Journal Home > Online First

Easy non-radiative decay property of long-lived triplet excitons in aqueous solution obstructs their applications in aquatic surroundings. Recently reported phosphorescence phenomena in aqueous solution have excited researchers enormously but achieving full-color water-soluble phosphorescent carbon nanodots (CNDs) is still a challenging issue. Herein, full-color phosphorescence of water-soluble CNDs has been demonstrated by triggering their triplet excitons through nanospace domain confinement, and Förster energy resonance transfer is used for further tuning phosphorescence range. The phosphorescence spans across most of the visible spectrum, ranging from 400 to 700 nm. In an aqueous solution, the CNDs exhibits blue, green, and red phosphorescence, lasting for approximately 6, 10, and 7 s, respectively. Correspondingly, the phosphorescence quantum yields are 11.85%, 8.6% and 3.56%, making them readily discernible to the naked eyes and laying a solid foundation for practical application. Furthermore, phosphorescence flexible optical display and bioimaging have been demonstrated by using the multicolor CNDs-based nanomaterials, showing distinct superiority for accuracy and complete display and imaging in complex emission background.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Triggering triplet excitons of carbon nanodots through nanospace domain confinement for multicolor phosphorescence in aqueous solution

Show Author's information Ya-Chuan Liang1,3Qing Cao2Yuan Deng2Yong Wang2Kai-Kai Liu2,4( )Chong-Xin Shan2( )
School of Electronics and Information, Zhengzhou University of Light Industry, Zhengzhou 450002, China
Henan Key Laboratory of Diamond Optoelectronic Material and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
Academy for Quantum Science and Technology, Zhengzhou University of Light Industry, Zhengzhou 450002, China
Institute of Quantum Materials and Physics, Henan Academy of Sciences, Zhengzhou 450046, China

Abstract

Easy non-radiative decay property of long-lived triplet excitons in aqueous solution obstructs their applications in aquatic surroundings. Recently reported phosphorescence phenomena in aqueous solution have excited researchers enormously but achieving full-color water-soluble phosphorescent carbon nanodots (CNDs) is still a challenging issue. Herein, full-color phosphorescence of water-soluble CNDs has been demonstrated by triggering their triplet excitons through nanospace domain confinement, and Förster energy resonance transfer is used for further tuning phosphorescence range. The phosphorescence spans across most of the visible spectrum, ranging from 400 to 700 nm. In an aqueous solution, the CNDs exhibits blue, green, and red phosphorescence, lasting for approximately 6, 10, and 7 s, respectively. Correspondingly, the phosphorescence quantum yields are 11.85%, 8.6% and 3.56%, making them readily discernible to the naked eyes and laying a solid foundation for practical application. Furthermore, phosphorescence flexible optical display and bioimaging have been demonstrated by using the multicolor CNDs-based nanomaterials, showing distinct superiority for accuracy and complete display and imaging in complex emission background.

Keywords: carbon nanodots, aqueous solution, triplet excitons, multicolor

References(53)

[1]

Gao, R.; Yan, D. P.; Evans, D. G.; Duan, X. Layer-by-layer assembly of long-afterglow self-supporting thin films with dual-stimuli-responsive phosphorescence and antiforgery applications. Nano Res. 2017, 10, 3606–3617.

[2]

Fang, X. Y.; Tang, Y. Q.; Ma, Y. J.; Xiao, G. W.; Li, P. Y.; Yan, D. P. Ultralong-lived triplet excitons of room-temperature phosphorescent carbon dots located on g-C3N4 to boost photocatalysis. Sci. China Mater. 2023, 66, 664–671.

[3]

Liu, S. Y.; Lin, Y. H.; Yan, D. P. Hydrogen-bond organized 2D metal-organic microsheets: Direct ultralong phosphorescence and color-tunable optical waveguides. Sci. Bull. 2022, 67, 2076–2084.

[4]

Song, S. Y.; Sui, L. Z.; Liu, K. K.; Cao, Q.; Zhao, W. B.; Liang, Y. C.; Lv, C. F.; Zang, J. H.; Shang, Y.; Lou, Q. et al. Self-exothermic reaction driven large-scale synthesis of phosphorescent carbon nanodots. Nano Res. 2021, 14, 2231–2240.

