Journal Home > Online First

Photocatalytic uranium extraction from radioactive nuclear wastewater and seawater is critical for promoting the sustainable advancement of nuclear industry, but the complexity of real-world environments, particularly the occurrence of anoxic and oxygen-enriched states, presents significant challenges to effective uranium extraction. Here, a layered hollow core–shell structure of Bi2O3/g-C3N4 Z-scheme heterojunction photocatalyst has been designed and successfully applied for photocatalytic uranium extraction in both aerobic and oxygen-free conditions, and the extraction efficiency of uranium can reach 98.4% and 99.0%, respectively. Moreover, the photocatalyst still has ultra-high extraction efficiency under the influence of pH, inorganic ions, and other factors. The exceptional capability for uranium extraction is on the one hand due to the distinctive hollow core–shell architecture, which furnishes an abundant quantity of active sites. On the other hand, benefiting from the suitable band gap structure brought by the construction of Z-scheme heterojunction, Bi2O3/g-C3N4 exhibits current densities (1.00 μA/cm2) that are 5.26 and 3.85 times greater than Bi2O3 and g-C3N4, respectively, and the directional migration mode of Z-scheme carriers significantly prolongs the lifetime of photogenerated charges (1.53 ns), which separately surpass the pure samples by factors of 5.10 and 3.19. Furthermore, the reaction mechanism and reaction process of photocatalytic uranium extraction are investigated in the presence and absence of oxygen, respectively.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Bi2O3/g-C3N4 hollow core–shell Z-scheme heterojunction for photocatalytic uranium extraction

Show Author's information Hao Fu1,2Yuehua Pan2Zhenyu Cai2Yuxiang Deng2Minchen Hou3,4Yuezhou Wei5Toyohisa Fujita2Shunyan Ning5Youbin Wang2Shaolong Zhang3( )Xinpeng Wang2( )
School of Chemistry & Chemical Engineering, Guangxi University, Nanning 530004, China
School of Resources, Environment and Materials, Guangxi University, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Nanning 530004, China
College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
School of Materials, Sun Yat-sen University, Shenzhen 518107, China
School of Nuclear Science and Technology, University of South China, Hengyang 421001, China

Abstract

Photocatalytic uranium extraction from radioactive nuclear wastewater and seawater is critical for promoting the sustainable advancement of nuclear industry, but the complexity of real-world environments, particularly the occurrence of anoxic and oxygen-enriched states, presents significant challenges to effective uranium extraction. Here, a layered hollow core–shell structure of Bi2O3/g-C3N4 Z-scheme heterojunction photocatalyst has been designed and successfully applied for photocatalytic uranium extraction in both aerobic and oxygen-free conditions, and the extraction efficiency of uranium can reach 98.4% and 99.0%, respectively. Moreover, the photocatalyst still has ultra-high extraction efficiency under the influence of pH, inorganic ions, and other factors. The exceptional capability for uranium extraction is on the one hand due to the distinctive hollow core–shell architecture, which furnishes an abundant quantity of active sites. On the other hand, benefiting from the suitable band gap structure brought by the construction of Z-scheme heterojunction, Bi2O3/g-C3N4 exhibits current densities (1.00 μA/cm2) that are 5.26 and 3.85 times greater than Bi2O3 and g-C3N4, respectively, and the directional migration mode of Z-scheme carriers significantly prolongs the lifetime of photogenerated charges (1.53 ns), which separately surpass the pure samples by factors of 5.10 and 3.19. Furthermore, the reaction mechanism and reaction process of photocatalytic uranium extraction are investigated in the presence and absence of oxygen, respectively.

Keywords: photocatalytic, Z-scheme, Bi2O3/g-C3N4, uranium extraction

References(64)

[1]

Feng, L. J.; Yuan, Y. H.; Yan, B. J.; Feng, T. T.; Jian, Y. P.; Zhang, J. C.; Sun, W. Y.; Lin, K.; Luo, G. S.; Wang, N. Halogen hydrogen-bonded organic framework (XHOF) constructed by singlet open-shell diradical for efficient photoreduction of U(VI). Nat. Commun. 2022, 13, 1389.

