Journal Home > Online First

After explorations in a diversity of single-atom nanozymes (SAzymes), developing dual-centered SAzymes becomes a promising approach for superior catalytic performance. But confusing mechanisms including atomic coordination, spatial configuration, and metal–metal atom interaction hinder the development and design of SAzymes. Herein, a dual-centered Fe-Cu-Nx SAzyme exhibits excellent peroxidase (POD)- and catalase (CAT)-like activities with d-band center (εd) coordination of Fe and Cu in multiple reaction stages, which plays a critical role in the adsorption of H2O2 molecule and H2O and O2 release. Therefore, the d-band center coordination, which can be represented by εd(Fe)–εd(Cu) shifts, leads to the competition between one-side and bilateral adsorption, which determines the favorable reaction path with lower energy barriers. Based on experimental statistics, simulated formation energies, and reaction barriers, 3 configurations, Fe-Cu-N6-I, Fe-Cu-N8-II, and Fe-Cu-N8-III, are modeled and validated. Impressively, configuration-dependent catalytic selectivity and the competition between one-side and bilateral adsorption can be unveiled by d-band center coordination paradigm analysis. Theoretical simulations suggest that the unsymmetrical charge distribution over the three Fe-Cu configurations could tune the adsorption strength compared with the counterparts FeN4 and CuN4. The present work provides a potential route for optimizing enzyme-like catalysis by designing the dual- or even triple-metal SAzymes, which demonstrates the large space to modulate the metal atomic configuration and interaction.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

D-band center coordination modulated enzyme-like activity in Fe-Cu dual-metal single-atom nanozymes

Show Author's information Ling Liu1,§Shaofang Zhang1,§Guo Li2Yadong Zhe1Jiamin Liu2Xinxu Zhang2Jiahao Wei2Xin Sun1Yonghui Li2( )Xiao-Dong Zhang1,2( )
Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China

§ Ling Liu and Shaofang Zhang contributed equally to this work.

Abstract

After explorations in a diversity of single-atom nanozymes (SAzymes), developing dual-centered SAzymes becomes a promising approach for superior catalytic performance. But confusing mechanisms including atomic coordination, spatial configuration, and metal–metal atom interaction hinder the development and design of SAzymes. Herein, a dual-centered Fe-Cu-Nx SAzyme exhibits excellent peroxidase (POD)- and catalase (CAT)-like activities with d-band center (εd) coordination of Fe and Cu in multiple reaction stages, which plays a critical role in the adsorption of H2O2 molecule and H2O and O2 release. Therefore, the d-band center coordination, which can be represented by εd(Fe)–εd(Cu) shifts, leads to the competition between one-side and bilateral adsorption, which determines the favorable reaction path with lower energy barriers. Based on experimental statistics, simulated formation energies, and reaction barriers, 3 configurations, Fe-Cu-N6-I, Fe-Cu-N8-II, and Fe-Cu-N8-III, are modeled and validated. Impressively, configuration-dependent catalytic selectivity and the competition between one-side and bilateral adsorption can be unveiled by d-band center coordination paradigm analysis. Theoretical simulations suggest that the unsymmetrical charge distribution over the three Fe-Cu configurations could tune the adsorption strength compared with the counterparts FeN4 and CuN4. The present work provides a potential route for optimizing enzyme-like catalysis by designing the dual- or even triple-metal SAzymes, which demonstrates the large space to modulate the metal atomic configuration and interaction.

Keywords: single-atom catalysis, Fe-Cu dual-metal, d-band center coordination, enzyme mimicking, competitive adsorption mechanisms

References(76)

[1]

Gao, L. Z.; Zhuang, J.; Nie, L.; Zhang, J. B.; Zhang, Y.; Gu, N.; Wang, T. H.; Feng, J.; Yang, D. L.; Perrett, S. et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583.

[2]

Liu, H. L.; Li, Y. H.; Sun, S.; Xin, Q.; Liu, S. H.; Mu, X. Y.; Yuan, X.; Chen, K.; Wang, H.; Varga, K. et al. Catalytically potent and selective clusterzymes for modulation of neuroinflammation through single-atom substitutions. Nat. Commun. 2021, 12, 114.

