Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Stretchable and self-healable materials with excellent mechanical performance hold great promise for applications in flexible functional devices. Despite rapid developments, achieving high mechanical strength, extreme stretchability, and rapid self-healing capability in self-healing materials remains challenging. Here, inspired by the hierarchical structure and unique network of connective tissue, we fabricated a class of bionic nanocomposites with high stretchability, outstanding mechanical strength, and rapid self-healing ability by integrating the bottlebrush copolymer functionalized graphene oxide (BCP@GO) into a polyurethane (PU) matrix via in-situ polymerization. The bottlebrush copolymer (BCP) acted as a bond bridge for linking the GO nanosheets (noncovalent interaction) and PU chains (covalent and hydrogen-bond interaction). The covalent interactions were responsible for providing high mechanical strength, and the abundant hydrogen-bond-based cross-links realized extreme stretchability and rapid self-healing capability. The resultant BCP@GO/PU nanocomposite with only 0.5 wt.% GO loading exhibited excellent mechanical properties (tensile strength increased by 52.1%, up to 28.6 MPa; toughness increased by 70.8%, up to 256.9 MJ/m3; elongation at break increased by 12.8%, up to 1847.2%), exceptional rapid and efficient self-healing ability (~ 99% with 20 s NIR irradiation), as well as superior shape memory and recyclable capability. This study develops a new strategy for designing high-performance self-healing nanocomposites and unfolds broad application prospects in smart materials.
Benas, J. S.; Liang, F. C.; Venkatesan, M.; Yan, Z. L.; Chen, W. C.; Han, S. T.; Zhou, Y.; Kuo, C. C. Recent development of sustainable self-healable electronic skin applications, a review with insight. Chem. Eng. J. 2023, 466, 142945.
Liu, J.; Zhang, L.; Wang, N.; Zhao, H.; Li, C. Z. Nanofiber-reinforced transparent, tough, and self-healing substrate for an electronic skin with damage detection and program-controlled autonomic repair. Nano Energy 2022, 96, 107108.
Peng, Y.; Gu, S. Y.; Wu, Q.; Xie, Z. T.; Wu, J. R. High-performance self-healing polymers. Acc. Mater. Res. 2023, 4, 323–333.
Xu, J. H.; Li, Y. K.; Liu, T.; Wang, D.; Sun, F. Y.; Hu, P.; Wang, L.; Chen, J. Y.; Wang, X. B.; Yao, B. W. et al. Room-temperature self-healing soft composite network with unprecedented crack propagation resistance enabled by a supramolecular assembled lamellar structure. Adv. Mater. 2023, 35, 2300937.
Park, S.; Thangavel, G.; Parida, K.; Li, S. H.; Lee, P. S. A stretchable and self-healing energy storage device based on mechanically and electrically restorative liquid-metal particles and carboxylated polyurethane composites. Adv. Mater. 2019, 31, 1805536.
Li, F. L.; Xu, Z. F.; Hu, H.; Kong, Z. Y.; Chen, C.; Tian, Y.; Zhang, W. W.; Ying, W. B.; Zhang, R. Y.; Zhu, J. A polyurethane integrating self-healing, anti-aging and controlled degradation for durable and eco-friendly e-skin. Chem. Eng. J. 2021, 410, 128363.
Guan, T. T.; Wang, X. H.; Zhu, Y. L.; Qian, L.; Lu, Z. Y.; Men, Y. F.; Li, J.; Wang, Y. T.; Sun, J. Q. Mechanically robust skin-like poly(urethane-urea) elastomers cross-linked with hydrogen-bond arrays and their application as high-performance ultrastretchable conductors. Macromolecules 2022, 55, 5816–5825.
Zhou, J. L.; Yuan, Z. H.; Liu, H.; He, W. X.; Yu, K. J.; Chen, K. L. Bio-inspired self-healing flexible films with pomegranate-shaped nanosphere loaded graphene for electromagnetic interference shielding and superhydrophobicity performances. J. Mater. Chem. A 2022, 10, 24331–24344.
Song, C. J.; Zhang, Y. H.; Bao, J. Y.; Wang, Z. Z.; Zhang, L. Y.; Sun, J.; Lan, R. C.; Yu, Z.; Zhu, S. Q.; Yang, H. Light-responsive programmable shape-memory soft actuator based on liquid crystalline polymer/polyurethane network. Adv. Funct. Mater. 2023, 33, 2213771.
