Journal Home > Online First

With the rapid development of wearable electronics, flexible pressure sensors have attracted wide attention in human–computer interaction and intelligent machines. However, it is a challenge to achieve a sensor with high sensitivity, wide measurement range, and wearing comfortability. Here, we develop an oriented electrospinning thermoplastic polyurethane/polyacrylonitrile (TPU/PAN) nanofibers (OETPN) based piezoresistive pressure sensor (PONPS) in which the active layer and the electrode are assembled perpendicularly. The interdigital electrode is fabricated by spraying silver nanowires (AgNWs) on the OETPN through a mask plate. The active layer is composed of OETPN coated with MXene, encapsulated on the electrode by polyurethane (PU) film. The porous structure of nanofibers membrane broadens the measurement range of the sensor. Employing oriented nanofibers as active layer can improve the sensitivity in low pressure, because oriented nanofibers without interweaving nanofibers are more compressible than disordered nanofibers. Electrode prepared using the spraying method creates nanoscale microstructure and increases sensitivity. The perpendicular assembly has greater response between the active layer and the electrode than the parallel assembly to improve the sensitivity. The sensor exhibits high sensitivity (6.71 kPa−1, 0.02–2 kPa) and wide measurement range (0.02–700 kPa). The sensor can detect weak signals such as radial artery. A pressure array constructed precisely represents the distribution of pressure. An intelligent throat is created by combining machine learning algorithms with the PONPS. It can detect and recognize subtle throat vibrations while speaking, achieving recognition accuracy up to 100% using support vector machine (SVM) for five words with different syllables. The fabricated sensor shows promising prospects in personal healthcare and intelligent robots.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Perpendicularly assembled oriented electrospinning nanofibers based piezoresistive pressure sensor with wide measurement range

Show Author's information Xiaoxue Bi1,2Zhigang Duan2Xiaojuan Hou2( )Shuo Qian3Mengjiao Yuan2Jiajun Hu2Jie Zhang2Yuchen Lu2Yanli Liu4Jian He2( )Zhiling Peng1( )Xiujian Chou2
School of Mechanical and Electrical Engineering, North University of China, Taiyuan 030051, China
Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan 030051, China
School of Software, North University of China, Taiyuan 030051, China
School of Information and Communication Engineering, North University of China, Taiyuan 030051, China

Abstract

With the rapid development of wearable electronics, flexible pressure sensors have attracted wide attention in human–computer interaction and intelligent machines. However, it is a challenge to achieve a sensor with high sensitivity, wide measurement range, and wearing comfortability. Here, we develop an oriented electrospinning thermoplastic polyurethane/polyacrylonitrile (TPU/PAN) nanofibers (OETPN) based piezoresistive pressure sensor (PONPS) in which the active layer and the electrode are assembled perpendicularly. The interdigital electrode is fabricated by spraying silver nanowires (AgNWs) on the OETPN through a mask plate. The active layer is composed of OETPN coated with MXene, encapsulated on the electrode by polyurethane (PU) film. The porous structure of nanofibers membrane broadens the measurement range of the sensor. Employing oriented nanofibers as active layer can improve the sensitivity in low pressure, because oriented nanofibers without interweaving nanofibers are more compressible than disordered nanofibers. Electrode prepared using the spraying method creates nanoscale microstructure and increases sensitivity. The perpendicular assembly has greater response between the active layer and the electrode than the parallel assembly to improve the sensitivity. The sensor exhibits high sensitivity (6.71 kPa−1, 0.02–2 kPa) and wide measurement range (0.02–700 kPa). The sensor can detect weak signals such as radial artery. A pressure array constructed precisely represents the distribution of pressure. An intelligent throat is created by combining machine learning algorithms with the PONPS. It can detect and recognize subtle throat vibrations while speaking, achieving recognition accuracy up to 100% using support vector machine (SVM) for five words with different syllables. The fabricated sensor shows promising prospects in personal healthcare and intelligent robots.