[3]

Ma, H. Z.; Zhang, X. N.; Liu, L.; Huang, Y.; Sun, S.; Chen, K.; Xin, Q.; Liu, P. F.; Yan, Y. X.; Wang, Y. L. et al. Bioactive NIR-II gold clusters for three-dimensional imaging and acute inflammation inhibition. Sci. Adv. 2023, 9, eadh7828.

[4]

Huang, Y.; Chen, K.; Liu, L.; Ma, H. Z.; Zhang, X. N.; Tan, K. X.; Li, Y.; Liu, Y.; Liu, C. L.; Wang, H. et al. Single atom-engineered NIR-II gold clusters with ultrahigh brightness and stability for acute kidney injury. Small 2023, 19, 2300145.

[5]

Shen, X. M.; Liu, W. Q.; Gao, X. J.; Lu, Z. H.; Wu, X. C.; Gao, X. F. Mechanisms of oxidase and superoxide dismutation-like activities of gold, silver, platinum, and palladium, and their alloys: A general way to the activation of molecular oxygen. J. Am. Chem. Soc. 2015, 137, 15882–15891.

[6]

Li, Q. Z.; Fan, H. Z.; Wang, Z. Z.; Zheng, J. J.; Fan, K. L.; Yan, X. Y.; Gao, X. F. Mechanism and kinetics-guided discovery of nanometal scissors to cut phosphoester bonds. ACS Catal. 2023, 13, 504–514.

[7]
Fan, H. Z.; Zheng, J. J.; Xie, J. Y.; Liu, J. W.; Gao, X. F.; Yan, X. Y.; Fan, K. L.; Gao, L. Z. Surface ligand engineering ruthenium nanozyme superior to horseradish peroxidase for enhanced immunoassay. Adv. Mater., in press, https://doi.org/10.1002/adma.202300387.
DOI
[8]

Wang, J. Y.; Mu, X. Y.; Li, Y. H.; Xu, F. J.; Long, W.; Yang, J.; Bian, P. X.; Chen, J. C.; Ouyang, L. F.; Liu, H. L. et al. Hollow PtPdRh nanocubes with enhanced catalytic activities for in vivo clearance of radiation-induced ROS via surface-mediated bond breaking. Small 2018, 14, 1703736.

[9]

Mu, X. Y.; Wang, J. Y.; Li, Y. H.; Xu, F. J.; Long, W.; Ouyang, L. F.; Liu, H. L.; Jing, Y. Q.; Wang, J. Y.; Dai, H. T. et al. Redox trimetallic nanozyme with neutral environment preference for brain injury. ACS Nano 2019, 13, 1870–1884.

[10]

Wang, Z. Z.; Shen, X. M.; Gao, X. F. Density functional theory mechanistic insight into the peroxidase- and oxidase-like activities of nanoceria. J. Phys. Chem. C 2021, 125, 23098–23104.

[11]

Hu, Y. H.; Gao, X. J.; Zhu, Y. Y.; Muhammad, F.; Tan, S. H.; Cao, W.; Lin, S. C.; Jin, Z.; Gao, X. F.; Wei, H. Nitrogen-doped carbon nanomaterials as highly active and specific peroxidase mimics. Chem. Mater. 2018, 30, 6431–6439.

[12]

Mu, X. Y.; Wang, J. Y.; He, H.; Li, Q. F.; Yang, B.; Wang, J. H.; Liu, H. L.; Gao, Y. L.; Ouyang, L. F.; Sun, S. et al. An oligomeric semiconducting nanozyme with ultrafast electron transfers alleviates acute brain injury. Sci. Adv. 2021, 7, eabk1210.

[13]

Liang, Q.; Xi, J. Q.; Gao, X. J.; Zhang, R. F.; Yang, Y. L.; Gao, X. F.; Yan, X. Y.; Gao, L. Z.; Fan, K. L. A metal-free nanozyme-activated prodrug strategy for targeted tumor catalytic therapy. Nano Today 2020, 35, 100935.

[14]

Lu, M. J.; Wang, J. L.; Ren, G. Y.; Qin, F. J.; Zhao, Z. Q.; Li, K.; Chen, W. X.; Lin, Y. Q. Superoxide-like Cu/GO single-atom catalysts nanozyme with high specificity and activity for removing superoxide free radicals. Nano Res. 2022, 15, 8804–8809.