Wu, H.; Zhu, Z. L.; Gao, N. J.; Ma, L.; Li, J. W.; Liu, F. C. The biomimetic design provides efficient self-healing of ultrahigh-tough and damage-warning bio-based elastomer for protective clothing of metals. Nano Res. 2023, 16, 10587–10596.
Wang, S.; Fang, Y. L.; He, H.; Zhang, L.; Li, C. A.; Ouyang, J. Y. Wearable stretchable dry and self-adhesive strain sensors with conformal contact to skin for high-quality motion monitoring. Adv. Funct. Mater. 2021, 31, 2007495.
Ikura, R.; Park, J.; Osaki, M.; Yamaguchi, H.; Harada, A.; Takashima, Y. Design of self-healing and self-restoring materials utilizing reversible and movable crosslinks. NPG Asia Mater. 2022, 14, 10.
Cao, J.; Lu, C. H.; Zhuang, J.; Liu, M. X.; Zhang, X. X.; Yu, Y. M.; Tao, Q. C. Multiple hydrogen bonding enables the self-healing of sensors for human-machine interactions. Angew. Chem., Int. Ed. 2017, 56, 8795–8800.
Liu, X. H.; Su, G. H.; Guo, Q. Q.; Lu, C. H.; Zhou, T.; Zhou, C. L.; Zhang, X. X. Hierarchically structured self-healing sensors with tunable positive/negative piezoresistivity. Adv. Funct. Mater. 2018, 28, 1706658.
Wang, X. Y.; Xu, J.; Zhang, Y. M.; Wang, T. M.; Wang, Q. H.; Li, S.; Yang, Z. H.; Zhang, X. R. A stretchable, mechanically robust polymer exhibiting shape-memory-assisted self-healing and clustering-triggered emission. Nat. Commun. 2023, 14, 4712.
Chen, J.; Gao, Y. Y.; Shi, L.; Yu, W.; Sun, Z. J.; Zhou, Y. F.; Liu, S.; Mao, H.; Zhang, D. Y.; Lu, T. Q. et al. Phase-locked constructing dynamic supramolecular ionic conductive elastomers with superior toughness, autonomous self-healing and recyclability. Nat. Commun. 2022, 13, 4868.
Guo, R.; Zhang, Q.; Wu, Y. S.; Chen, H. B.; Liu, Y. H.; Wang, J. J.; Duan, X. L.; Chen, Q.; Ge, Z. S.; Zhang, Y. F. Extremely strong and tough biodegradable poly(urethane) elastomers with unprecedented crack tolerance via hierarchical hydrogen-bonding interactions. Adv. Mater. 2023, 35, 2212130.
Xu, Y. W.; Zhou, S.; Wu, Z. H.; Yang, X. Y.; Li, N.; Qin, Z. H.; Jiao, T. F. Room-temperature self-healing and recyclable polyurethane elastomers with high strength and superior robustness based on dynamic double-crosslinked structure. Chem. Eng. J. 2023, 466, 143179.
Yanagisawa, Y.; Nan, Y. L.; Okuro, K.; Aida, T. Mechanically robust, readily repairable polymers via tailored noncovalent cross-linking. Science 2017, 359, 72–76.
Yang, W. J.; Zhu, Y. L.; Liu, T. X.; Puglia, D.; Kenny, J. M.; Xu, P. W.; Zhang, R.; Ma, P. M. Multiple structure reconstruction by dual dynamic crosslinking strategy inducing self-reinforcing and toughening the polyurethane/nanocellulose elastomers. Adv. Funct. Mater. 2023, 33, 2213294.
Li, T. Q.; Fang, X.; Pang, Q.; Huang, W. M.; Sun, J. Q. Healable and shape editable supercapacitors based on shape memory polyurethanes. J. Mater. Chem. A 2019, 7, 17456–17465.
Li, Z. Q.; Zhu, Y. L.; Niu, W. W.; Yang, X.; Jiang, Z. Y.; Lu, Z. Y.; Liu, X. K.; Sun, J. Q. Healable and recyclable elastomers with record-high mechanical robustness, unprecedented crack tolerance, and superhigh elastic restorability. Adv. Mater. 2021, 33, 2101498.
Wang, Y. Y.; Shu, R.; Zhang, X. X. Strong, supertough and self-healing biomimetic layered nanocomposites enabled by reversible interfacial polymer chain sliding. Angew. Chem., Int. Ed. 2023, 62, e202303446.
Lotfi Mayan Sofla, R.; Rezaei, M.; Babaie, A.; Nasiri, M. Preparation of electroactive shape memory polyurethane/graphene nanocomposites and investigation of relationship between rheology, morphology and electrical properties. Composites B Eng. 2019, 175, 107090.