[5]

Wei, X. Y.; Yang, J. W.; Hu, L. L.; Cao, Y.; Lai, J.; Cao, F. F.; Gu, J. J.; Cao, X. F. Recent advances in room temperature phosphorescent carbon dots: Preparation, mechanism, and applications. J. Mater. Chem. C 2021, 9, 4425–4443.

[6]

Song, S. Y.; Liu, K. K.; Cao, Q.; Mao, X.; Zhao, W. B.; Wang, Y.; Liang, Y. C.; Zang, J. H.; Lou, Q.; Dong, L. et al. Ultraviolet phosphorescent carbon nanodots. Light Sci. Appl. 2022, 11, 146.

[7]

Zhou, B.; Qi, Z. H.; Dai, M. Q.; Xing, C.; Yan, D. P. Ultralow-loss optical waveguides through balancing deep-blue TADF and orange room temperature phosphorescence in hybrid antimony halide microstructures. Angew. Chem., Int. Ed. 2023, 62, e202309913.

[8]

Zhou, B.; Yan, D. P. Long persistent luminescence from metal-organic compounds: State of the art. Adv. Funct. Mater. 2023, 33, 2300735.

[9]

Liang, Y. C.; Shang, Y.; Liu, K. K.; Liu, Z.; Wu, W. J.; Liu, Q.; Zhao, Q.; Wu, X. Y.; Dong, L.; Shan, C. X. Water-induced ultralong room temperature phosphorescence by constructing hydrogen-bonded networks. Nano Res. 2020, 13, 875–881.

[10]

Cao, Q.; Liu, K. K.; Liang, Y. C.; Song, S. Y.; Deng, Y.; Mao, X.; Wang, Y.; Zhao, W. B.; Lou, Q.; Shan, C. X. Brighten triplet excitons of carbon nanodots for multicolor phosphorescence films. Nano Lett. 2022, 22, 4097–4105.

[11]

Yuan, T.; Yuan, F. L.; Li, X. H.; Li, Y. C.; Fan, L. Z.; Yang, S. H. Fluorescence-phosphorescence dual emissive carbon nitride quantum dots show 25% white emission efficiency enabling single-component WLEDs. Chem. Sci. 2019, 10, 9801–9806.

[12]

Xiao, L. X.; Chen, Z. J.; Qu, B.; Luo, J. X.; Kong, S.; Gong, Q. H.; Kido, J. Recent progresses on materials for electrophosphorescent organic light-emitting devices. Adv. Mater. 2011, 23, 926–952.

[13]

Hirata, S.; Sakai, Y.; Masui, K.; Tanaka, H.; Lee, S. Y.; Nomura, H.; Nakamura, N.; Yasumatsu, M.; Nakanotani, H.; Zhang, Q. S. et al. Highly efficient blue electroluminescence based on thermally activated delayed fluorescence. Nat. Mater. 2015, 14, 330–336.

[14]

Wu, Q.; Ma, H. L.; Ling, K.; Gan, N.; Cheng, Z. C.; Gu, L.; Cai, S. Z.; An, Z. F.; Shi, H. F.; Huang, W. Reversible ultralong organic phosphorescence for visual and selective chloroform detection. ACS Appl. Mater. Interfaces 2018, 10, 33730–33736.

[15]

Liang, Y. C.; Gou, S. S.; Liu, K. K.; Wu, W. J.; Guo, C. Z.; Lu, S. Y.; Zang, J. H.; Wu, X. Y.; Lou, Q.; Dong, L. et al. Ultralong and efficient phosphorescence from silica confined carbon nanodots in aqueous solution. Nano Today 2020, 34, 100900.

[16]

Liang, Y. C.; Cao, Q.; Liu, K. K.; Peng, X. Y.; Sui, L. Z.; Wang, S. P.; Song, S. Y.; Wu, X. Y.; Zhao, W. B.; Deng, Y. et al. Phosphorescent carbon-nanodots-assisted Förster resonant energy transfer for achieving red afterglow in an aqueous solution. ACS Nano 2021, 15, 16242–16254.