[2]

Wang, W.; Luo, Q.; Li, L. Q.; Wang, Y. F.; Huo, X. B.; Chen, S. P.; Du, X. W.; Wang, N. Ni-single-atom mediated 2D heterostructures for highly efficient uranyl photoreduction. Adv. Funct. Mater. 2023, 33, 2302913.

[3]

Yu, K. F.; Tang, L.; Cao, X.; Guo, Z. H.; Zhang, Y.; Li, N.; Dong, C. X.; Gong, X.; Chen, T.; He, R. et al. Semiconducting metal–organic frameworks decorated with spatially separated dual cocatalysts for efficient uranium(VI) photoreduction. Adv. Funct. Mater. 2022, 32, 2200315.

[4]

Liu, S.; Wang, Z.; Lu, Y. X.; Li, H. P.; Chen, X. J.; Wei, G. Y.; Wu, T.; Maguire, D. J.; Ye, G.; Chen, J. Sunlight-induced uranium extraction with triazine-based carbon nitride as both photocatalyst and adsorbent. Appl. Catal. B Environ. 2021, 282, 119523.

[5]

Wang, H. H.; Guo, H.; Zhang, N.; Chen, Z. S.; Hu, B. W.; Wang, X. K. Enhanced photoreduction of U(VI) on C3N4 by Cr(VI) and bisphenol A: ESR, XPS, and EXAFS investigation. Environ. Sci. Technol. 2019, 53, 6454–6461.

[6]

Keener, M.; Hunt, C.; Carroll, T. G.; Kampel, V.; Dobrovetsky, R.; Hayton, T. W.; Ménard, G. Redox-switchable carboranes for uranium capture and release. Nature 2020, 577, 652–655.

[7]

Abney, C. W.; Mayes, R. T.; Saito, T.; Dai, S. Materials for the recovery of uranium from seawater. Chem. Rev. 2017, 117, 13935–14013.

[8]

Li, P.; Wang, Y.; Wang, J. J.; Dong, L.; Zhang, W. T.; Lu, Z. H.; Liang, J. J.; Pan, D. Q.; Fan, Q. H. Carboxyl groups on g-C3N4 for boosting the photocatalytic U(VI) reduction in the presence of carbonates. Chem. Eng. J. 2021, 414, 128810.

[9]

Chen, Z.; Chen, W. Y.; Jia, D. S.; Liu, Y.; Zhang, A. R.; Wen, T.; Liu, J.; Ai, Y. J.; Song, W. G.; Wang, X. K. N, P, and S codoped graphene-like carbon nanosheets for ultrafast uranium(VI) capture with high capacity. Adv. Sci. 2018, 5, 1800235

[10]

Yuan, Y. H.; Feng, S. W.; Feng, L. J.; Yu, Q. H.; Liu, T. T.; Wang, N. A bio-inspired nano-pocket spatial structure for targeting uranyl capture. Angew. Chem., Int. Ed. 2020, 59, 4262–4268.

[11]

Chen, M. W.; Liu, T.; Zhang, X. B.; Zhang, R. Q.; Tang, S.; Yuan, Y. H.; Xie, Z. J.; Liu, Y. J.; Wang, H.; Fedorovich, K. V. et al. Photoinduced enhancement of uranium extraction from seawater by mof/black phosphorus quantum dots heterojunction anchored on cellulose nanofiber aerogel. Adv. Funct. Mater. 2021, 31, 2100106.

[12]

Zhang, H. L.; Liu, W.; Li, A.; Zhang, D.; Li, X. Y.; Zhai, F. W.; Chen, L. H.; Chen, L.; Wang, Y. L.; Wang, S. Three mechanisms in one material: Uranium capture by a polyoxometalate-organic framework through combined complexation, chemical reduction, and photocatalytic reduction. Angew. Chem., Int. Ed. 2019, 58, 16110–16114.

