Journal Home > Online First

The perturbation in the magnetic field generated by the rotation or oscillation of magnetic domains in magnetic materials can emit low-frequency electromagnetic waves, which are expected to be used in low-frequency communications. However, the magnetic emission intensity, defined by the perturbation ability, of current commercially applied amorphous alloys, such as Metglas, cannot meet the application requirements for low-frequency antennas due to the domain motion energy loss. Herein, a multi-phase Metglas amorphous alloy was constructed by incorporating α-Fe nanocrystals using rapid annealing to manipulate the domain movement. It was found that 3.89 times higher magnetic emission intensity is obtained compared to the pristine due to the synergism of the deformation and displacement mechanisms. Moreover, the low-frequency magnetic emission performance verification was carried out by preparing magnetoelectric composites as the antenna vibrator by assembling the alloy and macro piezoelectric fiber composites (MFC). Enhancements of magnetic emission intensity are found at 93.3% and 49.2% at the first and second harmonic frequencies compared with the unmodified alloy vibrator. Therefore, the approach leads to the development of high-performance communication with a novel standard for evaluation.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Magnetic emission intensity enhancement for amorphous alloys by constructing a multi-phase structure with α-Fe nanocrystals

Show Author's information Ke Liu1,§Zhi Qin1,§Jie Shen1,2,3( )Zhi Cheng1Shiyue You1Liang Ma1Jing Zhou1,2,3( )Wen Chen1,2,3( )
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya 572024, China
Hubei Longzhong Laboratory, Wuhan University of Technology Xiangyang Demonstration Zone, Xiangyang 441000, China

§ Ke Liu and Zhi Qin contributed equally to this work.

Abstract

The perturbation in the magnetic field generated by the rotation or oscillation of magnetic domains in magnetic materials can emit low-frequency electromagnetic waves, which are expected to be used in low-frequency communications. However, the magnetic emission intensity, defined by the perturbation ability, of current commercially applied amorphous alloys, such as Metglas, cannot meet the application requirements for low-frequency antennas due to the domain motion energy loss. Herein, a multi-phase Metglas amorphous alloy was constructed by incorporating α-Fe nanocrystals using rapid annealing to manipulate the domain movement. It was found that 3.89 times higher magnetic emission intensity is obtained compared to the pristine due to the synergism of the deformation and displacement mechanisms. Moreover, the low-frequency magnetic emission performance verification was carried out by preparing magnetoelectric composites as the antenna vibrator by assembling the alloy and macro piezoelectric fiber composites (MFC). Enhancements of magnetic emission intensity are found at 93.3% and 49.2% at the first and second harmonic frequencies compared with the unmodified alloy vibrator. Therefore, the approach leads to the development of high-performance communication with a novel standard for evaluation.

Keywords: multi-phase amorphous alloys, magnetic emission intensity enhancing mechanism, magnetic domain pinning theory, Jiles–Atherton model analysis

References(38)

[1]

Dong, C. Z.; He, Y. F.; Li, M. H.; Tu, C.; Chu, Z. Q.; Liang, X. F.; Chen, H. H.; Wei, Y. Y.; Zaeimbashi, M.; Wang, X. J. et al. A portable very low frequency (VLF) communication system based on acoustically actuated magnetoelectric antennas. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 398–402.

[2]

Katabira, K.; Miyashita, T.; Narita, F. Stress monitoring capability of magnetostrictive Fe-Co fiber/glass fiber reinforced polymer composites under four-point bending. Sci. Rep. 2022, 12, 22421.

[3]

Albozahid, M.; Naji, H. Z.; Alobad, Z. K.; Saiani, A. Enhanced mechanical, crystallisation and thermal properties of graphene flake-filled polyurethane nanocomposites: The impact of thermal treatment on the resulting microphase-separated structure. J. Polym. Res. 2021, 28, 302.

[4]

Mattei, J. L.; Le Guen, E.; Chevalier, A.; Tarot, A. C. Experimental determination of magnetocrystalline anisotropy constants and saturation magnetostriction constants of NiZn and NiZnCo ferrites intended to be used for antennas miniaturization. J. Magn. Magn. Mater. 2015, 374, 762–768.

[5]

Wang, X. Y.; Yang, X. J.; Li, Z. Y.; Zhang, B. Y.; Cao, Z. X. Research on radiation field and driving based on super-low frequency mechanical antenna array. iScience 2023, 26, 106741.

[6]

Xu, G. K.; Xiao, S. Q.; Li, Y.; Wang, B. Z. Modeling of electromagnetic radiation-induced from a magnetostrictive/piezoelectric laminated composite. Phys. Lett. A 2021, 385, 126959.