[15]

Fan, K. L.; Xi, J. Q.; Fan, L.; Wang, P. X.; Zhu, C. H.; Tang, Y.; Xu, X. D.; Liang, M. M.; Jiang, B.; Yan, X. Y. et al. In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy. Nat. Commun. 2018, 9, 1440

[16]

Tang, G. H.; He, J. Y.; Liu, J. W.; Yan, X. Y.; Fan, K. L. Nanozyme for tumor therapy: Surface modification matters. Exploration 2021, 1, 75–89.

[17]

Yan, R. J.; Sun, S.; Yang, J.; Long, W.; Wang, J. Y.; Mu, X. Y.; Li, Q. F.; Hao, W. T.; Zhang, S. F.; Liu, H. L. et al. Nanozyme-based bandage with single-atom catalysis for brain trauma. ACS Nano 2019, 13, 11552–11560.

[18]

Wei, H.; Wang, E. K. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem. Soc. Rev. 2013, 42, 6060–6093.

[19]

Liu, B. W.; Huang, Z. C.; Liu, J. W. Boosting the oxidase mimicking activity of nanoceria by fluoride capping: Rivaling protein enzymes and ultrasensitive F detection. Nanoscale 2016, 8, 13562–13567.

[20]

Wang, Q. Q.; Zhang, X. P.; Huang, L.; Zhang, Z. Q.; Dong, S. J. One-pot synthesis of Fe3O4 nanoparticle loaded 3D porous graphene nanocomposites with enhanced nanozyme activity for glucose detection. ACS Appl. Mater. Interfaces 2017, 9, 7465–7471.

[21]

Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeO x . Nat. Chem. 2011, 3, 634–641.

[22]

Yin, P. Q.; Yao, T.; Wu, Y. E.; Zheng, L. R.; Lin, Y.; Liu, W.; Ju, H. X.; Zhu, J. F.; Hong, X.; Deng, Z. X. et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem., Int. Ed. 2016, 128, 10958–10963.

[23]

Liu, P. X.; Zhao, Y.; Qin, R. X.; Mo, S. G.; Chen, G. X.; Gu, L.; Chevrier, D. M.; Zhang, P.; Guo, Q.; Zang, D. D. et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 2016, 352, 797–800.

[24]

Wang, A. Q.; Li, J.; Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2018, 2, 65–81.

[25]

Lang, R.; Xi, W.; Liu, J. C.; Cui, Y. T.; Li, T. B.; Lee, A. F.; Chen, F.; Chen, Y.; Li, L.; Li, L. et al. Non defect-stabilized thermally stable single-atom catalyst. Nat. Commun. 2019, 10, 234.

[26]

Cai, S. F.; Zhang, W.; Yang, R. Emerging single-atom nanozymes for catalytic biomedical uses. Nano Res. 2023, 16, 13056–13076.

[27]

Zhao, C.; Xiong, C.; Liu, X. K.; Qiao, M.; Li, Z. J.; Yuan, T. W.; Wang, J.; Qu, Y. T.; Wang, X. Q.; Zhou, F. Y. et al. Unraveling the enzyme-like activity of heterogeneous single atom catalyst. Chem. Commun. 2019, 55, 2285–2288.

[28]

Huo, M. F.; Wang, L. Y.; Wang, Y. W.; Chen, Y.; Shi, J. L. Nanocatalytic tumor therapy by single-atom catalysts. ACS Nano 2019, 13, 2643–2653.

[29]

Cao, F. F.; Sang, Y. J.; Liu, C. Y.; Bai, F. Q.; Zheng, L. R.; Ren, J. S.; Qu, X. G. Self-adaptive single-atom catalyst boosting selective ferroptosis in tumor cells. ACS Nano 2022, 16, 855–868.

[30]

Li, G. M.; Liu, H.; Hu, T. D.; Pu, F.; Ren, J. S.; Qu, X. G. Dimensionality engineering of single-atom nanozyme for efficient peroxidase-mimicking. J. Am. Chem. Soc. 2023, 145, 16835–16842.

[31]

Xu, B. L.; Wang, H.; Wang, W. W.; Gao, L. Z.; Li, S. S.; Pan, X. T.; Wang, H. Y.; Yang, H. L.; Meng, X. Q.; Wu, Q. W. et al. A single-atom nanozyme for wound disinfection applications. Angew. Chem., Int. Ed. 2019, 58, 4911–4916.