Keywords: machine learning algorithms, oriented nanofibers, perpendicular assembly, parallel assembly, intelligent throat

References(44)

[1]

Wang, J.; Zhu, Y. R.; Wu, Z. Y.; Zhang, Y. L.; Lin, J.; Chen, T.; Liu, H. C.; Wang, F. X.; Sun, L. N. Wearable multichannel pulse condition monitoring system based on flexible pressure sensor arrays. Microsyst. Nanoeng. 2022, 8, 16.

[2]

He, J.; Zhang, Y. F.; Zhou, R. H.; Meng, L. R.; Chen, T.; Mai, W.; Pan, C. F. Recent advances of wearable and flexible piezoresistivity pressure sensor devices and its future prospects. J. Materiomics 2020, 6, 86–101.

[3]

Wen, D. -L.; Huang, P.; Deng, H. -T.;Zhang, X. -R.; Wang, Y. -L.; Zhang, X. -S. High-performance hybrid nanogenerator for self-powered wireless multi-sensing microsystems. Microsyst Nanoeng 2023, 9.94.

[4]

Wang, Y. X.; Yue, Y.; Cheng, F.; Cheng, Y. F.; Ge, B. H.; Liu, N. S.; Gao, Y. H. Ti3C2T x MXene-based flexible piezoresistive physical sensors. ACS Nano 2022, 16, 1734–1758.

[5]

Luo, Y. Y.; Zhao, L. B.; Luo, G. X.; Dong, L. X.; Xia, Y.; Li, M.; Li, Z. P.; Wang, K. F.; Maeda, R.; Jiang, Z. D. Highly sensitive piezoresistive and thermally responsive fibrous networks from the in situ growth of PEDOT on MWCNT-decorated electrospun PU fibers for pressure and temperature sensing. Microsyst. Nanoeng. 2023, 9, 113.

[6]

Luo, Y. S.; Chen, X. L.; Li, X. M.; Tian, H. M.; Wang, L.; Shao, J. Y. A flexible dual-function capacitive sensor enhanced by loop-patterned fibrous electrode and doped dielectric pillars for spatial perception. Nano Res. 2023, 16, 7550–7558.

[7]

Wen, D. -L.; Pang, Y. -X.; Huang, P.; Wang, Y. -L.; Zhang, X. -R.; Deng, H. -T.; Zhang, X. -S. Silk fibroin-based wearable all-fiber multifunctional sensor for smart clothing. Adv. Fiber Mater. 2022, 4, 873–884.

[8]

Yu, J. B.; Xian, S.; Zhang, Z. P.; Hou, X. J.; He, J.; Mu, J. L.; Geng, W. P.; Qiao, X. J.; Zhang, L.; Chou, X. J. Synergistic piezoelectricity enhanced BaTiO3/polyacrylonitrile elastomer-based highly sensitive pressure sensor for intelligent sensing and posture recognition applications. Nano Res. 2023, 16, 5490–5502.

[9]

Wen, D. -L.; Huang, P.; Li, B. -Y.; Qiu, Y.; Wang, Y. -L.; Zhang, X. -R.; Deng, H. -T.; Zhang, X. -S. Silk fibroin/Ag nanowire-based multifunctional sensor for wearable self-powered wireless multi-sensing microsystems. Nano Energy 2023, 113, 108569.

[10]

Yu, J. B.; Xian, S.; Mu, J. B.; Wang, M.; Wang, Y.; Hou, X. J.; Zhang, L.; He, J.; Mu, J. L.; Chou, X. J. Hybrid electromechanical properties of hetero-doped and homogeneously bonded dual-mode pressure sensor for indoor body area network node. Sci. China Inf. Sci. 2024, 67, 112401.

[11]

Zhou, N.N.; Ao, H.R.; Chen, X.M.; Gao, S.; Jiang, H.Y. A vector hybrid triboelectric sensor (HTS) for motion identification via machine learning. Nano Res. 2023, 16, 10120–10130.

[12]

Deng, H. -T.; Wen, D. -L.; Liu, J. -R.; Zhang, X. -R.; Wang, Y. -L.; Huang, P.; Kim, B.; Zhang, X. -S. Stretchable multifunctional sensor based on porous silver nanowire/silicone rubber conductive film. Nano Research 2023, 16, 7618–7626.