[7]

Zhang, W. H.; Cao, Z. X.; Wang, X. Y.; Quan, X.; Sun, M. J. Design, array, and test of super-low-frequency mechanical antenna based on permanent magnet. IEEE Trans. Antennas Propag. 2023, 71, 2321–2329.

[8]

Mitchell, M. A.; Cullen, J. R.; Abbundi, R.; Clark, A.; Savage, H. Magnetoelastic effects in Fe71Co9B20 glassy ribbons. J. Appl. Phys. 1979, 50, 1627–1629.

[9]

Spano, M. L.; Hathaway, K. B.; Savage, H. T. Magnetostriction and magnetic anisotropy of field annealed Metglas* 2605 alloys via dc M–H loop measurements under stress. J. Appl. Phys. 1982, 53, 2667–2669.

[10]

Livingston, J. D. Magnetomechanical properties of amorphous metals. Phys. Status Solidi A 1982, 70, 591–596.

[11]

Xu, J. R.; Leung, C. M.; Zhuang, X.; Li, J. F.; Bhardwaj, S.; Volakis, J.; Viehland, D. A low frequency mechanical transmitter based on magnetoelectric heterostructures operated at their resonance frequency. Sensors 2019, 19, 853.

[12]

Liang, X. F.; Dong, C. Z.; Chen, H. H.; Wang, J. W.; Wei, Y. Y.; Zaeimbashi, M.; He, Y. F.; Matyushov, A.; Sun, C. X.; Sun, N. X. A review of thin-film magnetoelastic materials for magnetoelectric applications. Sensors 2020, 20, 1532.

[13]

Chen, H. H.; Liang, X. F.; Dong, C. Z.; He, Y. F.; Sun, N.; Zaeimbashi, M.; He, Y. X.; Gao, Y.; Parimi, P. V.; Lin, H. et al. Ultra-compact mechanical antennas. Appl. Phys. Lett. 2020, 117, 170501.

[14]

Fitchorov, T.; Chen, Y. J.; Jiang, L. P.; Zhang, G. R.; Zhao, Z. Q.; Vittoria, C.; Harris, V. G. Converse magnetoelectric effect in a Fe-Ga/PMN-PT laminated multiferroic heterostructure for field generator applications. IEEE Trans. Magn. 2011, 47, 4050–4053.

[15]

Sepehri-Amin, H.; Ohkubo, T.; Gruber, M.; Schrefl, T.; Hono, K. Micromagnetic simulations on the grain size dependence of coercivity in anisotropic Nd-Fe-B sintered magnets. Scr. Mater. 2014, 89, 29–32.

[16]

Chen, F. G.; Zhang, T. Q.; Wang, J.; Zhang, L. T.; Zhou, G. F. Investigation of domain wall pinning effect induced by annealing stress in sintered Nd-Fe-B magnet. J. Alloys Compd. 2015, 640, 371–375.

[17]

Smrčka, D.; Procházka, V.; Vrba, V.; Miglierini, M. Nuclear forward scattering analysis of crystallization processes in weakly magnetic metallic glasses. J. Alloys Compd. 2019, 793, 672–677.

[18]

Deng, T. Y.; Chen, Z. Y.; Di, W. N.; Fang, B. J.; Luo, H. S. Enhancement magnetoelectric effect in Metglas-Fe by annealing. Appl. Phys. A 2021, 127, 899.

[19]

Zhou, J. J.; Zhou, J.; Chen, W.; Tian, J.; Shen, J.; Zhang, P. C. Macro fiber composite-based active and efficient suppression of low-frequency vibration of thin-walled composite beam. Compos. Struct. 2022, 299, 116019.

[20]

Hao, G. J.; Zhang, D. N.; Jin, L. C.; Zhang, H. W.; Jia, N.; Tang, X. L. Compositional dependence of magnetic and high frequency properties of nanogranular CoFe-Yttrium-doped Zirconia films. J. Alloys Compd. 2015, 648, 270–275.

[21]

Wei, J. J.; Zhu, C. L.; Zeng, Z. H.; Pan, F.; Wan, F. Q.; Lei, L. W.; Nyström, G.; Fu, Z. Y. Bioinspired cellulose-integrated MXene-based hydrogels for multifunctional sensing and electromagnetic interference shielding. Interdiscip. Mater. 2022, 1, 495–506.

[22]

Patterson, A. L. The scherrer formula for X-ray particle size determination. Phys. Rev. 1939, 56, 978–982.

[23]

Wang, C. L.; Hwang, W. S.; Chu, H. L.; Lin, H. J.; Ko, H. H.; Wang, M. C. Kinetics of anatase transition to rutile TiO2 from titanium dioxide precursor powders synthesized by a sol-gel process. Ceram. Int. 2016, 42, 13136–13143.

