Journal Home > Online First

Chemodynamic therapy (CDT), an inventive approach to cancer treatment, exploits innate chemical processes to trigger cell death through the generation of reactive oxygen species (ROS). While offering advantages over conventional treatments, the optimization of CDT efficacy presents challenges stemming from suboptimal catalytic efficiency and the counteractive ROS scavenging effect of intracellular glutathione (GSH). In this study, we aim to address this dual challenge by delving into the role of copper valence states in CDT. Leveraging the unique attributes of copper-based nanoparticles, especially zero-valent copper nanoparticles (CuPd NPs), we aim to enhance the therapeutic potential of CDT. Our experiments reveal that zero-valent CuPd NPs outperform divalent copper nanoparticles (Ox-CuPd NPs) by displaying superior catalytic performance and sustaining ROS generation through a dual approach integrating peroxidase-like (POD-like) activity and Cu+ release. Notably, zero-valent NPs exhibit enhanced GSH depletion compared to their divalent counterparts, thereby intensifying CDT and inducing ferroptosis, ultimately resulting in high-efficiency tumor growth inhibition. These findings reveal the impact of valences on CDT, providing novel insights for the optimization and design of CDT agents.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Valence-tailored copper-based nanoparticles for enhanced chemodynamic therapy through prolonged ROS generation and potentiated GSH depletion

Show Author's information Xinyang Li1,2Binbin Ding1( )Jing Li1,2Di Han1,2Hao Chen1,2Jia Tan1,2Qi Meng1,2Pan Zheng1Ping’an Ma1,2( )Jun Lin1,2( )
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China

Abstract

Chemodynamic therapy (CDT), an inventive approach to cancer treatment, exploits innate chemical processes to trigger cell death through the generation of reactive oxygen species (ROS). While offering advantages over conventional treatments, the optimization of CDT efficacy presents challenges stemming from suboptimal catalytic efficiency and the counteractive ROS scavenging effect of intracellular glutathione (GSH). In this study, we aim to address this dual challenge by delving into the role of copper valence states in CDT. Leveraging the unique attributes of copper-based nanoparticles, especially zero-valent copper nanoparticles (CuPd NPs), we aim to enhance the therapeutic potential of CDT. Our experiments reveal that zero-valent CuPd NPs outperform divalent copper nanoparticles (Ox-CuPd NPs) by displaying superior catalytic performance and sustaining ROS generation through a dual approach integrating peroxidase-like (POD-like) activity and Cu+ release. Notably, zero-valent NPs exhibit enhanced GSH depletion compared to their divalent counterparts, thereby intensifying CDT and inducing ferroptosis, ultimately resulting in high-efficiency tumor growth inhibition. These findings reveal the impact of valences on CDT, providing novel insights for the optimization and design of CDT agents.

Keywords: tumor therapy, chemodynamic therapy, ferroptosis, CuPd nanoparticle, valance tailoring

References(48)

[1]

Tang, Z. M.; Liu, Y. Y.; He, M. Y.; Bu, W. B. Chemodynamic therapy: Tumour microenvironment-mediated fenton and fenton-like reactions. Angew. Chem., Int. Ed. 2019, 58, 946–956.

[2]

Fang, H. Y.; Wang, X. Y.; Lan, X. L.; Jiang, D. W. Positron emission tomography imaging sheds new light on hypoxia and antitumor therapies. Interdiscip. Med. 2023, 1, e20230002.

[3]

Chang, M. Y.; Wang, M.; Wang, M. F.; Shu, M. M.; Ding, B. B.; Li, C. X.; Pang, M. L.; Cui, S. Z.; Hou, Z. Y.; Lin, J. A multifunctional cascade bioreactor based on hollow-structured Cu2MoS4 for synergetic cancer chemo-dynamic therapy/starvation therapy/phototherapy/immunotherapy with remarkably enhanced efficacy. Adv. Mater. 2019, 31, 1905271.