[13]

He, P.; Zhang, L.; Wu, L. Z.; Xiao, S. H.; Ren, X.; He, R.; Yang, X. Y.; Liu, R. X.; Duan, T. Synergy of oxygen vacancies and thermoelectric effect enhances uranium(VI) photoreduction. Appl. Catal. B Environ. 2023, 322, 122087.

[14]

Rao, G. W.; Liu, X. D.; Liu, P. H. Fabrication of MoS2@TiO2 hollow-sphere heterostructures with enhanced visible light photocatalytic reduction of U(VI). J. Radioanal. Nucl. Chem. 2022, 331, 263–273.

[15]

Hu, L.; Yan, X. W.; Zhang, X. J.; Shan, D. Integration of adsorption and reduction for uranium uptake based on SrTiO3/TiO2 electrospun nanofibers. Appl. Surf. Sci. 2018, 428, 819–824.

[16]

Yu, F. T.; Zhu, Z. Q.; Wang, S. P.; Peng, Y. K.; Xu, Z. Z.; Tao, Y.; Xiong, J. B.; Fan, Q. W.; Luo, F. Tunable perylene-based donor-acceptor conjugated microporous polymer to significantly enhance photocatalytic uranium extraction from seawater. Chem. Eng. J. 2021, 412, 127558.

[17]

Li, Z. F.; Zhang, Z. B.; Zhu, X.; Meng, C.; Dong, Z. M.; Xiao, S. T.; Wang, Y. C.; Wang, Y. Q.; Cao, X. H.; Liu, Y. H. Exciton dissociation and transfer behavior and surface reaction mechanism in donor-acceptor organic semiconductor photocatalytic separation of uranium. Appl. Catal. B Environ. 2023, 332, 122751.

[18]

Chen, L.; Chen, B.; Kang, J. Y.; Yan, Z. J.; Jin, Y. D.; Yan, H. J.; Chen, S. Y.; Xia, C. Q. The Synthesis of a novel conjugated microporous polymer and application on photocatalytic removal of uranium(VI) from wastewater under visible light. Chem. Eng. J. 2022, 431, 133222.

[19]

Liang, P. L.; Yuan, L. Y.; Deng, H.; Wang, X. C.; Wang, L.; Li, Z. J.; Luo, S. Z.; Shi, W. Q. Photocatalytic reduction of uranium(VI) by magnetic ZnFe2O4 under visible light. Appl. Catal. B Environ. 2020, 267, 118688.

[20]

Zhu, Q.; Sun, Y. K.; Xu, S.; Li, Y. L.; Lin, X. L.; Qin, Y. L. Rational design of 3D/2D In2O3 nanocube/ZnIn2S4 nanosheet heterojunction photocatalyst with large-area “high-speed channels” for photocatalytic oxidation of 2,4-dichlorophenol under visible light. J. Hazard. Mater. 2020, 382, 121098.

[21]

Pei, X. Q.; An, W. X.; Zhao, H. L.; He, H.; Fu, Y. C.; Shen, X. M. Enhancing visible-light degradation performance of g-C3N4 on Organic pollutants by constructing heterojunctions via combining tubular g-C3N4 with Bi2O3 nanosheets. J. Alloys Compd. 2023, 934, 167928.

[22]

Wang, N.; Wang, D. X.; Wu, A. P.; Wang, S. Y.; Li, Z. H.; Jin, C. X.; Dong, Y. M.; Kong, F. Y.; Tian, C. G.; Fu, H. G. Few-layered MoS2 anchored on 2D porous C3N4 nanosheets for Pt-free photocatalytic hydrogen evolution. Nano Res. 2023, 16, 3524–3535.