[13]

Sengupta, D.; Chen, S. H.; Michael, A.; Kwok, C. Y.; Lim, S.; Pei, Y.T.; Kottapalli, A. G. P. Single and bundled carbon nanofibers as ultralightweight and flexible piezoresistive sensors. npj Flex. Electron. 2020, 4, 9.

[14]

Lu, M.; Huang, C. L.; Xu, Z. S.; Yuan, Y.; Wang, M. C.; Xiao, M. Y.; Zhang, L. Q.; Wan, P. B. A Skin-bioinspired urchin-like microstructure-contained photothermal-therapy flexible electronics for ultrasensitive human-interactive sensing. Adv. Funct. Mater. 2023, 33, 2306591.

[15]

Wang, X. M.; Tao, L. Q.; Yuan, M.; Wang, Z. P.; Yu, J. B.; Xie, D. L.; Luo, F.; Chen, X. P.; Wong, C. Sea urchin-like microstructure pressure sensors with an ultra-broad range and high sensitivity. Nat. Commun. 2021, 12, 1776.

[16]

Wei, Y. W.; Shi, X. W.; Yao, Z. Q.; Zhi, J. C.; Hu, L. X.; Yan, R.; Shi, C. Q.; Yu, H. D.; Huang, W. Fully paper-integrated hydrophobic and air permeable piezoresistive sensors for high-humidity and underwater wearable motion monitoring. npj Flex. Electron. 2023, 7, 13.

[17]

Cao, W.; Luo, Y.; Dai, Y. M.; Wang, X.; Wu, K. L.; Lin, H. J.; Rui, K.; Zhu, J. X. Piezoresistive pressure sensor based on a conductive 3D sponge network for motion sensing and human–machine interface. ACS Appl. Mater. Interfaces 2023, 15, 3131–3140.

[18]

Wang, S. L.; Deng, W. L.; Yang, T.; Ao, Y.; Zhang, H. R.; Tian, G.; Deng, L.; Huang, H. C.; Huang, J. F.; Lan, B. L. et al. Bioinspired MXene-based piezoresistive sensor with two-stage enhancement for motion capture. Adv. Funct. Mater. 2023, 33, 2214503.

[19]

Yan, J. F.; Ma, Y. N.; Jia, G.; Zhao, S. R.; Yue, Y.; Cheng, F.; Zhang, C. K.; Cao, M. L.; Xiong, Y. C.; Shen, P. Z. et al. Bionic MXene based hybrid film design for an ultrasensitive piezoresistive pressure sensor. Chem. Eng. J. 2022, 431, 133458.

[20]

Liu, H. L.; Zhang, Q.; Yang, N.; Jiang, X. Z.; Wang, F.; Yan, X.; Zhang, X. N.; Zhao, Y.; Cheng, T. L. Ti3C2T x MXene paper-based wearable and degradable pressure sensor for human motion detection and encrypted information transmission. ACS Appl. Mater. Interfaces 2023, 15, 44554–44562.

[21]

Pang, Y. K.; Xu, X. C.; Chen, S. E.; Fang, Y. H.; Shi, X. D.; Deng, Y. M.; Wang, Z. L.; Cao, C. Y. Skin-inspired textile-based tactile sensors enable multifunctional sensing of wearables and soft robots. Nano Energy 2022, 96, 107137.

[22]

Zhou, Z. Q.; Li, Y.; Cheng, J.; Chen, S. Y.; Hu, R.; Yan, X. W.; Liao, X. Q.; Xu, C. M.; Yu, J. S.; Li, L. Supersensitive all-fabric pressure sensors using printed textile electrode arrays for human motion monitoring and human–machine interaction. J. Mater. Chem. C 2018, 6, 13120–13127.

[23]

Huang, A.; Guo, Y.; Zhu, Y. W.; Chen, T. J.; Yang, Z. Y.; Song, Y.; Wasnik, P.; Li, H. D.; Peng, S. Q.; Guo, Z. H. et al. Durable washable wearable antibacterial thermoplastic polyurethane/carbon nanotube@silver nanoparticles electrospun membrane strain sensors by multi-conductive network. Adv. Compos. Hybrid Mater. 2023, 6, 101.