Zhou, J. L.; Liu, H.; Sun, Y. Y.; Wang, C. X.; Chen, K. L. Self-healing titanium dioxide nanocapsules-graphene/multi-branched polyurethane hybrid flexible film with multifunctional properties toward wearable electronics. Adv. Funct. Mater. 2021, 31, 2011133.
Du, W. N.; Jin, Y.; Shi, L. J.; Shen, Y. C.; Lai, S. Q.; Zhou, Y. T. NIR-light-induced thermoset shape memory polyurethane composites with self-healing and recyclable functionalities. Composites B Eng. 2020, 195, 108092.
Zhu, X. B.; Zhang, W. J.; Lu, G. M.; Zhao, H. C.; Wang, L. P. Ultrahigh mechanical strength and robust room-temperature self-healing properties of a polyurethane-graphene oxide network resulting from multiple dynamic bonds. ACS Nano 2022, 16, 16724–16735.
Zhou, Z. Q.; Wang, X. T.; Yu, H. C.; Yu, C. L.; Zhang, F. A. Dynamic cross-linked polyurea/polydopamine nanocomposites for photoresponsive self-healing and photoactuation. Macromolecules 2022, 55, 2193–2201.
Li, Q. Y.; He, H.; Ye, X.; Guan, F. R.; Ai, Y. X.; Shen, Y.; Zhang, C. NIR light-induced functionalized MXene as a dynamic-crosslinker for reinforced polyurethane composites with shape memory and self-healing. Chem. Eng. J. 2023, 475, 146500.
Tian, W.; Wang, S. L.; Guo, Z. L.; Yu, H. T.; Tian, L. M. Antifouling and anticorrosion function of repeatable self-healing polyurethane composite inspired by the self-healing principle of cartilage tissue. Chem. Eng. J. 2023, 462, 142346.
Habibpour, S.; Um, J. G.; Jun, Y. S.; Bhargava, P.; Park, C. B.; Yu, A. P. Structural impact of graphene nanoribbon on mechanical properties and anti-corrosion performance of polyurethane nanocomposites. Chem. Eng. J. 2021, 405, 126858.
Xu, W. Q.; Lv, Y. D.; Kong, M. Q.; Huang, Y. J.; Yang, Q.; Li, G. X. In-situ polymerization of eco-friendly waterborne polyurethane/polydopamine-coated graphene oxide composites towards enhanced mechanical properties and UV resistance. J. Cleaner Prod. 2022, 373, 133942
Wang, Y. Y.; Huang, X.; Zhang, X. X. Ultrarobust, tough and highly stretchable self-healing materials based on cartilage-inspired noncovalent assembly nanostructure. Nat. Commun. 2021, 12, 1291.
Zhu, X. B.; Zheng, W. R.; Zhao, H. C.; Wang, L. P. Non-covalent assembly of a super-tough, highly stretchable and environmentally adaptable self-healing material inspired by nacre. J. Mater. Chem. A 2021, 9, 20737–20747.
Zhang, C. Q.; Mcadams II, D. A.; Grunlan, J. C. Nano/micro-manufacturing of bioinspired materials: A review of methods to mimic natural structures. Adv. Mater. 2016, 28, 6292–6321.
Qi, M.; Yang, R. Q.; Wang, Z.; Liu, Y. T.; Zhang, Q. C.; He, B.; Li, K. W.; Yang, Q.; Wei, L.; Pan, C. F. et al. Bioinspired self-healing soft electronics. Adv. Funct. Mater. 2023, 33, 2214479.
Freedman, B. R.; Mooney, D. J. Biomaterials to mimic and heal connective tissues. Adv. Mater. 2019, 31, 1806695.
Li, W. H.; Liu, H.; Wang, H.; Chen, Y. W.; Peng, Y.; Wu, H. T.; Hou, Y. J.; Huang, Y.; Yuan, Z. Y.; Ye, B. J. et al. Biomimetic hybrid networks with excellent toughness and self-healing ability in the glassy state. Chem. Mater. 2023, 35, 682–691.
Sun, Y. W.; Liu, Z.; Chen, F.; Xu, M.; Zhang, J. L.; Li, W. Hierarchical cross-linked poly(caprolactone-co-urethane) toward connective tissue-like properties and multifunctional integration. Chem. Mater. 2019, 31, 9295–9306.
Zhang, S. H.; Jiang, Z. Y.; Shi, J. F.; Wang, X. Y.; Han, P. P.; Qian, W. L. An efficient, recyclable, and stable immobilized biocatalyst based on bioinspired microcapsules-in-hydrogel scaffolds. ACS Appl. Mater. Interfaces 2016, 8, 25152–25161.