[32]

Zhu, D. M.; Ling, R. Y.; Chen, H.; Lyu, M.; Qian, H. S.; Wu, K. L.; Li, G. X.; Wang, X. W. Biomimetic copper single-atom nanozyme system for self-enhanced nanocatalytic tumor therapy. Nano Res. 2022, 15, 7320–7328.

[33]

Lu, X. Y.; Gao, S. S.; Lin, H.; Yu, L. D.; Han, Y. H.; Zhu, P.; Bao, W. C.; Yao, H. L.; Chen, Y.; Shi, J. L. Bioinspired copper single-atom catalysts for tumor parallel catalytic therapy. Adv. Mater. 2020, 32, 2002246.

[34]

Wu, Z. H.; Sun, Y. M.; Mu, S. D.; Bai, M. R.; Li, Q.; Ma, T.; Ma, L.; Chen, F.; Luo, X. L.; Ye, L. et al. Manganese-based antioxidase-inspired biocatalysts with axial Mn-N5 sites and 2D d-π-conjugated networks for rescuing stem cell fate. Angew. Chem., Int. Ed. 2023, 62, e202302329.

[35]

Chen, Y. J.; Wang, P. X.; Hao, H. G.; Hong, J. J.; Li, H. J.; Ji, S. F.; Li, A.; Gao, R.; Dong, J. C.; Han, X. D. et al. Thermal atomization of platinum nanoparticles into single atoms: An effective strategy for engineering high-performance nanozymes. J. Am. Chem. Soc. 2021, 143, 18643–18651.

[36]

Li, Z.; Liu, F. N.; Jiang, Y. Y.; Ni, P. J.; Zhang, C. H.; Wang, B.; Chen, C. X.; Lu, Y. Z. Single-atom Pd catalysts as oxidase mimics with maximum atom utilization for colorimetric analysis. Nano Res. 2022, 15, 4411–4420.

[37]

Zhu, L. Y.; Zhong, H.; Du, D.; Li, T.; Nguyen, H.; Beckman, S. P.; Xu, W. T.; Li, J. C.; Cheng, N.; Lin, Y. H. A peroxidase-like single-atom Fe-N5 active site for effective killing human lung adenocarcinoma cells. Nano Res. 2023, 16, 5216–5225.

[38]

Xi, H. Y.; Gu, H. F.; Han, Y. R.; You, T. T.; Wu, P. F.; Liu, Q. Q.; Zheng, L. R.; Liu, S. H.; Fu, Q.; Chen, W. X. et al. Peroxidase-like single Fe atoms anchored on Ti3C2T x MXene as surface enhanced Raman scattering substrate for the simultaneous discrimination of multiple antioxidants. Nano Res. 2023, 16, 10053–10060.

[39]

Shang, H. S.; Liu, D. Atomic design of carbon-based dual-metal site catalysts for energy applications. Nano Res. 2023, 16, 6477–6506.

[40]

Zhang, N. Q.; Zhang, X. X.; Kang, Y. K.; Ye, C. L.; Jin, R.; Yan, H.; Lin, R.; Yang, J. R.; Xu, Q.; Wang, Y. et al. A supported Pd2 dual-atom site catalyst for efficient electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 13388–13393.

[41]

Jiao, L.; Ye, W.; Kang, Y. K.; Zhang, Y.; Xu, W. Q.; Wu, Y.; Gu, W. L.; Song, W. Y.; Xiong, Y. J.; Zhu, C. Z. Atomically dispersed N-coordinated Fe-Fe dual-sites with enhanced enzyme-like activities. Nano Res. 2022, 15, 959–964.

[42]

Wang, Y.; Park, B. J.; Paidi, V. K.; Huang, R.; Lee, Y.; Noh, K. J.; Lee, K. S.; Han, J. W. Precisely constructing orbital coupling-modulated dual-atom Fe pair sites for synergistic CO2 electroreduction. ACS Energy Lett. 2022, 7, 640–649.

[43]

Li, M. H.; Chen, J. X.; Wu, W. W.; Wu, S. L.; Xu, L. L.; Dong, S. J. Diatomic Fe-Fe catalyst enhances the ability to degrade organic contaminants by nonradical peroxymonosulfate activation system. Nano Res. 2023, 16, 4678–4684.

