Hoffmann, M. J.; Althues, H.; Kaskel, S. In-situ Raman investigation of polysulfide formation in Li-S cells. J. Electrochem. Soc. 2013, 160, A1205–A1214.

Nano Research
Pages 6087-6094
Cite this article:
Qian M, Tang Y, Liu L, et al. Li2ZnTi3O8 as the host–separator modifier with efficient polysulfides trapping and fast Li+ diffusion for lithium-sulfur batteries. Nano Research, 2024, 17(7): 6087-6094. https://doi.org/10.1007/s12274-024-6563-y
Topics:

754

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 10 December 2023
Revised: 30 January 2024
Accepted: 12 February 2024
Published: 23 March 2024
© Tsinghua University Press 2024
Return