[4]

Ma, B. J.; Wang, S.; Liu, F.; Zhang, S.; Duan, J. Z.; Li, Z.; Kong, Y.; Sang, Y. H.; Liu, H.; Bu, W. B. et al. Self-assembled copper-amino acid nanoparticles for in situ glutathione "AND" H2O2 sequentially triggered chemodynamic therapy. J. Am. Chem. Soc. 2019, 141, 849–857.

[5]

Lin, L. S.; Huang, T.; Song, J. B.; Ou, X. Y.; Wang, Z. T.; Deng, H. Z.; Tian, R.; Liu, Y. J.; Wang, J. F.; Liu, Y. et al. Synthesis of copper peroxide nanodots for H2O2 self-supplying chemodynamic therapy. J. Am. Chem. Soc. 2019, 141, 9937–9945.

[6]

Zhang, H. L.; Li, J. J.; Chen, Y.; Wu, J. Y.; Wang, K.; Chen, L. J.; Wang, Y.; Jiang, X. W.; Liu, Y. Y.; Wu, Y. L. et al. Magneto-electrically enhanced intracellular catalysis of FePt-FeC heterostructures for chemodynamic therapy. Adv. Mater. 2021, 33, 2100472.

[7]

Ou, J. F.; Tian, H.; Wu, J. Y.; Gao, J. B.; Jiang, J. M.; Liu, K.; Wang, S. H.; Wang, F.; Tong, F.; Ye, Y. C. et al. MnO2-based nanomotors with active Fenton-like Mn2+ delivery for enhanced chemodynamic therapy. ACS Appl. Mater. Interfaces 2021, 13, 38050–38060.

[8]

Xiao, T. T.; He, M. J.; Xu, F.; Fan, Y.; Jia, B. Y.; Shen, M. W.; Wang, H.; Shi, X. Y. Macrophage membrane-camouflaged responsive polymer nanogels enable magnetic resonance imaging-guided chemotherapy/chemodynamic therapy of orthotopic glioma. ACS Nano 2021, 15, 20377–20390.

[9]

Ding, B. B.; Zheng, P.; Jiang, F.; Zhao, Y. J.; Wang, M. F.; Chang, M. Y.; Ma, P.; Lin, J. MnO x nanospikes as nanoadjuvants and immunogenic cell death drugs with enhanced antitumor immunity and antimetastatic effect. Angew. Chem., Int. Ed. 2020, 59, 16381–16384.

[10]

Ding, B. B.; Zheng, P.; Ma, P.; Lin, J. Manganese oxide nanomaterials: Synthesis, properties, and theranostic applications. Adv. Mater. 2020, 32, 1905823.

[11]
Han, D.; Ding, B. B.; Zheng, P.; Yuan, M.; Bian, Y. L.; Chen, H.; Wang, M. F.; Chang, M. Y.; Kheraif, A. A. A.; Ma, P. et al. NADPH oxidase-like nanozyme for high-efficiency tumor therapy through increasing glutathione consumption and blocking glutathione regeneration. Adv. Healthc. Mater., in press, DOI: 10.1002/adhm.202303309.
DOI
[12]

Liang, S.; Xiao, X.; Bai, L. X.; Liu, B.; Yuan, M.; Ma, P.; Pang, M. L.; Cheng, Z. Y.; Lin, J. Conferring Ti-based MOFs with defects for enhanced sonodynamic cancer therapy. Adv. Mater. 2021, 33, 2100333.

[13]

Liu, G. Y.; Zhu, J. W.; Guo, H.; Sun, A. H.; Chen, P.; Xi, L.; Huang, W.; Song, X. J.; Dong, X. C. Mo2C-derived polyoxometalate for NIR-II photoacoustic imaging-guided chemodynamic/photothermal synergistic therapy. Angew. Chem., Int. Ed. 2019, 58, 18641–18646.

[14]

Wu, Q.; He, Z. G.; Wang, X.; Zhang, Q.; Wei, Q. C.; Ma, S. Q.; Ma, C.; Li, J. Y.; Wang, Q. G. Cascade enzymes within self-assembled hybrid nanogel mimicked neutrophil lysosomes for singlet oxygen elevated cancer therapy. Nat. Commun. 2019, 10, 240.

