Journal Home > Online First

Perovskite solar cells (PSCs) have seen remarkable progress in recent years, largely attributed to various additives that enhance both efficiency and stability. Among these, fluorine-containing additives have garnered significant interest because of their unique hydrophobic properties, effective defect passivation, and regulation capability on the crystallization process. However, a targeted structural approach to design such additives is necessary to further enhance the performance of PSCs. Here, fluoroalkyl ethylene with different fluoroalkyl chain lengths (CH2CH(CF2)nCF3, n = 3, 5, and 7) as liquid additives is used to investigate influences of fluoroalkyl chain lengths on crystallization regulation and defect passivation. The findings indicate that optimizing the quantity of F groups plays a crucial role in regulating the electron cloud distribution within the additive molecules. This optimization fosters strong hydrogen bonds and coordination effects with FA+ and uncoordinated Pb2+, ultimately enhancing crystal quality and device performance. Notably, 1H,1H,2H-perfluoro-1-hexene (PF3) with the optimal number of F presents the most effective modulation effect. A PSC utilizing PF3 achieves an efficiency of 24.05%, and exhibits exceptional stability against humidity and thermal fluctuations. This work sheds light on the importance of tailored structure designs in additives for achieving high-performance PSCs.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Structure-regulated fluorine-containing additives to improve the performance of perovskite solar cells

Show Author's information Peiya Chen1,§Xiaoman Bi1,§Hao Yan1Yingjie Zhao1Yihao Liu1Zhuo Huang1Qian Xiao1Yongpeng Yang1Shasha Zhang1( )Yiqiang Zhang1( )Yanlin Song2( )
Henan Institute of Advanced Technology, College of Chemistry, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, China

§ Peiya Chen and Xiaoman Bi contributed equally to this work.

Abstract

Perovskite solar cells (PSCs) have seen remarkable progress in recent years, largely attributed to various additives that enhance both efficiency and stability. Among these, fluorine-containing additives have garnered significant interest because of their unique hydrophobic properties, effective defect passivation, and regulation capability on the crystallization process. However, a targeted structural approach to design such additives is necessary to further enhance the performance of PSCs. Here, fluoroalkyl ethylene with different fluoroalkyl chain lengths (CH2CH(CF2)nCF3, n = 3, 5, and 7) as liquid additives is used to investigate influences of fluoroalkyl chain lengths on crystallization regulation and defect passivation. The findings indicate that optimizing the quantity of F groups plays a crucial role in regulating the electron cloud distribution within the additive molecules. This optimization fosters strong hydrogen bonds and coordination effects with FA+ and uncoordinated Pb2+, ultimately enhancing crystal quality and device performance. Notably, 1H,1H,2H-perfluoro-1-hexene (PF3) with the optimal number of F presents the most effective modulation effect. A PSC utilizing PF3 achieves an efficiency of 24.05%, and exhibits exceptional stability against humidity and thermal fluctuations. This work sheds light on the importance of tailored structure designs in additives for achieving high-performance PSCs.

Keywords: perovskite solar cells, defect passivation, fluorine number, additive structure, crystallization regulation

References(38)

[1]
Best research-cell efficiency chart [Online]. https://www.nrel.gov/pv/cell-efficiency.html (accessed Dec 9, 2023).
[2]

Feng, J. G.; Wang, X.; Li, J.; Liang, H. M.; Wen, W.; Alvianto, E.; Qiu, C. W.; Su, R.; Hou, Y. Resonant perovskite solar cells with extended band edge. Nat. Commun. 2023, 14, 5392.

[3]

Wang, G. L.; Lian, Q.; Wang, D.; Jiang, F.; Mi, G. J.; Li, D. Y.; Huang, Y. L.; Wang, Y.; Yao, X. Y.; Shi, R. et al. Thermal-radiation-driven ultrafast crystallization of perovskite films under heavy humidity for efficient inverted solar cells. Adv. Mater. 2022, 34, 2205143.

[4]

Zhou, J.; Gao, Y.; Pan, Y. Y.; Ren, F. M.; Chen, R.; Meng, X.; Sun, D. R.; He, J. Z.; Liu, Z. H.; Chen, W. Recent advances in the combined elevated temperature, humidity, and light stability of perovskite solar cells. Solar RRL 2022, 6, 2200772.