[44]

Wang, J.; Huang, Z. Q.; Liu, W.; Chang, C. R.; Tang, H. L.; Li, Z. J.; Chen, W. X.; Jia, C. J.; Yao, T.; Wei, S. Q. et al. Design of N-coordinated dual-metal sites: A stable and active Pt-free catalyst for acidic oxygen reduction reaction. J. Am. Chem. Soc. 2017, 139, 17281–17284.

[45]

Lu, Z. Y.; Wang, B.; Hu, Y. F.; Liu, W.; Zhao, Y. F.; Yang, R. O.; Li, Z. P.; Luo, J.; Chi, B.; Jiang, Z. et al. An isolated zinc-cobalt atomic pair for highly active and durable oxygen reduction. Angew. Chem., Int. Ed. 2019, 58, 2622–2626.

[46]

Wang, D.; Liu, J.; Xi, J. B.; Jiang, J. Z.; Bai, Z. W. Pd-Fe dual-metal nanoparticles confined in the interface of carbon nanotubes/N-doped carbon for excellent catalytic performance. Appl. Surf. Sci. 2019, 489, 477–484.

[47]

Xu, J. Y.; Elangovan, A.; Li, J.; Liu, B. Graphene-based dual-metal sites for oxygen reduction reaction: A theoretical study. J. Phys. Chem. C 2021, 125, 2334–2344.

[48]

Chen, Z.; Liao, X. B.; Sun, C. L.; Zhao, K. N.; Ye, D. X.; Li, J. T.; Wu, G.; Fang, J. H.; Zhao, H. B.; Zhang, J. J. Enhanced performance of atomically dispersed dual-site Fe-Mn electrocatalysts through cascade reaction mechanism. Appl. Catal. B: Environ. 2021, 288, 120021.

[49]

Chen, D.; Li, G. F.; Chen, X.; Zhang, Q.; Sui, J.; Li, C. J.; Zhang, Y. C.; Hu, J.; Yu, J. H.; Yu, L. Y. et al. Developing nitrogen and Co/Fe/Ni multi-doped carbon nanotubes as high-performance bifunctional catalyst for rechargeable zinc-air battery. J. Colloid Interface Sci. 2021, 593, 204–213.

[50]

Zhong, X. W.; Ye, S. L.; Tang, J.; Zhu, Y. M.; Wu, D. J.; Gu, M.; Pan, H.; Xu, B. M. Engineering Pt and Fe dual-metal single atoms anchored on nitrogen-doped carbon with high activity and durability towards oxygen reduction reaction for zinc-air battery. Appl. Catal. B: Environ. 2021, 286, 119891.

[51]

Pedersen, A.; Barrio, J.; Li, A.; Jervis, R.; Brett, D. J. L.; Titirici, M. M.; Stephens, I. E. L. Dual-metal atom electrocatalysts: Theory, synthesis, characterization, and applications. Adv. Energy Mater. 2022, 12, 2270010

[52]

Zhou, Y. D.; Yang, W.; Utetiwabo, W.; Lian, Y. M.; Yin, X.; Zhou, L.; Yu, P. W.; Chen, R. J.; Sun, S. R. Revealing of active sites and catalytic mechanism in N-coordinated Fe,Ni dual-doped carbon with superior acidic oxygen reduction than single-atom catalyst. J. Phys. Chem. Lett. 2020, 11, 1404–1410.

[53]

Zhao, X.; Wang, F. L.; Kong, X. P.; Fang, R. Q.; Li, Y. W. Dual-metal hetero-single-atoms with different coordination for efficient synergistic catalysis. J. Am. Chem. Soc. 2021, 143, 16068–16077.

[54]

Zhao, X.; Fang, R. Q.; Wang, F. L.; Kong, X. P.; Li, Y. W. Dual-metal single atoms with dual coordination for the domino synthesis of natural flavones. JACS Au 2023, 3, 185–194.

[55]

Zeng, R. J.; Li, Y. L.; Hu, X. H.; Wang, W. J.; Li, Y. X.; Gong, H. X.; Xu, J. H.; Huang, L. T.; Lu, L. L.; Zhang, Y. F. et al. Atomically site synergistic effects of dual-atom nanozyme enhances peroxidase-like properties. Nano Lett. 2023, 23, 6073–6080.

[56]

Zhou, X. Y.; Gao, J. J.; Hu, Y. X.; Jin, Z. Y.; Hu, K. L.; Reddy, K. M.; Yuan, Q. H.; Lin, X.; Qiu, H. J. Theoretically revealed and experimentally demonstrated synergistic electronic interaction of CoFe dual-metal sites on N-doped carbon for boosting both oxygen reduction and evolution reactions. Nano Lett. 2022, 22, 3392–3399.

