Journal Home > Online First

The identification and detection of various types of explosives are essential for human health and environmental monitoring. Array-based sensing approach offers significant advantages in detecting multi-analytes simultaneously, thereby holding great potential in identifying multiple explosives. Here, we report a tri-channel fluorescence array composed of three distinct fluorescence probes based on gold nanoclusters and nicotinamide adenine dinucleotide with well-separated emission colors. Through the specific interactions of explosives with different fluorescent probes and the yielded response patterns, seven explosives can be successfully distinguished with 100% accuracy. In particular, the sensor array exhibits excellent performance in the quantitative analysis of individual explosive and the differentiation of multiple explosive mixtures. To facilitate the field detection towards practical application, the tri-channel fluorescence array was further integrated with polymer hydrogels. The fabricated portable hydrogel-based array sensors can not only visually identify seven different explosives by their distinct fluorescence color change, but also enable quantitative detection based on linear discriminant analysis (LDA) together with a smartphone. This study illustrates the great potential of hydrogel-based fluorescence sensor array as robust sensors for explosives, which also holds significant promise for the development of portable explosive devices towards practical application.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Portable hydrogel-based tri-channel fluorescence sensor array for visual detection of multiple explosives

Show Author's information Wenxing Gao1Wenfeng Liu1Saijin Huang1Lin Wang1Yingying Jian2Yutong Li3Weiwei Wu2Li Shang1( )
State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, China
Honors College, Northwestern Polytechnical University, Xi'an 710119, China

Abstract

The identification and detection of various types of explosives are essential for human health and environmental monitoring. Array-based sensing approach offers significant advantages in detecting multi-analytes simultaneously, thereby holding great potential in identifying multiple explosives. Here, we report a tri-channel fluorescence array composed of three distinct fluorescence probes based on gold nanoclusters and nicotinamide adenine dinucleotide with well-separated emission colors. Through the specific interactions of explosives with different fluorescent probes and the yielded response patterns, seven explosives can be successfully distinguished with 100% accuracy. In particular, the sensor array exhibits excellent performance in the quantitative analysis of individual explosive and the differentiation of multiple explosive mixtures. To facilitate the field detection towards practical application, the tri-channel fluorescence array was further integrated with polymer hydrogels. The fabricated portable hydrogel-based array sensors can not only visually identify seven different explosives by their distinct fluorescence color change, but also enable quantitative detection based on linear discriminant analysis (LDA) together with a smartphone. This study illustrates the great potential of hydrogel-based fluorescence sensor array as robust sensors for explosives, which also holds significant promise for the development of portable explosive devices towards practical application.

Keywords: fluorescence, gold nanoclusters, hydrogels, explosives, sensor array

References(53)

[1]

To, K. C.; Ben-Jaber, S.; Parkin, I. P. Recent developments in the field of explosive trace detection. ACS Nano 2020, 14, 10804–10833.

[2]

Sun, X. C.; Wang, Y.; Lei, Y. Fluorescence based explosive detection: From mechanisms to sensory materials. Chem. Soc. Rev. 2015, 44, 8019–8061.

[3]

Cheng, C. Q.; Cui, L. F.; Xiong, W.; Gong, Y. J.; Ji, H. W.; Song, W. J.; Zhao, J. C.; Che, Y. K. Emergent photostability synchronization in coassembled array members for the steady multiple discrimination of explosives. Adv. Sci. 2022, 9, 2102739.

[4]

Wu, Z. F.; Zhou, C. Y.; Zu, B. Y.; Li, Y. S.; Dou, X. C. Contactless and rapid discrimination of improvised explosives realized by Mn2+ doping tailored ZnS nanocrystals. Adv. Funct. Mater. 2016, 26, 4578–4586.

[5]

Geng, Y. Y.; Peveler, W. J.; Rotello, V. M. Array-based "chemical nose" sensing in diagnostics and drug discovery. Angew. Chem., Int. Ed. 2019, 58, 5190–5200.

[6]

Ma, Y. F.; Li, Y. W.; Ma, K.; Wang, Z. Optical colorimetric sensor arrays for chemical and biological analysis. Sci. China Chem. 2018, 61, 643–655.

[7]

Huang, C. Y.; Luo, Y. X.; Li, J. C.; Liu, C.; Zhou, T. S.; Deng, J. J. pH-regulated H4TCPE@Eu/AMP ICP sensor array and its fingerprinting on test papers: Toward point-of-use systematic analysis of environmental antibiotics. Anal. Chem. 2021, 93, 9183–9192.