[17]

You, Y. Q.; Huang, K. W.; Liu, X. J.; Pan, X.; Zhi, J. H.; He, Q. J.; Shi, H. F.; An, Z. F.; Ma, X.; Huang, W. Hydrophilic ultralong organic nanophosphors. Small 2020, 16, 1906733.

[18]

Liang, Y. C.; Liu, K. K.; Wu, X. Y.; Lou, Q.; Sui, L. Z.; Dong, L.; Yuan, K. J.; Shan, C. X. Lifetime-engineered carbon nanodots for time division duplexing. Adv. Sci. 2021, 8, 2003433.

[19]

Tan, J.; Li, Q. J.; Meng, S.; Li, Y. C.; Yang, J.; Ye, Y. X.; Tang, Z. K.; Qu, S. N.; Ren, X. D. Time-dependent phosphorescence colors from carbon dots for advanced dynamic information encryption. Adv. Mater. 2021, 33, 2006781.

[20]

Yu, X. W.; Liu, K. K.; Zhang, H. Y.; Wang, B. L.; Ma, W. Y.; Li, J. Y.; Yu, J. H. Carbon dots-in-EuAPO-5 zeolite: Triple-emission for multilevel luminescence anti-counterfeiting. Small 2021, 17, 2103374.

[21]

Wang, Y. C.; Jiang, K.; Du, J. R.; Zheng, L. C.; Li, Y. K.; Li, Z. J.; Lin, H. W. Green and near-infrared dual-mode afterglow of carbon dots and their applications for confidential information readout. Nano-Micro Lett. 2021, 13, 198.

[22]

Xing, C.; Zhou, B.; Yan, D. P.; Fang, W. H. Dynamic photoresponsive ultralong phosphorescence from one-dimensional halide microrods toward multilevel information storage. CCS Chem. 2023, 5, 2866–2876.

[23]

Cuttell, D. G.; Kuang, S. M.; Fanwick, P. E.; McMillin, D. R.; Walton, R. A. Simple Cu(I) complexes with unprecedented excited-state lifetimes. J. Am. Chem. Soc. 2002, 124, 6–7.

[24]

Abdukayum, A.; Chen, J. T.; Zhao, Q.; Yan, X. P. Functional near infrared-emitting Cr3+/Pr3+ co-doped Zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging. J. Am. Chem. Soc. 2013, 135, 14125–14133.

[25]

Bian, L. F.; Shi, H. F.; Wang, X.; Ling, K.; Ma, H. L.; Li, M. P.; Cheng, Z. C.; Ma, C. Q.; Cai, S. Z.; Wu, Q. et al. Simultaneously enhancing efficiency and lifetime of ultralong organic phosphorescence materials by molecular self-assembly. J. Am. Chem. Soc. 2018, 140, 10734–10739.

[26]

Zhen, X.; Tao, Y.; An, Z. F.; Chen, P.; Xu, C. J.; Chen, R. F.; Huang, W.; Pu, K. Y. Ultralong phosphorescence of water-soluble organic nanoparticles for in vivo afterglow imaging. Adv. Mater. 2017, 29, 1606665.

[27]

Fateminia, S. M. A.; Mao, Z.; Xu, S. D.; Yang, Z. Y.; Chi, Z. G.; Liu, B. Organic nanocrystals with bright red persistent room-temperature phosphorescence for biological applications. Angew. Chem., Int. Ed. 2017, 56, 12160–12164.

[28]

Li, Z. H.; Wang, Q.; Wang, Y. Q.; Ma, Q. Q.; Wang, J.; Li, Z. H.; Li, Y. X.; Lv, X. B.; Wei, W.; Chen, L. et al. Background-free latent fingerprint imaging based on nanocrystals with long-lived luminescence and pH-guided recognition. Nano Res. 2018, 11, 6167–6176.

[29]

Kuila, S.; Rao, K. V.; Garain, S.; Samanta, P. K.; Das, S.; Pati, S. K.; Eswaramoorthy, M.; George, S. J. Aqueous phase phosphorescence: Ambient triplet harvesting of purely organic phosphors via supramolecular scaffolding. Angew. Chem., Int. Ed. 2018, 57, 17115–17119.