[15]

Tang, Z. M.; Zhao, P. R.; Wang, H.; Liu, Y. Y.; Bu, W. B. Biomedicine meets fenton chemistry. Chem. Rev. 2021, 121, 1981–2019.

[16]

Wang, Y. H.; Zhan, J.; Huang, J. Y.; Wang, X.; Chen, Z. H.; Yang, Z. M.; Li, J. Dynamic responsiveness of self‐assembling peptide‐based nano‐drug systems. Interdiscip. Med. 2023, 1, e20220005.

[17]

Wang, M.; Yang, C. Z.; Chang, M. Y.; Xie, Y. L.; Zhu, G. Q.; Qian, Y. R.; Zheng, P.; Sun, Q. Q.; Lin, J.; Li, C. X. Single-atom nanozymes based nanobee vehicle for autophagy inhibition-enhanced synergistic cancer therapy. Nano Today 2023, 52, 101981.

[18]

Ren, X. Y.; Chen, D. X.; Wang, Y.; Li, H. F.; Zhang, Y. B.; Chen, H. Y.; Li, X.; Huo, M. F. Nanozymes-recent development and biomedical applications. J. Nanobiotechnology 2022, 20, 92.

[19]

Dong, H. J.; Du, W.; Dong, J.; Che, R. R.; Kong, F.; Cheng, W. L.; Ma, M.; Gu, N.; Zhang, Y. Depletable peroxidase-like activity of Fe3O4 nanozymes accompanied with separate migration of electrons and iron ions. Nat. Commun. 2022, 13, 5365.

[20]

Wu, F.; Du, Y. Q.; Yang, J. N.; Shao, B. Y.; Mi, Z. S.; Yao, Y. F.; Cui, Y.; He, F.; Zhang, Y. Q.; Yang, P. Peroxidase-like active nanomedicine with dual glutathione depletion property to restore oxaliplatin chemosensitivity and promote programmed cell death. ACS Nano 2022, 16, 3647–3663.

[21]

Lu, J.; Jiang, Z. Y.; Ren, J.; Zhang, W.; Li, P.; Chen, Z. Z.; Zhang, W.; Wang, H.; Tang, B. One-pot synthesis of multifunctional carbon-based nanoparticle-supported dispersed Cu2+ disrupts redox homeostasis to enhance CDT. Angew. Chem., Int. Ed. 2022, 61, e202114373.

[22]

Li, L.; Yang, Z.; Fan, W. P.; He, L. C.; Cui, C.; Zou, J. H.; Tang, W.; Jacobson, O.; Wang, Z. T.; Niu, G. et al. In situ polymerized hollow mesoporous organosilica biocatalysis nanoreactor for enhancing ROS-mediated anticancer therapy. Adv. Funct. Mater. 2020, 30, 1907716.

[23]

Brillas, E.; Baños, M. A.; Camps, S.; Arias, C.; Cabot, P. L.; Garrido, J. A.; Rodríguez, R. M. Catalytic effect of Fe2+, Cu2+ and UVA light on the electrochemical degradation of nitrobenzene using an oxygen-diffusion cathode. New J. Chem. 2004, 28, 314–322.

[24]

Zhao, F.; Yu, H. Y.; Liang, L. Y.; Wang, C.; Shi, D. E.; Zhang, X. Y.; Ying, Y.; Cai, W.; Li, W. C.; Li, J. et al. Redox homeostasis disruptors based on metal-phenolic network nanoparticles for chemo/chemodynamic synergistic tumor therapy through activating apoptosis and cuproptosis. Adv. Healthc. Mater. 2023, 12, 2301346.

[25]

Lin, L. S.; Song, J. B.; Song, L.; Ke, K. M.; Liu, Y. J.; Zhou, Z. J.; Shen, Z. Y.; Li, J.; Yang, Z.; Tang, W. et al. Simultaneous fenton-like ion delivery and glutathione depletion by MnO2 -based nanoagent to enhance chemodynamic therapy. Angew. Chem., Int. Ed. 2018, 57, 4902–4906.