[5]

Wu, W. W.; Xiong, H.; Deng, J. H.; Wang, M. Q.; Zheng, H. Q.; Wu, M.; Yuan, S. Y.; Ma, Z. P.; Fan, J. D.; Li, W. Z. Rotatable skeleton for the alleviation of thermally accumulated defects in inorganic perovskite solar cells. ACS Energy Lett. 2023, 8, 2284–2291.

[6]

Lin, M. Y.; He, J. J.; Liu, X. Y.; Li, Q.; Wei, Z. P.; Sun, Y. T.; Leng, X. S.; Chen, M. J.; Xia, Z. H.; Peng, Y. et al. Nano-capillary induced assemble of quantum dots on perovskite grain boundaries for efficient and stable perovskite solar cells. J. Energy Chem. 2023, 83, 595–601.

[7]

Qin, M. C.; Xue, H. B.; Zhang, H. K.; Hu, H. L.; Liu, K.; Li, Y. H.; Qin, Z. T.; Ma, J. J.; Zhu, H. P.; Yan, K. Y. et al. Precise control of perovskite crystallization kinetics via sequential A-site doping. Adv. Mater. 2020, 32, 2004630.

[8]

Lee, D. K.; Park, N. G. Additive engineering for highly efficient and stable perovskite solar cells. Appl. Phys. Rev. 2023, 10, 011308.

[9]

Chen, X. H.; Huang, J.; Gao, F.; Xu, B. Phosphine oxide additives for perovskite light-emitting diodes and solar cells. Chem 2023, 9, 562–575.

[10]

Abbas, M.; Rauf, M.; Cai, B. Y.; Guo, F.; Yuan, X. C.; Rana, T. R.; Mackenzie, J. D.; Kyaw, A. K. K. Enhanced open-circuit voltage and improved stability with 3-guanidinoproponic acid as the passivation agent in blade-coated inverted perovskite solar cells. ACS Appl. Energy Mater. 2023, 6, 6485–6495.

[11]

Luo, M.; Zong, X. P.; Zhao, M.; Sun, Z.; Chen, Y.; Liang, M.; Wu, Y. Z.; Xue, S. Synergistic effect of amide and fluorine of polymers assist stable inverted perovskite solar cells with fill factor > 83%. Chem. Eng. J. 2022, 442, 136136.

[12]

Liu, C.; Liu, S.; Wang, Y. F.; Chu, Y. M.; Yang, K.; Wang, X. D.; Gao, C. X.; Wang, Q. F.; Du, J. K.; Li, S. et al. Improving the performance of perovskite solar cells via a novel additive of N,1-fluoroformamidinium iodide with electron-withdrawing fluorine group. Adv. Funct. Mater. 2021, 31, 2010603.

[13]

Zhao, Y.; Li, B.; Tian, C. M.; Han, X. F.; Qiu, Y.; Xiong, H.; Li, K. R.; Hou, C. Y.; Li, Y. G.; Wang, H. Z. et al. Anhydrous organic etching derived fluorine-rich terminated MXene nanosheets for efficient and stable perovskite solar cells. Chem. Eng. J. 2023, 469, 143862.

[14]

Wang, M. H.; Li, Y. W.; Zhao, X. Q.; Wang, W.; Chen, J. W.; Zhang, W. Z.; Huang, Y.; Zhang, L. J.; Chen, S. F. Rational design of additive with suitable functional groups toward high-quality FA0.75MA0.25SnI3 films and solar cells. Solar RRL 2022, 6, 2100800.

[15]

Jiang, X. Q.; Yang, G. Y.; Zhang, B. Q.; Wang, L. Q.; Yin, Y. F.; Zhang, F. S.; Yu, S. T.; Liu, S. W.; Bu, H. K.; Zhou, Z. M. et al. Understanding the role of fluorine groups in passivating defects for perovskite solar cells. Angew. Chem., Int. Ed. 2023, 62, e202313133.

[16]

Kong, Y. J.; Shen, W. J.; Cai, H. Y.; Dong, W.; Bai, C.; Zhao, J.; Huang, F. Z.; Cheng, Y. B.; Zhong, J. Multifunctional organic potassium salt additives as the efficient defect passivator for high-efficiency and stable perovskite solar cells. Adv. Funct. Mater. 2023, 33, 2300932.

[17]

Li, N. X.; Tao, S. X.; Chen, Y. H.; Niu, X. X.; Onwudinanti, C. K.; Hu, C.; Qiu, Z. W.; Xu, Z. Q.; Zheng, G. H. J.; Wang, L. G. et al. Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells. Nat. Energy 2019, 4, 408–415.