[24]

Wang, Q.; Sheng, H. W.; Lv, Y. R.; Liang, J.; Liu, Y.; Li, N.; Xie, E. Q.; Su, Q.; Ershad, F.; Lan, W. et al. A skin-mountable hyperthermia patch based on metal nanofiber network with high transparency and low resistivity toward subcutaneous tumor treatment. Adv. Funct. Mater. 2022, 32, 2111228.

[25]

Liu, Y.; Xu, H. Y.; Dong, M.; Han, R. H.; Tao, J.; Bao, R. R.; Pan, C. F. Highly sensitive wearable pressure sensor over a wide sensing range enabled by the skin surface-like 3D patterned interwoven structure. Adv. Mater. Technol. 2022, 7, 2200504.

[26]

Li, S. M.; Li, R. Q.; González, O. G.; Chen, T. J.; Xiao, X. L. Highly sensitive and flexible piezoresistive sensor based on c-MWCNTs decorated TPU electrospun fibrous network for human motion detection. Compos. Sci. Technol. 2021, 203, 108617.

[27]

Gao, L.; Zhu, C. X.; Li, L.; Zhang, C. W.; Liu, J. H.; Yu, H. D.; Huang, W. All paper-based flexible and wearable piezoresistive pressure sensor. ACS Appl. Mater. Interfaces 2019, 11, 25034–25042.

[28]

Zheng, Y. J.; Yin, R.; Zhao, Y.; Liu, H.; Zhang, D. B.; Shi, X. Z.; Zhang, B.; Liu, C. T.; Shen, C. Y. Conductive MXene/cotton fabric based pressure sensor with both high sensitivity and wide sensing range for human motion detection and e-skin. Chem. Eng. J. 2021, 420, 127720.

[29]

Lin, X. Z.; Bing, Y.; Li, F.; Mei, H. X.; Liu, S.; Fei, T.; Zhao, H. R.; Zhang, T. An all-nanofiber-based, breathable, ultralight electronic skin for monitoring physiological signals. Adv. Mater. Technol. 2022, 7, 2101312.

[30]

Li, W. D.; Pu, J. H.; Zhao, X.; Jia, J.; Ke, K.; Bao, R. Y.; Liu, Z. Y.; Yang, M. B.; Yang, W. Scalable fabrication of flexible piezoresistive pressure sensors based on occluded microstructures for subtle pressure and force waveform detection. J. Mater. Chem. C 2020, 8, 16774–16783.

[31]

Li, G.; Chen, D.; Li, C. L.; Liu, W. X.; Liu, H. Engineered microstructure derived hierarchical deformation of flexible pressure sensor induces a supersensitive piezoresistive property in broad pressure range. Adv. Sci. 2020, 7, 2000154.

[32]

Yang, T.; Deng, W. L.; Chu, X.; Wang, X.; Hu, Y. T.; Fan, X.; Song, J.; Gao, Y. Y.; Zhang, B. B.; Tian, G. et al. Hierarchically microstructure-bioinspired flexible piezoresistive bioelectronics. ACS Nano 2021, 15, 11555–11563.

[33]

Yang, R. X.; Dutta, A.; Li, B. W.; Tiwari, N.; Zhang, W. Q.; Niu, Z. Y.; Gao, Y. Y.; Erdely, D.; Xin, X.; Li, T. J. et al. Iontronic pressure sensor with high sensitivity over ultra-broad linear range enabled by laser-induced gradient micro-pyramids. Nat. Commun. 2023, 14, 2907.

[34]

Hou, X. J.; Zhong, J. X.; He, J.; Yang, C. J.; Yu, J. B.; Mei, L. Y.; Mu, J. L.; Geng, W. P.; Chou, X. J. Porous fiber paper and 3D patterned electrodes composed high-sensitivity flexible piezoresistive sensor for physiological signal monitoring. Sci. China Technol. Sci. 2022, 65, 1169–1178.