[23]

Huang, C. F.; Wen, Y. P.; Ma, J.; Dong, D. D.; Shen, Y. F.; Liu, S. Q.; Ma, H. B.; Zhang, Y. J. Unraveling fundamental active units in carbon nitride for photocatalytic oxidation reactions. Nat. Commun. 2021, 12, 320.

[24]

Yang, Q.; Yu, S. W.; Fu, P.; Yu, W.; Liu, Y.; Liu, X.; Feng, Z. C.; Guo, X.; Li, C. Boosting performance of non-fullerene organic solar cells by 2D g-C3N4 doped PEDOT:PSS. Adv. Funct. Mater. 2020, 30, 1910205.

[25]

Wang, S. P.; Hou, M. C.; Fu, H.; Ruan, Z. Z.; Sun, T. T.; Zhu, Y. Q.; Wang, L. W.; Wang, Y. H.; Zhang, S. L. Synthesis of ultrathin porous g-C3N4 nanofilm via template-free method for photocatalytic degradation of tetracycline. J. Alloys Compd. 2023, 939, 168738.

[26]

Liang, Q. H.; Li, Z.; Huang, Z. H.; Kang, F. Y.; Yang, Q. H. Holey graphitic carbon nitride nanosheets with carbon vacancies for highly improved photocatalytic hydrogen production. Adv. Funct. Mater. 2015, 25, 6885–6892.

[27]

Du, F. Q.; Yang, D. M.; Kang, T. X.; Ren, Y. X.; Hu, P.; Song, J. M.; Teng, F.; Fan, H. B. SiO2/Ga2O3 nanocomposite for highly efficient selective removal of cationic organic pollutant via synergistic electrostatic adsorption and photocatalysis. Sep. Purif. Technol. 2022, 295, 121221.

[28]

Chinnathambi, A. Synthesis and characterization of spinel FeV2O4 coupled ZnO nanoplates for boosted white light photocatalysis and antibacterial applications. J. Alloys Compd. 2022, 890, 161742.

[29]

Li, Y. X.; Wen, M. M.; Wang, Y.; Tian, G.; Wang, C. Y.; Zhao, J. C. Plasmonic hot electrons from oxygen vacancies for infrared light-driven catalytic CO2 reduction on Bi2O3- x . Angew. Chem., Int. Ed. 2021, 60, 910–916.

[30]

Yang, L.; Tian, B. S.; Xie, Y.; Dong, S. M.; Yang, M. Q.; Gai, S. L.; Lin, J. Oxygen-vacancy-rich piezoelectric BiO2- x nanosheets for augmented piezocatalytic, sonothermal, and enzymatic therapies. Adv. Mater. 2023, 35, 2300648.

[31]

Zhai, G. Y.; Liu, S. Z.; Si, S. H.; Liu, Y. Y.; Zhang, H. G.; Mao, Y. Y.; Zhang, M. H.; Wang, Z. Y.; Cheng, H. F.; Wang, P. et al. Oxygen vacancies enhanced ozonation toward phenol derivatives removal over O v -Bi2O3. ACS EST Water 2022, 2, 1725–1733.

[32]

Zhang, S. L.; Hou, M. C.; Zhai, Y. L.; Liu, H. J.; Zhai, D.; Zhu, Y. Q.; Ma, L.; Wei, B.; Huang, J. Dual-active-sites single-atom catalysts for advanced applications. Small 2023, 19, 2302739.

[33]

Ning, S. B.; Ou, H. H.; Li, Y. G.; Lv, C. C.; Wang, S. F.; Wang, D. S.; Ye, J. H. Co0–Co δ + interface double-site-mediated C–C coupling for the photothermal conversion of CO2 into light olefins. Angew. Chem., Int. Ed. 2023, 62, e202302253.

[34]

Wang, G.; Chen, Z.; Wang, T.; Wang, D. S.; Mao, J. J. P and Cu dual sites on graphitic carbon nitride for photocatalytic CO2 reduction to hydrocarbon fuels with high C2H6 evolution. Angew. Chem., Int. Ed. 2022, 61, e202210789.