Kim, I. H.; Yun, T.; Kim, J. E.; Yu, H.; Sasikala, S. P.; Lee, K. E.; Koo, S. H.; Hwang, H.; Jung, H. J.; Park, J. Y. et al. Mussel-inspired defect engineering of graphene liquid crystalline fibers for synergistic enhancement of mechanical strength and electrical conductivity. Adv. Mater. 2018, 30, 1803267.
Kim, H.; Kim, D. W.; Vasagar, V.; Ha, H.; Nazarenko, S.; Ellison, C. J. Polydopamine-graphene oxide flame retardant nanocoatings applied via an aqueous liquid crystalline scaffold. Adv. Funct. Mater. 2018, 28, 1803172.
Nouri, N.; Rezaei, M.; Mayan Sofla, R. L.; Babaie, A. Synthesis of reduced octadecyl isocyanate-functionalized graphene oxide nanosheets and investigation of their effect on physical, mechanical, and shape memory properties of polyurethane nanocomposites. Compos. Sci. Technol. 2020, 194, 108170.
Chen, S. L.; Shen, B.; Zhang, F.; Hong, H.; Pan, J. H. Mussel-inspired graphene film with enhanced durability as a macroscale solid lubricant. ACS Appl. Mater. Interfaces 2019, 11, 31386–31392.
Zhang, H.; He, Q. X.; Yu, H. T.; Qin, M. M.; Feng, Y. Y.; Feng, W. A bioinspired polymer-based composite displaying both strong adhesion and anisotropic thermal conductivity. Adv. Funct. Mater. 2023, 33, 2211985.
Du, W. N.; Jin, Y.; Lai, S. Q.; Shi, L. J.; Shen, Y. C.; Yang, H. Multifunctional light-responsive graphene-based polyurethane composites with shape memory, self-healing, and flame retardancy properties. Composites A Appl. Sci. Manuf. 2020, 128, 105686.
Dai, S. Y.; Yue, S. S.; Ning, Z. B.; Jiang, N.; Gan, Z. H. Polydopamine nanoparticle-reinforced near-infrared light-triggered shape memory polycaprolactone-polydopamine polyurethane for biomedical implant applications. ACS Appl. Mater. Interfaces 2022, 14, 14668–14676.
Liu, X. C.; Wu, J. Y.; Tang, Z. L.; Wu, J. X.; Huang, Z. Y.; Yin, X. S.; Du, J. H.; Lin, X. F.; Lin, W. J.; Yi, G. B. Photoreversible bond-based shape memory polyurethanes with light-induced self-healing, recyclability, and 3d fluorescence encryption. ACS Appl. Mater. Interfaces 2022, 14, 33829–33841.
Li, T. Q.; Li, Y.; Wang, X. H.; Li, X.; Sun, J. Q. Thermally and near-infrared light-induced shape memory polymers capable of healing mechanical damage and fatigued shape memory function. ACS Appl. Mater. Interfaces 2019, 11, 9470–9477.
Wang, J.; Lin, X.; Wang, R. G.; Lu, Y. L.; Zhang, L. Q. Self-healing, photothermal-responsive, and shape memory polyurethanes for enhanced mechanical properties of 3D/4D printed objects. Adv. Funct. Mater. 2023, 33, 2211579.
Xia, Y. L.; He, Y.; Zhang, F. H.; Liu, Y. J.; Leng, J. S. A review of shape memory polymers and composites: Mechanisms, materials, and applications. Adv. Mater. 2021, 33, 2000713.
Zhang, Y. F.; Xu, Z. S.; Yuan, Y.; Liu, C. Y.; Zhang, M.; Zhang, L. Q.; Wan, P. B. Flexible antiswelling photothermal-therapy MXene hydrogel-based epidermal sensor for intelligent human-machine interfacing. Adv. Funct. Mater. 2023, 33, 2300299.
Chien, Y. C.; Chuang, W. T.; Jeng, U. S.; Hsu, S. H. Preparation, characterization, and mechanism for biodegradable and biocompatible polyurethane shape memory elastomers. ACS Appl. Mater. Interfaces 2017, 9, 5419–5429.
Zhang, Y. C.; Hu, J. L.; Zhao, X.; Xie, R. Q.; Qin, T. W.; Ji, F. L. Mechanically robust shape memory polyurethane nanocomposites for minimally invasive bone repair. ACS Appl. Bio Mater. 2019, 2, 1056–1065.