[8]

Jia, M. Y.; Pan, Y. X.; Zhou, J. B.; Zhang, M. Identification of Chinese teas by a colorimetric sensor array based on tea polyphenol induced indicator displacement assay. Food Chem. 2021, 335, 127566.

[9]

Zhang, C.; Fang, M.; Gao, Y. B.; Li, Y. C.; Fan, L. Z.; Li, X. H. Valence-engineered oxidase-mimicking nanozyme with specificity for aromatic amine oxidation and identification. Anal. Chem. 2023, 95, 10713–10720.

[10]

Zou, Q. Q.; Liu, B.; Zhang, Y. Design of an array structure for carbon-based field-effect-transistor type gas sensors to accurately identify trace gas species. J. Mater. Chem. A 2023, 11, 15811–15820.

[11]

Huang, J.; Gu, H. F.; Wang, G.; Wu, R. F.; Sun, M. R.; Chen, Z. B. Visual sensor arrays for distinction of phenolic acids based on two single-atom nanozymes. Anal. Chem. 2023, 95, 9107–9115.

[12]

Wu, X. P.; Wang, Z. C.; Liu, Y. L.; Li, D. Y. Polymeric schiff base assisted synthesis of Fe-N-C MFs single-atom nanozymes for discrimination and intelligent sensing of tannic acid. Chem. Eng. J. 2023, 468, 143638.

[13]

He, H. W.; Li, C. H.; Tian, Y. F.; Wu, P.; Hou, X. D. Phosphorescent differential sensing of physiological phosphates with lanthanide ions-modified Mn-doped ZnCdS quantum dots. Anal. Chem. 2016, 88, 5892–5897.

[14]

Hu, W. W.; Wu, W. W.; Jian, Y. Y.; Haick, H.; Zhang, G. J.; Qian, Y.; Yuan, M. M.; Yao, M. S. Volatolomics in healthcare and its advanced detection technology. Nano Res. 2022, 15, 8185–8213.

[15]

He, W. W.; Luo, L.; Liu, Q. Y.; Chen, Z. B. Colorimetric sensor array for discrimination of heavy metal ions in aqueous solution based on three kinds of thiols as receptors. Anal. Chem. 2018, 90, 4770–4775.

[16]

Gao, X.; Li, M. M.; Zhao, M. Y.; Wang, X. K.; Wang, S.; Liu, Y. Q. Metabolism-triggered colorimetric sensor array for fingerprinting and antibiotic susceptibility testing of bacteria. Anal. Chem. 2022, 94, 6957–6966.

[17]

Horsfall, L. A.; Pugh, D. C.; Blackman, C. S.; Parkin, I. P. An array of WO3 and CTO heterojunction semiconducting metal oxide gas sensors used as a tool for explosive detection. J. Mater. Chem. A 2017, 5, 2172–2179.

[18]

Konstantynovski, K.; Njio, G.; Börner, F.; Lepcha, A.; Fischer, T.; Holl, G.; Mathur, S. Bulk detection of explosives and development of customized metal oxide semiconductor gas sensors for the identification of energetic materials. Sens. Actuators B Chem. 2018, 258, 1252–1266.

[19]

Jin, Y. Y.; Du, N.; Huang, Y. F.; Shen, W. X.; Tan, Y.; Chen, Y. Z.; Dou, W. T.; He, X. P.; Yang, Z. J.; Xu, N. H. et al. Fluorescence analysis of circulating exosomes for breast cancer diagnosis using a sensor array and deep learning. ACS Sens. 2022, 7, 1524–1532.

[20]

Lu, H. F.; Lu, Q.; Sun, H. W.; Wang, Z. K.; Shi, X.; Ding, Y. L.; Ran, X.; Pei, J.; Pan, Y. B.; Zhang, Q. L. ROS-responsive fluorescent sensor array for precise diagnosis of cancer via pH-controlled multicolor gold nanoclusters. ACS Appl. Mater. Interfaces 2023, 15, 38381–38390.

[21]

Mandal, S.; Paul, D.; Saha, S.; Das, P. Multi-layer perceptron for detection of different class antibiotics from visual fluorescence response of a carbon nanoparticle-based multichannel array sensor. Sens. Actuators B Chem. 2022, 360, 131660.

[22]

Zhang, Y. J.; Wang, T. L.; Guo, H. Q.; Gao, X.; Yan, Y.; Zhou, X.; Zhao, M. Y.; Qin, H. J.; Liu, Y. Q. An ion-coordination hydrogel based sensor array for point-of-care identification and removal of multiple tetracyclines. Biosens. Bioelectron. 2023, 231, 115266.