[57]

Zhu, J. B.; Xiao, M. L.; Ren, D. Z.; Gao, R.; Liu, X. Z.; Zhang, Z.; Luo, D.; Xing, W.; Su, D.; Yu, A. P. et al. Quasi-covalently coupled Ni–Cu atomic pair for synergistic electroreduction of CO. J. Am. Chem. Soc. 2022, 144, 9661–9671.

[58]

Zhang, S. F.; Li, Y. H.; Sun, S.; Liu, L.; Mu, X. Y.; Liu, S. H.; Jiao, M. L.; Chen, X. Z.; Chen, K.; Ma, H. Z. et al. Single-atom nanozymes catalytically surpassing naturally occurring enzymes as sustained stitching for brain trauma. Nat. Commun. 2022, 13, 4744.

[59]

Du, C.; Gao, Y. J.; Chen, H. Q.; Li, P.; Zhu, S. Y.; Wang, J. G.; He, Q. G.; Chen, W. A Cu and Fe dual-atom nanozyme mimicking cytochrome c oxidase to boost the oxygen reduction reaction. J. Mater. Chem. A 2020, 8, 16994–17001.

[60]

Zhou, X. Y.; Song, K. X.; Feng, Y.; Jiang, C.; Chen, Z. J.; Wang, Z. Z.; Yue, N. L.; Ge, X.; Zhang, W.; Zheng, W. T. Individually-atomic governing d–π* orbital interactions via Cu-promoted optimization of Fe-d band centers for high-efficiency zinc-air battery. Nano Res. 2023, 16, 4634–4642.

[61]

Han, A.; Wang, X. J.; Tang, K.; Zhang, Z. D.; Ye, C. L.; Kong, K. J.; Hu, H. B.; Zheng, L. R.; Jiang, P.; Zhao, C. X. et al. An adjacent atomic platinum site enables single-atom iron with high oxygen reduction reaction performance. Angew. Chem., Int. Ed. 2021, 60, 19262–19271.

[62]

Han, X. P.; Ling, X. F.; Yu, D. S.; Xie, D. Y.; Li, L. L.; Peng, S. J.; Zhong, C.; Zhao, N. Q.; Deng, Y. D.; Hu, W. B. Atomically dispersed binary Co-Ni sites in nitrogen-doped hollow carbon nanocubes for reversible oxygen reduction and evolution. Adv. Mater. 2019, 31, 1905622.

[63]

Hu, B. T.; Huang, A. J.; Zhang, X. J.; Chen, Z.; Tu, R. Y.; Zhu, W.; Zhuang, Z. B.; Chen, C.; Peng, Q.; Li, Y. D. Atomic Co/Ni dual sites with N/P-coordination as bifunctional oxygen electrocatalyst for rechargeable zinc-air batteries. Nano Res. 2021, 14, 3482–3488.

[64]

Lin, L. L.; Yu, Q. L.; Peng, M.; Li, A. W.; Yao, S. Y.; Tian, S. H.; Liu, X.; Li, A.; Jiang, Z.; Gao, R. et al. Atomically dispersed Ni/α-MoC catalyst for hydrogen production from methanol/water. J. Am. Chem. Soc. 2021, 143, 309–317.

[65]

Lang, R.; Du, X. R.; Huang, Y. K.; Jiang, X. Z.; Zhang, Q.; Guo, Y. L.; Liu, K. P.; Qiao, B. T.; Wang, A. Q.; Zhang, T. Single-atom catalysts based on the metal-oxide interaction. Chem. Rev. 2020, 120, 11986–12043.

[66]

Zhao, Y. F.; Zhou, H.; Zhu, X. R.; Qu, Y. T.; Xiong, C.; Xue, Z. G.; Zhang, Q. W.; Liu, X. K.; Zhou, F. Y.; Mou, X. M. et al. Simultaneous oxidative and reductive reactions in one system by atomic design. Nat. Catal. 2021, 4, 134–143.

[67]

Shan, J. Q.; Ye, C.; Jiang, Y. L.; Jaroniec, M.; Zheng, Y.; Qiao, S. Z. Metal–metal interactions in correlated single-atom catalysts. Sci. Adv. 2022, 8, eabo0762.