[35]

Ou, H. H.; Li, G. S.; Ren, W.; Pan, B. J.; Luo, G. H.; Hu, Z. F.; Wang, D. S.; Li, Y. D. Atomically dispersed Au-assisted C–C coupling on red phosphorus for CO2 photoreduction to C2H6. J. Am. Chem. Soc. 2022, 144, 22075–22082.

[36]

Wang, G.; Huang, R.; Zhang, J. W.; Mao, J. J.; Wang, D. S.; Li, Y. D. Synergistic modulation of the separation of photo-generated carriers via engineering of dual atomic sites for promoting photocatalytic performance. Adv. Mater. 2021, 33, 2105904.

[37]

Zander, J.; Timm, J.; Weiss, M.; Marschall, R. Light-induced ammonia generation over defective carbon nitride modified with pyrite. Adv. Energy Mater. 2022, 12, 2202403.

[38]

Wang, H. Y.; Niu, R. R.; Liu, J. H.; Guo, S.; Yang, Y. P.; Liu, Z. Y.; Li, J. Electrostatic self-assembly of 2D/2D CoWO4/g-C3N4 p–n heterojunction for improved photocatalytic hydrogen evolution: Built-in electric field modulated charge separation and mechanism unveiling. Nano Res. 2022, 15, 6987–6998.

[39]

Zhang, S. L.; Zhai, D.; Sun, T. T.; Han, A. J.; Zhai, Y. L.; Cheong, W. C.; Liu, Y.; Su, C. L.; Wang, D. S.; Li, Y. D. In situ embedding Co9S8 into nitrogen and sulfur codoped hollow porous carbon as a bifunctional electrocatalyst for oxygen reduction and hydrogen evolution reactions. Appl. Catal. B Environ. 2019, 254, 186–193.

[40]

Ou, H. H.; Qian, Y. P.; Yuan, L. T.; Li, H.; Zhang, L. D.; Chen, S. H.; Zhou, M.; Yang, G. D.; Wang, D. S.; Wang, Y. G. Spatial position regulation of Cu single atom site realizes efficient nanozyme photocatalytic bactericidal activity. Adv. Mater. 2023, 35, 2305077.

[41]

Wang, G.; Wu, Y.; Li, Z. J.; Lou, Z. Z.; Chen, Q. Q.; Li, Y. F.; Wang, D. S.; Mao, J. J. Engineering a copper single-atom electron bridge to achieve efficient photocatalytic CO2 conversion. Angew. Chem., Int. Ed. 2023, 62, e202218460.

[42]

Gong, Y. N.; Shao, B. Z.; Mei, J. H.; Yang, W.; Zhong, D. C.; Lu, T. B. Facile synthesis of C3N4-supported metal catalysts for efficient CO2 photoreduction. Nano Res. 2022, 15, 551–556.

[43]

Zhao, D. M.; Wang, Y. Q.; Dong, C. L.; Meng, F. Q.; Huang, Y. C.; Zhang, Q. H.; Gu, L.; Liu, L.; Shen, S. H. Electron-deficient Zn–N6 configuration enabling polymeric carbon nitride for visible-light photocatalytic overall water splitting. Nano-Micro Lett. 2022, 14, 223.

[44]

Zhang, B.; Zhao, T. J.; Feng, W. J.; Liu, Y. X.; Wang, H. H.; Su, H.; Lv, L. B.; Li, X. H.; Chen, J. S. Polarized few-layer g-C3N4 as metal-free electrocatalyst for highly efficient reduction of CO2. Nano Res. 2018, 11, 2450–2459.