[23]

Qin, T. Y.; Zhao, X. F.; Lv, T. Y. Z.; Yao, G. K.; Xu, Z. Y.; Wang, L.; Zhao, C.; Xu, H. H.; Liu, B.; Peng, X. J. General method for pesticide recognition using albumin-based host-guest ensembles. ACS Sens. 2022, 7, 2020–2027.

[24]

Li, M.; Pan, Q. L.; Wang, J.; Wang, Z. P.; Peng, C. F. Machine learning-assisted fluorescence sensor array for qualitative and quantitative analysis of pyrethroid pesticides. Food Chem. 2024, 433, 137368.

[25]

Aznar-Gadea, E.; Rodriguez-Canto, P. J.; Sánchez, S. A.; Martínez-Pastor, J. P.; Abargues, R. Luminescent CdSe quantum dot arrays for rapid sensing of explosive taggants. ACS Appl. Nano Mater. 2022, 5, 6717–6725.

[26]

Zhu, Q. J.; Xiong, W.; Gong, Y. J.; Zheng, Y. X.; Che, Y. K.; Zhao, J. C. Discrimination of five classes of explosives by a fluorescence array sensor composed of two tricarbazole-nanostructures. Anal. Chem. 2017, 89, 11908–11912.

[27]

Xiong, W.; Liu, X. L.; Wang, T.; Zhang, Y. F.; Che, Y. K.; Zhao, J. C. Fluorescence detection of a broad class of explosives with one Zinc(II)-coordination nanofiber. Anal. Chem. 2016, 88, 10826–10830.

[28]

Peveler, W. J.; Roldan, A.; Hollingsworth, N.; Porter, M. J.; Parkin, I. P. Multichannel detection and differentiation of explosives with a quantum dot array. ACS Nano 2016, 10, 1139–1146.

[29]

Zhang, B. H.; Chen, J. S.; Cao, Y. T.; Chai, O. J. H.; Xie, J. P. Ligand design in ligand-protected gold nanoclusters. Small 2021, 17, 2004381.

[30]

Wang, Z. J.; Li, Q.; Tan, L. L.; Liu, C. G.; Shang, L. Metal-organic frameworks-mediated assembly of gold nanoclusters for sensing applications. J. Anal. Test. 2022, 6, 163–177.

[31]

Shang, L.; Xu, J.; Nienhaus, G. U. Recent advances in synthesizing metal nanocluster-based nanocomposites for application in sensing, imaging and catalysis. Nano Today 2019, 28, 100767.

[32]

Qian, S. Y.; Wang, Z. P.; Zuo, Z. X.; Wang, X. M.; Wang, Q.; Yuan, X. Engineering luminescent metal nanoclusters for sensing applications. Coord. Chem. Rev. 2022, 451, 214268.

[33]

Yang, G.; Wang, Z. P.; Du, F. L.; Jiang, F. Y.; Yuan, X.; Ying, J. Y. Ultrasmall coinage metal nanoclusters as promising theranostic probes for biomedical applications. J. Am. Chem. Soc. 2023, 145, 11879–11898.

[34]

Freeman, R.; Willner, I. NAD+/NADH-sensitive quantum dots: Applications to probe NAD+-dependent enzymes and to sense the RDX explosive. Nano Lett. 2009, 9, 322–326.

[35]

Peng, T. H.; Qin, W. W.; Wang, K.; Shi, J. Y.; Fan, C. H.; Li, D. Nanoplasmonic imaging of latent fingerprints with explosive RDX residues. Anal. Chem. 2015, 87, 9403–9407.

[36]

Xie, J. P.; Zheng, Y. G.; Ying, J. Y. Protein-directed synthesis of highly fluorescent gold nanoclusters. J. Am. Chem. Soc. 2009, 131, 888–889.

[37]

Zhou, X. M.; Wang, X. J.; Shang, L. Ratiometric fluorescence and visual sensing of ATP based on gold nanocluster-encapsulated metal-organic framework with a smartphone. Chin. Chem. Lett. 2023, 34, 108093.

[38]

Deng, H. H.; Shi, X. Q.; Wang, F. F.; Peng, H. P.; Liu, A. L.; Xia, X. H.; Chen, W. Fabrication of water-soluble, green-emitting gold nanoclusters with a 65% photoluminescence quantum yield via host-guest recognition. Chem. Mater. 2017, 29, 1362–1369.

[39]

Wang, G. F.; Li, Y. S.; Cai, Z. Z.; Dou, X. C. A colorimetric artificial olfactory system for airborne improvised explosive identification. Adv. Mater. 2020, 32, 1907043.