[18]

Hu, W. P.; Wen, Z. L.; Yu, X.; Qian, P. S.; Lian, W. T.; Li, X. C.; Shang, Y. B.; Wu, X. J.; Chen, T.; Lu, Y. L. et al. In situ surface fluorination of TiO2 nanocrystals reinforces interface binding of perovskite layer for highly efficient solar cells with dramatically enhanced ultraviolet-light stability. Adv. Sci. (Weinh.) 2021, 8, 2004662

[19]

Liu, L. D.; Li, Y.; Zheng, C.; Liu, Z. K.; Yuan, N. Y.; Ding, J. N.; Wang, D. P.; Liu, S. Z. Collaborative strategy of multifunctional groups in trifluoroacetamide achieving efficient and stable perovskite solar cells. Solar RRL 2022, 6, 2200284.

[20]

Fu, S. Q.; Wang, J. H.; Liu, X. H.; Yuan, H. B.; Xu, Z. X.; Long, Y. J.; Zhang, J.; Huang, L. K.; Hu, Z. Y.; Zhu, Y. J. Multifunctional liquid additive strategy for highly efficient and stable CsPbI2Br all-inorganic perovskite solar cells. Chem. Eng. J. 2021, 422, 130572.

[21]

Liu, B.; Wang, Y. Q.; Wu, Y. J.; Zhang, Y. H.; Lyu, J.; Liu, Z. Q.; Bian, S. H.; Bai, X.; Xu, L.; Zhou, D. L. et al. Vitamin natural molecule enabled highly efficient and stable planar n-p homojunction perovskite solar cells with efficiency exceeding 24.2%. Adv. Energy Mater. 2023, 13, 2203352.

[22]

Sun, R. M.; Tian, Q. S.; Li, M. B.; Wang, H. Z.; Chang, J. X.; Xu, W. X.; Li, Z. H.; Pan, Y. Y.; Wang, F. F.; Qin, T. S. Over 24% efficient poly(vinylidene fluoride) (PVDF)-coordinated perovskite solar cells with a photovoltage up to 1.22 V. Adv. Funct. Mater. 2023, 33, 2210071.

[23]

Zhao, C. X.; Zhang, H.; Almalki, M.; Xu, J.; Krishna, A.; Eickemeyer, F. T.; Gao, J.; Wu, Y. M.; Zakeeruddin, S. M.; Chu, J. H. et al. Stabilization of FAPbI3 with multifunctional alkali-functionalized polymer. Adv. Mater., 2023, 35, 2211619.

[24]

Zhang, J. K.; Li, Z. P.; Guo, F. J.; Jiang, H. K.; Yan, W. J.; Peng, C.; Liu, R. X.; Wang, L.; Gao, H. T.; Pang, S. P. et al. Thermally crosslinked F-rich polymer to inhibit lead leakage for sustainable perovskite solar cells and modules. Angew. Chem., Int. Ed. 2023, 62, e202305221.

[25]

Ma, C. Q.; Kang, M. C.; Lee, S. H.; Zhang, Y. L.; Kang, D. H.; Yang, W. X.; Zhao, P.; Kim, S. W.; Kwon, S. J.; Yang, C. W. et al. Facet-dependent passivation for efficient perovskite solar cells. J. Am. Chem. Soc. 2023, 145, 24349–24357.

[26]

Chen, P.; Bai, Y.; Wang, S. C.; Lyu, M.; Yun, J. H.; Wang, L. Z. In situ growth of 2D perovskite capping layer for stable and efficient perovskite solar cells. Adv. Funct. Mater. 2018, 28, 1706923.

[27]

Liang, L. S.; Luo, H. T.; Hu, J. J.; Li, H.; Gao, P. Efficient perovskite solar cells by reducing interface-mediated recombination: A bulky amine approach. Adv. Energy Mater. 2020, 10, 2000197.

[28]

Jiang, B. L.; Zhang, B. L.; He, Y.; Peng, Q. J.; Jiao, Z. J.; Qiao, L. J. Combined effects of irradiation and hydrogen ions on surface oxidation of 308 L austenite stainless steel. Corros. Sci. 2021, 191, 109734.

[29]

Deng, J. D.; Ahangar, H.; Xiao, Y. H.; Luo, Y. Y.; Cai, X. Y.; Li, Y. N.; Wu, D. Y.; Yang, L.; Sheibani, E.; Zhang, J. B. Side-group-mediated small molecular interlayer to achieve superior passivation strength and enhanced carrier dynamics for efficient and stable perovskite solar cells. Adv. Funct. Mater. 2024, 34, 2309484.