[45]

Shen, H. D.; Zhan, X. Y.; Hong, S.; Xu, L.; Yang, C. M.; Robertson, A. W.; Hao, L. D.; Fu, F.; Sun, Z. Y. Ultrafine MoO x clusters anchored on g-C3N4 with nitrogen/oxygen dual defects for synergistic efficient O2 activation and tetracycline photodegradation. Nano Res. 2023, 16, 10713–10723.

[46]

Liu, Q.; Cheng, H.; Chen, T. X.; Lo, T. W. B.; Xiang, Z. M.; Wang, F. X. Regulating the *OCCHO intermediate pathway towards highly selective photocatalytic CO2 reduction to CH3CHO over locally crystallized carbon nitride. Energy Environ. Sci. 2022, 15, 225–233.

[47]

Liu, B. Y.; Du, J. Y.; Ke, G. L.; Jia, B.; Huang, Y. J.; He, H. C.; Zhou, Y.; Zou, Z. G. Boosting O2 reduction and H2O dehydrogenation kinetics: Surface N-hydroxymethylation of g-C3N4 photocatalysts for the efficient production of H2O2. Adv. Funct. Mater. 2022, 32, 2111125.

[48]

Jiang, B.; Huang, H.; Gong, W. B.; Gu, X. Q.; Liu, T.; Zhang, J. C.; Qin, W.; Chen, H.; Jin, Y. C.; Liang, Z. Q. et al. Wood-inspired binder enabled vertical 3D printing of g-C3N4/CNT arrays for highly efficient photoelectrochemical hydrogen evolution. Adv. Funct. Mater. 2021, 31, 2105045.

[49]

Wang, W. J.; Niu, Q. Y.; Zeng, G. M.; Zhang, C.; Huang, D. L.; Shao, B. B.; Zhou, C. Y.; Yang, Y.; Liu, Y. X.; Guo, H. et al. 1D porous tubular g-C3N4 capture black phosphorus quantum dots as 1D/0D metal-free photocatalysts for oxytetracycline hydrochloride degradation and hexavalent chromium reduction. Appl. Catal. B Environ. 2020, 273, 119051.

[50]

Hinuma, Y.; Grüneis, A.; Kresse, G.; Oba, F. Band alignment of semiconductors from density-functional theory and many-body perturbation theory. Phys. Rev. B 2014, 90, 155405.

[51]

Li, Q.; Li, X.; Wageh, S.; Al-Ghamdi, A. A.; Yu, J. G. CdS/graphene nanocomposite photocatalysts. Adv. Energy Mater. 2015, 5, 1500010.

[52]

Feng, B.; Wu, Z. Y.; Liu, J. S.; Zhu, K. J.; Li, Z. Q.; Jin, X.; Hou, Y. D.; Xi, Q. Y.; Cong, M. Q.; Liu, P. C. et al. Combination of ultrafast dye-sensitized-assisted electron transfer process and novel Z-scheme system: AgBr nanoparticles interspersed MoO3 nanobelts for enhancing photocatalytic performance of RhB. Appl. Catal. B Environ. 2017, 206, 242–251.

[53]

Liu, X. N.; Du, P. H.; Pan, W. Y.; Dang, C. Y.; Qian, T. W.; Liu, H. F.; Liu, W.; Zhao, D. Y. Immobilization of uranium(VI) by niobate/titanate nanoflakes heterojunction through combined adsorption and solar-light-driven photocatalytic reduction. Appl. Catal. B Environ. 2018, 231, 11–22.

[54]

Hu, Y. Z.; Tang, D. Y.; Shen, Z. W.; Yao, L.; Zhao, G. X.; Wang, X. K. Photochemically triggered self-extraction of uranium from aqueous solution under ambient conditions. Appl. Catal. B Environ. 2023, 322, 122092.

[55]

Chen, L. J.; Gao, Y.; Lian, J. J.; Li, L.; Ding, D. X.; Dai, Z. R. Efficient photoreduction removal of uranium(VI) by O, K co-doped g-C3N4 under air atmosphere without sacrificial agents. Sep. Purif. Technol. 2023, 307, 122873.