[30]

Liu, K. K.; Song, S. Y.; Sui, L. Z.; Wu, S. X.; Jing, P. T.; Wang, R. Q.; Li, Q. Y.; Wu, G. R.; Zhang, Z. Z.; Yuan, K. J. et al. Efficient red/near-infrared-emissive carbon nanodots with multiphoton excited upconversion fluorescence. Adv. Sci. 2019, 6, 1900766.

[31]

Song, S. Y.; Liu, K. K.; Wei, J. Y.; Lou, Q.; Shang, Y.; Shan, C. X. Deep-ultraviolet emissive carbon nanodots. Nano Lett. 2019, 19, 5553–5561.

[32]
Wang, Z. F.; Yuan, F. L.; Li, X. H.; Li, Y. C.; Zhong, H. Z.; Fan, L. Z.; Yang, S. H. 53% Efficient red emissive carbon quantum dots for high color rendering and stable warm white-light-emitting diodes. Adv. Mater. 2017 , 29, 1702910.
DOI
[33]

Tian, Z.; Li, D.; Ushakova, E. V.; Maslov, V. G.; Zhou, D.; Jing, P. T.; Shen, D. Z.; Qu, S. N.; Rogach, A. L. Multilevel data encryption using thermal-treatment controlled room temperature phosphorescence of carbon dot/polyvinylalcohol composites. Adv. Sci. 2018, 5, 1800795.

[34]

Long, P.; Feng, Y. Y.; Cao, C.; Li, Y.; Han, J. K.; Li, S. W.; Peng, C.; Li, Z. Y.; Feng, W. Self-protective room-temperature phosphorescence of fluorine and nitrogen codoped carbon dots. Adv. Funct. Mater. 2018, 28, 1800791.

[35]

Deng, Y. H.; Zhao, D. X.; Chen, X.; Wang, F.; Song, H.; Shen, D. Z. Long lifetime pure organic phosphorescence based on water soluble carbon dots. Chem. Commun. 2013, 49, 5751–5753.

[36]

Liu, J. J.; Li, D. W.; Zhang, K.; Yang, M. X.; Sun, H. C.; Yang, B. One-step hydrothermal synthesis of nitrogen-doped conjugated carbonized polymer dots with 31% efficient red emission for in vivo imaging. Small 2018, 14, 1703919.

[37]

Lu, S. Y.; Sui, L. Z.; Liu, J. J.; Zhu, S. J.; Chen, A. M.; Jin, M. X.; Yang, B. Near-infrared photoluminescent polymer-carbon nanodots with two-photon fluorescence. Adv. Mater. 2017, 29, 1603443.

[38]

Li, D.; Jing, P. T.; Sun, L. H.; An, Y.; Shan, X. Y.; Lu, X. H.; Zhou, D.; Han, D.; Shen, D. Z.; Zhai, Y. C. et al. Near-infrared excitation/emission and multiphoton-induced fluorescence of carbon dots. Adv. Mater. 2018, 30, 1705913.

[39]

Bao, X.; Ushakova, E. V.; Liu, E. S.; Zhou, Z. J.; Li, D.; Zhou, D.; Qu, S. N.; Rogach, A. L. On-off switching of the phosphorescence signal in a carbon dot/polyvinyl alcohol composite for multiple data encryption. Nanoscale 2019, 11, 14250–14255.

[40]

Shen, C. L.; Lou, Q.; Lv, C. F.; Zang, J. H.; Qu, S. N.; Dong, L.; Shan, C. X. Bright and multicolor chemiluminescent carbon nanodots for advanced information encryption. Adv. Sci. 2019, 6, 1802331.

[41]

Zhang, X. Y.; Zhang, Y.; Wang, Y.; Kalytchuk, S.; Kershaw, S. V.; Wang, Y. H.; Wang, P.; Zhang, T. Q.; Zhao, Y.; Zhang, H. Z. et al. Color-switchable electroluminescence of carbon dot light-emitting diodes. ACS Nano 2013, 7, 11234–11241.

[42]

Li, W.; Zhou, W.; Zhou, Z. S.; Zhang, H. R.; Zhang, X. J.; Zhuang, J. L.; Liu, Y. L.; Lei, B. F.; Hu, C. F. A universal strategy for activating the multicolor room-temperature afterglow of carbon dots in a boric acid matrix. Angew. Chem., Int. Ed. 2019, 58, 7278–7283.