[30]

Zhang, S. S.; Wu, S. H.; Chen, R.; Chen, W. T.; Huang, Y. Q.; Yang, Z. C.; Chen, W. Formamidine-assisted fast crystallization to fabricate formamidinium-based perovskite films for high-efficiency and stable solar cells. J. Mater. Chem. C 2020, 8, 1642–1648.

[31]

Chen, L.; Chen, J. D.; Wang, C. Y.; Ren, H.; Hou, H. Y.; Zhang, Y. F.; Li, Y. Q.; Gao, X. Y.; Tang, J. X. Suppressed voltage deficit and degradation of perovskite solar cells by regulating the mineralization of lead iodide. Small 2023, 19, 2207817.

[32]

Sun, Q. H.; Tuo, B.; Ren, Z. Q.; Xue, T. Y.; Zhang, Y. Q.; Ma, J. J.; Li, P. W.; Song, Y. L. A thiourea competitive crystallization strategy for FA-based perovskite solar cells. Adv. Funct. Mater. 2022, 32, 2208885.

[33]

Zheng, H. Y.; Liu, G. Z.; Wu, W. W.; Xu, H. F.; Pan, X. Highly efficient and stable perovskite solar cells with strong hydrophobic barrier via introducing poly(vinylidene fluoride) additive. J. Energy Chem. 2021, 57, 593–600.

[34]

Fu, Q.; Tang, X. C.; Liu, H.; Wang, R.; Liu, T. T.; Wu, Z. A.; Woo, H. Y.; Zhou, T.; Wan, X. J.; Chen, Y. S. et al. Ionic dopant-free polymer alloy hole transport materials for high-performance perovskite solar cells. J. Am. Chem. Soc. 2022, 144, 9500–9509.

[35]

Wang, F. F.; Li, M. B.; Tian, Q. S.; Sun, R. M.; Ma, H. Z.; Wang, H. Z.; Chang, J. X.; Li, Z. H.; Chen, H. Y.; Cao, J. P. et al. Monolithically-grained perovskite solar cell with mortise–tenon structure for charge extraction balance. Nat. Commun. 2023, 14, 3216.

[36]

Bu, T. L.; Wu, L.; Liu, X. P.; Yang, X. K.; Zhou, P.; Yu, X. X.; Qin, T. S.; Shi, J. J.; Wang, S.; Li, S. S. et al. Solar cells: Synergic interface optimization with green solvent engineering in mixed perovskite solar cells. Adv. Energy Mater. 2017, 7, 1700576.

[37]

Zhang, Y.; Zhuang, X. H.; Zhou, K.; Cai, C.; Hu, Z. Y.; Zhang, J.; Zhu, Y. J. Amorphous polymer with C=O to improve the performance of perovskite solar cells. J. Mater. Chem. C 2017, 5, 9037–9043.

[38]

Xu, Y. M.; Liu, G. H.; Hu, J. F.; Wang, G.; Chen, M. Y.; Chen, Y.; Li, M. J.; Zhang, H.; Chen, Y. H. In situ polymer network in perovskite solar cells enabled superior moisture and thermal resistance. J. Phys. Chem. Lett. 2022, 13, 3754–3762.

File
6554_ESM.pdf (1.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 09 December 2023
Revised: 30 January 2024
Accepted: 06 February 2024
Published: 14 March 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

The authors thank the financial support from the National Natural Science Foundation of China (Nos. 62105293, 91963212, 52303257, and 52321006), the National Key Research and Development Program of China (No. 2018YFA0208501), the Beijing National Laboratory for Molecular Sciences (No. BNLMS-CXXM-202005), Graduate Education Reform Project of Henan Province (No. 2023SJGLX136Y), the China Postdoctoral Science Foundation (Nos. 2023TQ0300 and 2023M743171), the Key Scientific Research Projects of Colleges and Universities in Henan Province (No. 23A430017), the Outstanding Young Talent Research Fund of Zhengzhou University, Opening Project of State Key Laboratory of Advanced Technology for Float Glass (No. 2022KF04), the Joint Research Project of Puyang Shengtong Juyuan New Materials Co., Ltd., and Outstanding Young Talents Innovation Team Support Plan of Zhengzhou University. The computational resources in this research were supported by the Henan Supercomputer Center. The authors also thank the Advanced Analysis & Computation Center at Zhengzhou University for materials and device characterization support.

Return