[56]

Zhang, Y. F.; Zhu, M. Y.; Zhang, S.; Cai, Y. W.; Lv, Z. M.; Fang, M.; Tan, X. L.; Wang, X. K. Highly efficient removal of U(VI) by the photoreduction of SnO2/CdCO3/CdS nanocomposite under visible light irradiation. Appl. Catal. B Environ. 2020, 279, 119390.

[57]

Zhu, X. W.; Huang, S. Q.; Yu, Q.; She, Y. B.; Yang, J. M.; Zhou, G. L.; Li, Q. D.; She, X. J.; Deng, J. J.; Li, H. M. et al. In-situ hydroxyl modification of monolayer black phosphorus for stable photocatalytic carbon dioxide conversion. Appl. Catal. B Environ. 2020, 269, 118760.

[58]

Wang, Y. X.; Rao, L.; Wang, P. F.; Shi, Z. Y.; Zhang, L. X. Photocatalytic activity of N-TiO2/O-Doped N vacancy g-C3N4 and the intermediates toxicity evaluation under tetracycline hydrochloride and Cr(VI) coexistence environment. Appl. Catal. B Environ. 2020, 262, 118308.

[59]

Zhang, N.; Li, X. Y.; Ye, H. C.; Chen, S. M.; Ju, H. X.; Liu, D. B.; Lin, Y.; Ye, W.; Wang, C. M.; Xu, Q. et al. Oxide defect engineering enables to couple solar energy into oxygen activation. J. Am. Chem. Soc. 2016, 138, 8928–8935.

[60]

Zhu, X. W.; Yang, J. M.; Zhu, X. L.; Yuan, J. J.; Zhou, M.; She, X. J.; Yu, Q.; Song, Y. H.; She, Y. B.; Hua, Y. J. et al. Exploring deep effects of atomic vacancies on activating CO2 photoreduction via rationally designing indium oxide photocatalysts. Chem. Eng. J. 2021, 422, 129888.

[61]

Kong, W. Q.; Zhang, X. F.; Liu, S. S.; Zhou, Y. N.; Chang, B. B.; Zhang, S. R.; Fan, H. B.; Yang, B. C. N doped carbon dot modified WO3 nanoflakes for efficient photoelectrochemical water oxidation. Adv. Mater. Interfaces 2019, 6, 1801653.

[62]

Liu, S. B.; Xiao, J.; Lu, X. F.; Wang, J.; Wang, X.; Lou, X. W. (David). Efficient electrochemical reduction of CO2 to HCOOH over sub-2 nm SnO2 quantum wires with exposed grain boundaries. Angew. Chem., Int. Ed. 2019, 58, 8499–8503.

[63]

Li, Z. F.; Zhang, Z. B.; Dong, Z. M.; Wu, Y. C.; Zhu, X.; Cheng, Z. P.; Liu, Y. H.; Wang, Y. C.; Zheng, Z. J.; Cao, X. H. et al. CuS/TiO2 nanotube arrays heterojunction for the photoreduction of uranium(VI). J. Solid State Chem. 2021, 303, 122499.

[64]

Li, P.; Wang, J. J.; Wang, Y.; Dong, L.; Wang, W.; Geng, R. Y.; Ding, Z.; Luo, D. X.; Pan, D. Q.; Liang, J. J. et al. Ultrafast recovery of aqueous uranium: Photocatalytic U(VI) reduction over CdS/g-C3N4. Chem. Eng. J. 2021, 425, 131552.

File
6545_ESM.pdf (1.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 08 January 2024
Revised: 02 February 2024
Accepted: 03 February 2024
Published: 15 March 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 12075066 and 21866007) and the Innovation Project of Guangxi Graduate Education (No. YCBZ2022017). The authors thank the National Synchrotron Radiation Laboratory MCD-A and MCD-B beamlines (Soochow Beamline for Energy Materials).

Return