[43]

Gao, Y. F.; Zhang, H. L.; Jiao, Y.; Lu, W. J.; Liu, Y.; Han, H.; Gong, X. J.; Shuang, S. M.; Dong, C. Strategy for activating room-temperature phosphorescence of carbon dots in aqueous environments. Chem. Mater. 2019, 31, 7979–7986.

[44]

Li, W.; Wu, S. S.; Xu, X. K.; Zhuang, J. L.; Zhang, H. R.; Zhang, X. J.; Hu, C. F.; Lei, B. F.; Kaminski, C. F.; Liu, Y. L. Carbon dot-silica nanoparticle composites for ultralong lifetime phosphorescence imaging in tissue and cells at room temperature. Chem. Mater. 2019, 31, 9887–9894.

[45]

Li, Q. J.; Zhou, M.; Yang, Q. F.; Wu, Q.; Shi, J.; Gong, A. H.; Yang, M. Y. Efficient room-temperature phosphorescence from nitrogen-doped carbon dots in composite matrices. Chem. Mater. 2016, 28, 8221–8227.

[46]

Jiang, K.; Wang, Y. H.; Cai, C. Z.; Lin, H. W. Activating room temperature long afterglow of carbon dots via covalent fixation. Chem. Mater. 2017, 29, 4866–4873.

[47]

Li, Q. J.; Zhou, M.; Yang, M. Y.; Yang, Q. F.; Zhang, Z. X.; Shi, J. Induction of long-lived room temperature phosphorescence of carbon dots by water in hydrogen-bonded matrices. Nat. Commun. 2018, 9, 734.

[48]

Mo, L. Q.; Liu, H.; Liu, Z. M.; Xu, X. K.; Lei, B. F.; Zhuang, J. L.; Liu, Y. L.; Hu, C. F. Cascade resonance energy transfer for the construction of nanoparticles with multicolor long afterglow in aqueous solutions for information encryption and bioimaging. Adv. Opt. Mater. 2022, 10, 2102666.

[49]

Kuila, S.; Garain, S.; Bandi, S.; George, S. J. All-organic, temporally pure white afterglow in amorphous films using complementary blue and greenish-yellow ultralong room temperature phosphors. Adv. Funct. Mater. 2020, 30, 2003693.

[50]

Chen, X.; Wang, Y.; Peng, C. X.; Hu, W. B.; Wu, Z. B.; Xu, W. D.; Wu, S. L.; Luo, Z.; Suh, Y. D.; Atabaev, T. S. et al. Pseudomorphic synthesis of monodisperse afterglow carbon dot-doped SiO2 microparticles for photonic crystals. Adv. Mater. 2023, 35, 2307198.

[51]

Zhang, H. Y.; Liu, K. K.; Liu, J. C.; Wang, B. L.; Li, C. Y.; Song, W.; Li, J. Y.; Huang, L.; Yu, J. H. Carbon dots-in-zeolite via in-situ solvent-free thermal crystallization: Achieving high-efficiency and ultralong afterglow dual emission. CCS Chem. 2020, 2, 118–127.

[52]

Zhang, X.; Cheng, Y. H.; You, J. X.; Zhang, J. M.; Yin, C. C.; Zhang, J. Ultralong phosphorescence cellulose with excellent anti-bacterial, water-resistant and ease-to-process performance. Nat. Commun. 2022, 13, 1117.

[53]

Wang, B. Y.; Yu, J. K.; Sui, L. Z.; Zhu, S. J.; Tang, Z. Y.; Yang, B.; Lu, S. Y. Rational design of multi-color-emissive carbon dots in a single reaction system by hydrothermal. Adv. Sci. 2021, 8, 2001453.

File
6556_ESM.pdf (1.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 27 December 2023
Revised: 31 January 2024
Accepted: 06 February 2024
Published: 01 April 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 11904326, 62075198, 12274378, and 12304474), the Natural Science Foundation of Henan province (No. 222300420087), the Henan Center for Outstanding Overseas Scientists (No. GZS201903), and the Key Research and Promotion Projects in Henan Province (No. 232102231033).

Return