[40]

Jain, V.; Bhagat, S.; Singh, S. Bovine serum albumin decorated gold nanoclusters: A fluorescence-based nanoprobe for detection of intracellular hydrogen peroxide. Sens. Actuators B Chem. 2021, 327, 128886.

[41]

Iwaki, M.; Cotton, N. P. J.; Quirk, P. G.; Rich, P. R.; Jackson, J. B. Molecular recognition between protein and nicotinamide dinucleotide in intact, proton-translocating transhydrogenase studied by ATR-FTIR spectroscopy. J. Am. Chem. Soc. 2006, 128, 2621–2629.

[42]

Gao, W. X.; Li, Q.; Zhong, W. C.; Zhou, X. M.; Ge, Y. B.; Yan, Q. L.; Shang, L. Gold nanoclusters-engineered dual-emitting nanofibrous film for fluorescent discrimination and visual sensing of explosives. Chem. Eng. J. 2023, 456, 140982.

[43]

Andrew, T. L.; Swager, T. M. A fluorescence turn-on mechanism to detect high explosives RDX and PETN. J. Am. Chem. Soc. 2007, 129, 7254–7255.

[44]

Li, T.; Zhu, X. Y.; Hai, X.; Bi, S.; Zhang, X. J. Recent progress in sensor arrays: From construction principles of sensing elements to applications. ACS Sens. 2023, 8, 994–1016.

[45]

Wang, Y.; La, A.; Bruckner, C.; Lei, Y. FRET- and PET-based sensing in a single material: Expanding the dynamic range of an ultra-sensitive nitroaromatic explosives assay. Chem. Commun. 2012, 48, 9903–9905.

[46]

Anju, S. M.; Anjana, R. K.; Vijila, N. S.; Aswathy, A. O.; Jayakrishna, J.; Anjitha, B.; Anjalidevi, J. S.; Adhya, S.; George, S. Tb-doped BSA-gold nanoclusters as a bimodal probe for the selective detection of TNT. Anal. Bioanal. Chem. 2020, 412, 4165–4172.

[47]

Senthamizhan, A.; Celebioglu, A.; Uyar, T. Ultrafast on-site selective visual detection of TNT at sub-ppt level using fluorescent gold cluster incorporated single nanofiber. Chem. Commun. 2015, 51, 5590–5593.

[48]

Yang, X.; Wang, J. H.; Su, D. Y.; Xia, Q. D.; Chai, F.; Wang, C. G.; Qu, F. Y. Fluorescent detection of TNT and 4-nitrophenol by BSA Au nanoclusters. Dalton Trans. 2014, 43, 10057–10063.

[49]

Zhong, Y.; Zhang, J. W.; Li, T. T.; Xu, W. W.; Yao, Q. F.; Lu, M.; Bai, X.; Wu, Z. N.; Xie, J. P.; Zhang, Y. Suppression of kernel vibrations by layer-by-layer ligand engineering boosts photoluminescence efficiency of gold nanoclusters. Nat. Commun. 2023, 14, 658.

[50]

Fan, Y. Z.; Tang, Q.; Liu, S. G.; Yang, Y. Z.; Ju, Y. J.; Xiao, N.; Luo, H. Q.; Li, N. B. A smartphone-integrated dual-mode nanosensor based on novel green-fluorescent carbon quantum dots for rapid and highly selective detection of 2, 4, 6-trinitrophenol and pH. Appl. Surf. Sci. 2019, 492, 550–557.

[51]

Aparna, R. S.; Anjali Devi, J. S.; Anjana, R. R.; Nebu, J.; George, S. Zn(II) ion modulated red emitting copper nanocluster probe for the fluorescence turn on sensing of RDX. Sens. Actuators B Chem. 2019, 291, 298–305.

[52]

Hu, X. Y.; Ma, Z. W.; Li, J. G.; Cai, Z. Z.; Li, Y. S.; Zu, B. Y.; Dou, X. C. Superior water anchoring hydrogel validated by colorimetric sensing. Mater. Horiz. 2020, 7, 3250–3257.

[53]

Liu, Y.; Li, J. G.; Wang, G. F.; Zu, B. Y.; Dou, X. C. One-step instantaneous detection of multiple military and improvised explosives facilitated by colorimetric reagent design. Anal. Chem. 2020, 92, 13980–13988.

File
6549_ESM.pdf (2.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 23 December 2023
Revised: 23 January 2024
Accepted: 02 February 2024
Published: 01 April 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 21705129 and 22274131) and Shaanxi Fundamental Science Research Project for Chemistry & Biology (No. 22JHQ071).

Return