[26]

Zhao, P. R.; Li, H. Y.; Bu, W. B. A forward vision for chemodynamic therapy: Issues and opportunities. Angew. Chem., Int. Ed. 2023, 62, e202210415.

[27]

Zhao, P. R.; Jiang, Y. Q.; Tang, Z. M.; Li, Y. L.; Sun, B. X.; Wu, Y. L.; Wu, J. Y.; Liu, Y. Y.; Bu, W. B. Constructing electron levers in perovskite nanocrystals to regulate the local electron density for intensive chemodynamic therapy. Angew. Chem., Int. Ed. 2021, 60, 8905–8912.

[28]

Zhang, H. L.; Chen, Y.; Hua, W.; Gu, W. J.; Zhuang, H. J.; Li, H. Y.; Jiang, X. W.; Mao, Y.; Liu, Y. Y.; Jin, D. Y. et al. Heterostructures with built-in electric fields for long-lasting chemodynamic therapy. Angew. Chem., Int. Ed. 2023, 62, e202300356.

[29]

Yang, J. C.; Yao, H. L.; Guo, Y. D.; Yang, B. W.; Shi, J. L. Enhancing tumor catalytic therapy by co-catalysis. Angew. Chem., Int. Ed. 2022, 61, e202200480.

[30]

Yang, L. X.; Wu, Y. N.; Wang, P. W.; Huang, K. J.; Su, W. C.; Shieh, D. B. Silver-coated zero-valent iron nanoparticles enhance cancer therapy in mice through lysosome-dependent dual programed cell death pathways: Triggering simultaneous apoptosis and autophagy only in cancerous cells. J. Mater. Chem. B 2020, 8, 4122–4131.

[31]

Dai, C.; Wang, C. M.; Hu, R. Z.; Lin, H.; Liu, Z.; Yu, L. D.; Chen, Y.; Zhang, B. Photonic/magnetic hyperthermia-synergistic nanocatalytic cancer therapy enabled by zero-valence iron nanocatalysts. Biomaterials 2019, 219, 119374.

[32]

Yu, H. H.; Lin, C. H.; Chen, Y. C.; Chen, H. H.; Lin, Y. J.; Lin, K. Y. A. Dopamine-modified zero-valent iron nanoparticles for dual-modality photothermal and photodynamic breast cancer therapy. ChemMedChem 2020, 15, 1645–1651.

[33]

Xi, J. Q.; Wei, G.; An, L. F.; Xu, Z. B.; Xu, Z. L.; Fan, L.; Gao, L. Z. Copper/carbon hybrid nanozyme: Tuning catalytic activity by the copper state for antibacterial therapy. Nano Lett. 2019, 19, 7645–7654.

[34]

Chang, P. H.; Chou, T. H.; Sahu, R. S.; Shih, Y. H. Chemical reduction-aided zerovalent copper nanoparticles for 2, 4-dichlorophenol removal. Appl. Nanosci. 2019, 9, 387–395.

[35]

Wang, W. C.; Shi, X. T.; He, T. O.; Zhang, Z. R.; Yang, X. L.; Guo, Y. J.; Chong, B.; Zhang, W. M.; Jin, M. S. Tailoring amorphous PdCu nanostructures for efficient C-C cleavage in ethanol electrooxidation. Nano Lett. 2022, 22, 7028–7033.

[36]

Sahib, M. N.; Abdulameer, S. A.; Darwis, Y.; Peh, K. K.; Tan, Y. T. Solubilization of beclomethasone dipropionate in sterically stabilized phospholipid nanomicelles (SSMs): Physicochemical and in vitro evaluations. Drug. Des. Devel. Ther. 2012, 6, 29–42.

[37]

Kastanek, F.; Spacilova, M.; Krystynik, P.; Dlaskova, M.; Solcova, O. Fenton reaction-unique but still mysterious. Processes 2023, 11, 432.