[35]

Liu, C.; Xu, L.; Kong, L. Y.; Xu, Y. Q.; Zhou, W.; Qiang, Q. P.; Tian, L. L.; Chen, W. B.; Cai, M. S.; Lang, T. C. et al. High-performance piezoresistive flexible pressure sensor based on wrinkled microstructures prepared from discarded vinyl records and ultra-thin, transparent polyaniline films for human health monitoring. J. Mater. Chem. C 2022, 10, 13064–13073.

[36]

Chen, B. D.; Zhang, L.; Li, H. Q.; Lai, X. J.; Zeng, X. R. Skin-inspired flexible and high-performance MXene@polydimethylsiloxane piezoresistive pressure sensor for human motion detection. J. Colloid Interface Sci. 2022, 617, 478–488.

[37]

Du, D. W.; Ma, X. Y.; An, W. X.; Yu, S. H. Flexible piezoresistive pressure sensor based on wrinkled layers with fast response for wearable applications. Measurement 2022, 201, 111645.

[38]

Shao, Z. Z.; Zhang, X.; Liu, J. F.; Liu, X. G.; Zhang, C. H. Electrospinning of highly bi-oriented flexible piezoelectric nanofibers for anisotropic-responsive intelligent sensing. Small Methods 2023, 7, 2300701.

[39]

Jia, Z. X.; Li, Z. J.; Ma, S. F.; Zhang, W. Q.; Chen, Y. J.; Luo, Y. F.; Jia, D. M.; Zhong, B. C.; Razal, J. M.; Wang, X. G. et al. Constructing conductive titanium carbide nanosheet (MXene) network on polyurethane/polyacrylonitrile fibre framework for flexible strain sensor. J. Colloid Interface Sci. 2021, 584, 1–10.

[40]

Wang, M.; Zhang, H.; Wu, H.; Ma, S. Q.; Ren, L.; Liang, Y. H.; Liu, C. B.; Han, Z. W. Bioinspired flexible piezoresistive sensor for high-sensitivity detection of broad pressure range. Bio-Design Manuf. 2023, 6, 243–254.

[41]

Wang, F. M.; Su, D. J.; Ma, K.; Qin, B. L.; Li, B. J.; Li, J. X.; Zhang, C.; Xin, Y.; Huang, Z. D.; Yang, W. J. et al. Reliable and scalable piezoresistive sensors with an MXene/MoS2 hierarchical nanostructure for health signals monitoring. ACS Appl. Mater. Interfaces 2023, 15, 44001–44011.

[42]

Yang, M. C.; Hou, X. J.; Wu, H.; Guo, Y. Y. H.; Zhang, J.; Xie, X.; Xian, S.; Wang, M.; Zhang, L.; Qian, S. et al. Arrayed piezoresistive and inertial measurement unit sensor-integrated assistant training tennis racket for multipoint hand pressure monitoring and representative action recognition. Sci. China Technol. Sci. 2023, 66, 1746–1756.

[43]

Duan, Z. H.; Jiang, Y. D.; Huang, Q.; Wang, S.; Zhao, Q. N.; Zhang, Y. J.; Liu, B. H.; Yuan, Z.; Wang, Y.; Tai, H. L. Facilely constructed two-sided microstructure interfaces between electrodes and cellulose paper active layer: Eco-friendly, low-cost and high-performance piezoresistive sensor. Cellulose 2021, 28, 6389–6402.

[44]

Zhao, P. F.; Zhang, R. M.; Tong, Y. H.; Zhao, X. L.; Tang, Q. X.; Liu, Y. C. All-paper, all-organic, cuttable, and foldable pressure sensor with tuneable conductivity polypyrrole. Adv. Electron. Mater. 2020, 6, 1901426.

File
6551_ESM.pdf (738.5 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 15 November 2023
Revised: 19 January 2024
Accepted: 05 February 2024
Published: 11 April 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 52175554, 52205608, and 62171414), the Fundamental Research Program of Shanxi Province (Nos. 20210302123059 and 20210302124610), and the program for the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (No. 2020L0316).

Return