[68]

Shang, H. S.; Zhou, X. Y.; Dong, J. C.; Li, A.; Zhao, X.; Liu, Q. H.; Lin, Y.; Pei, J. J.; Li, Z.; Jiang, Z. L. et al. Engineering unsymmetrically coordinated Cu-S1N3 single atom sites with enhanced oxygen reduction activity. Nat. Commun. 2020, 11, 3049.

[69]

Ramaswamy, N.; Tylus, U.; Jia, Q. Y.; Mukerjee, S. Activity descriptor identification for oxygen reduction on nonprecious electrocatalysts: Linking surface science to coordination chemistry. J. Am. Chem. Soc. 2013, 135, 15443–15449.

[70]

Chen, Y. J.; Gao, R.; Ji, S. F.; Li, H. J.; Tang, K.; Jiang, P.; Hu, H. B.; Zhang, Z. D.; Hao, H. G.; Qu, Q. Y. et al. Atomic-level modulation of electronic density at cobalt single-atom sites derived from metal-organic frameworks: Enhanced oxygen reduction performance. Angew. Chem., Int. Ed. 2021, 60, 3212–3221.

[71]

Cao, R. G.; Thapa, R.; Kim, H.; Xu, X. D.; Kim, M. G.; Li, Q.; Park, N.; Liu, M. L.; Cho, J. Promotion of oxygen reduction by a bio-inspired tethered iron phthalocyanine carbon nanotube-based catalyst. Nat. Commun. 2013, 4, 2076.

[72]

Chen, K. J.; Liu, K.; An, P. D.; Li, H. J. W.; Lin, Y. Y.; Hu, J. H.; Jia, C. K.; Fu, J. W.; Li, H. M.; Liu, H. et al. Iron phthalocyanine with coordination induced electronic localization to boost oxygen reduction reaction. Nat. Commun. 2020, 11, 4173.

[73]

Osmieri, L.; Videla, A. H. A. M.; Ocón, P.; Specchia, S. Kinetics of oxygen electroreduction on Me-N-C (Me = Fe, Co, Cu) catalysts in acidic medium: Insights on the effect of the transition metal. J. Phys. Chem. C 2017, 121, 17796–17817.

[74]

Ji, S. F.; Jiang, B.; Hao, H. G.; Chen, Y. J.; Dong, J. C.; Mao, Y.; Zhang, Z. D.; Gao, R.; Chen, W. X.; Zhang, R. F. et al. Matching the kinetics of natural enzymes with a single-atom iron nanozyme. Nat. Catal. 2021, 4, 407–417.

[75]

Ma, C. B.; Xu, Y. P.; Wu, L. X.; Wang, Q.; Zheng, J. J.; Ren, G. X.; Wang, X. Y.; Gao, X. F.; Zhou, M.; Wang, M. et al. Guided synthesis of a Mo/Zn dual single-atom nanozyme with synergistic effect and peroxidase-like activity. Angew. Chem. 2022, 134, e202116170.

[76]

Yuan, Q. L.; Zhao, J. J.; Mok, D. H.; Zheng, Z. M.; Ye, Y. X.; Liang, C. H.; Zhou, L.; Back, S.; Jiang, K. Electrochemical hydrogen peroxide synthesis from selective oxygen reduction over metal selenide catalysts. Nano Lett. 2022, 22, 1257–1264.

File
6561_ESM.pdf (2.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 05 December 2023
Revised: 02 February 2024
Accepted: 12 February 2024
Published: 13 April 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (Nos. 2021YFF1200700 and 2021YFF1200701), the National Natural Science Foundation of China (Nos. 91859101, 81971744, U1932107, 82001952, 11804248, 82302361, and 82302381), Outstanding Youth Funds of Tianjin (No. 2021FJ-0009), STI 2030-Major Projects (No. 2022ZD0210200), National Natural Science Foundation of Tianjin (Nos. 19JCZDJC34000, 20JCYBJC00940, 21JCYBJC00550, 21JCZDJC00620, and 21JCYBJC00490), the Key Projects of Tianjin Natural Fund (No. 21JCZDJC00490), the Innovation Foundation of Tianjin University, China Postdoctoral Science Foundation (No. 2023M732601), and CAS Interdisciplinary Innovation Team (No. JCTD-2020-08).

Return