[38]

Chang, M. Y.; Hou, Z. Y.; Wang, M.; Yang, C. Z.; Wang, R. F.; Li, F.; Liu, D. L.; Peng, T. L.; Li, C. X.; Lin, J. Single-atom pd nanozyme for ferroptosis-boosted mild-temperature photothermal therapy. Angew. Chem., Int. Ed. 2021, 60, 12971–12979.

[39]

Ye, Z. C.; Li, Y.; Li, J. C.; Hu, X. Y.; Zheng, J. Y.; Zhang, G. X.; Xiang, S. J.; Zhu, T. B.; Guo, Z. D.; Chen, X. L. Pd@Ir-LOD multienzyme utilizing endogenous lactate consumption cooperates with photothermal for tumor therapy. Nano Res. 2024, 17, 270–281.

[40]

Liu, C. H.; Lai, N. C.; Liou, S. C.; Chu, M. W.; Chen, C. H.; Yang, C. M. Deposition and thermal transformation of metal oxides in mesoporous SBA-15 silica with hydrophobic mesopores. Microporous Mesoporous Mater. 2013, 179, 40–47.

[41]

Lin, B. P.; Chen, H. T.; Liang, D. Y.; Lin, W.; Qi, X. Y.; Liu, H. P.; Deng, X. Y. Acidic pH and high-H2O2 dual tumor microenvironment-responsive nanocatalytic graphene oxide for cancer selective therapy and recognition. ACS Appl. Mater. Interfaces 2019, 11, 11157–11166.

[42]

Chu, Z. Y.; Yang, J.; Zheng, W.; Sun, J. W.; Wang, W. N.; Qian, H. S. Recent advances on modulation of H2O2 in tumor microenvironment for enhanced cancer therapeutic efficacy. Coord. Chem. Rev. 2023, 481, 215049.

[43]

Bogdanov, A.; Bogdanov, A.; Chubenko, V.; Volkov, N.; Moiseenko, F.; Moiseyenko, V. Tumor acidity: From hallmark of cancer to target of treatment. Front. Oncol. 2022, 12, 979154.

[44]

Bansal, A.; Simon, M. C. Glutathione metabolism in cancer progression and treatment resistance. J. Cell Biol. 2018, 217, 2291–2298.

[45]

Niu, B. Y.; Liao, K. X.; Zhou, Y. X.; Wen, T.; Quan, G. L.; Pan, X.; Wu, C. B. Application of glutathione depletion in cancer therapy: Enhanced ROS-based therapy, ferroptosis, and chemotherapy. Biomaterials 2021, 277, 121110.

[46]

Yang, W. S.; SriRamaratnam, R.; Welsch, M. E.; Shimada, K.; Skouta, R.; Viswanathan, V. S.; Cheah, J. H.; Clemons, P. A.; Shamji, A. F.; Clish, C. B. et al. Regulation of ferroptotic cancer cell death by GPX4. Cell 2014, 156, 317–331.

[47]

Dixon, S. J.; Lemberg, K. M.; Lamprecht, M. R.; Skouta, R.; Zaitsev, E. M.; Gleason, C. E.; Patel, D. N.; Bauer, A. J.; Cantley, A. M.; Yang, W. S. et al. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell 2012, 149, 1060–1072.

[48]

Feng, W.; Liu, Z. L.; Xia, L. L.; Chen, M.; Dai, X. Y.; Huang, H.; Dong, C. H.; He, Y.; Chen, Y. A sonication-activated valence-variable sono-sensitizer/catalyst for autography inhibition/ferroptosis-induced tumor nanotherapy. Angew. Chem., Int. Ed. 2022, 61, e202212021.

File
6552_ESM.pdf (7.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 21 November 2023
Revised: 28 January 2024
Accepted: 06 February 2024
Published: 22 March 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

This work is financially supported by the National Key Research and Development Program of China (No. 2022YFB3804500), the National Natural Science Foundation of China (Nos. 52102354, 52102180, 52202353, and 52372273), and the Science and Technology Development Planning Project of Jilin Province (Nos. 20220101070JC, 20220508089RC, and 20210402046GH). All animals in this study were handled according to a protocol approved by the Institutional Animal Care and Use Committee of Jilin University.

Return