[24]

Jones, G.; Parker, S.; Grundy, P.; Lord, D. A study of the effects of surface crystallization on the properties of metglas 2605 CO (Fe67Co18B14Si1). IEEE Trans. Magn. 1984, 20, 1382–1384

[25]

Deng, T. Y.; Fang, B. J.; Zhu, R. F.; Chen, J. W.; Luo, H. S. Dynamic scaling hysteresis behavior and field-induced domain transition of 0.16PIN-0.62PMN-0.22 PT single crystals. Curr. Appl. Phys. 2021, 21, 64–71.

[26]

Zhang, M. X.; Wang, L. S.; Bao, S. S.; Song, Z. J.; Chen, W. J.; Jiang, Z. Y.; Xie, Z. X.; Zheng, L. S. A finite oxidation strategy for customizing heterogeneous interfaces to enhance magnetic loss ability and microwave absorption of Fe-cored carbon microcapsules. Nano Res. 2023, 16, 11084–11095.

[27]

Gong, M. G.; Sakidja, R.; Ren, S. Q. Composition- and oxidation-controlled magnetism in ternary FeCoNi nanocrystals. Nano Res. 2016, 9, 831–836.

[28]

Liang, J.; Li, C. W.; Cao, X.; Wang, Y. X.; Li, Z. C.; Gao, B. Z.; Tong, Z. Y.; Wang, B.; Wan, S. C.; Kong, J. Hollow hydrangea-like nitrogen-doped NiO/Ni/carbon composites as lightweight and highly efficient electromagnetic wave absorbers. Nano Res. 2022, 15, 6831–6840.

[29]

Jiles, D.; Atherton, D. Ferromagnetic hysteresis. IEEE Trans. Magn. 1983, 19, 2183–2185.

[30]

Jiles, D. C.; Atherton, D. L. Theory of ferromagnetic hysteresis. J. Magn. Magn. Mater. 1986, 61, 48–60.

[31]

Hergli, K.; Marouani, H.; Zidi, M. Numerical determination of Jiles–Atherton hysteresis parameters: Magnetic behavior under mechanical deformation. Phys. B: Condens. Matter 2018, 549, 74–81.

[32]

Lu, H. L.; Wen, X. S.; Lan, L.; An, Y. Z.; Li, X. P. A self-adaptive genetic algorithm to estimate JA model parameters considering minor loops. J. Magn. Magn. Mater. 2015, 374, 502–507.

[33]

Bitoh, T.; Makino, A.; Inoue, A. Origin of low coercivity of Fe-(Al, Ga)-(P, C, B, Si, Ge) bulk glassy alloys. Mater. Trans. 2003, 44, 2020–2024.

[34]

Kronmüller, H.; Fähnle, M.; Domann, M.; Grimm, H.; Grimm, R.; Gröger, B. Magnetic properties of amorphous ferromagnetic alloys. J. Magn. Magn. Mater. 1979, 13, 53–70.

[35]

Yan, W. Y.; Pun, C. L.; Simon, G. P. Conditions of applying Oliver–Pharr method to the nanoindentation of particles in composites. Compos. Sci. Technol. 2012, 72, 1147–1152.

[36]

Liu, Y. Y.; Li, Z. Q.; Peng, Y. S.; Huang, Y. H.; Huang, Z. R.; Zhang, D. K. Effect of sintering temperature and TiB2 content on the grain size of B4C-TiB2 composites. Mater. Today Commun. 2020, 23, 100875.

[37]

Chu, Z. Q.; Mao, Z. N.; Song, K. X.; Jiang, S. Z.; Min, S. G.; Dan, W.; Yu, C. Y.; Wu, M. Y.; Ren, Y. H.; Lu, Z. C. et al. A multilayered magnetoelectric transmitter with suppressed nonlinearity for portable VLF communication. Research 2023, 6, 0208.

[38]

Orfeo, D. J.; Burns, D. C.; Xia, T.; Huston, D. R. Y-stator vibrating magnet antenna. IEEE Trans. Magn. 2021, 57, 8001704.

File
6548_ESM.pdf (380.1 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 12 December 2023
Revised: 03 February 2024
Accepted: 03 February 2024
Published: 03 April 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

This work was supported by the Key Research and Development Program of Hubei Province (No. 2021BAA214), the Open Fund of Sanya Science and Education Innovation Park of Wuhan University of Technology (Nos. 2021KF0022, 2021KF0013, and 2020KF0026), Independent Innovation Projects of the Hubei Longzhong Laboratory (Nos. 2022ZZ-34 and 2022ZZ-35), the National Science Fund for Distinguished Young Scholars of Hubei Province (No. 201CFA067), and the National innovation and entrepreneurship training program for college students (Nos. 202310497010 and S202310497026).

Return