Journal Home > Online First

Photocatalytic hydrogen generation from hydrogen storage media is an effective and promising approach for the green hydrogen industry as well as for achieving carbon neutrality goals. However, the lower photocatalytic efficiency due to the limited light trapping capacity, low electron transfer rate, and severe aggregation of nanoparticles caused by high surface energy seriously restricts their practical application. Herein, we constructed a series of donor–acceptor (D–A) type covalent organic frameworks to confine ultrafine bimetallic Pt-based nanoclusters for photocatalytic hydrogen generation from ammonia borane (AB) hydrolysis. Under visible light irradiation at 20 °C, PtCo2@covalent organic framework (COF) showed the highest photocatalytic activity with a turnover frequency (TOF) of 486 min−1. Experiments and density functional theory (DFT) calculations reveal that the high catalytic activity is mainly attributed to the strong electronic interactions between D–A type COF and ultrafine PtCo2 nanoclusters. Specifically, the D–A type COF can significantly enhance the light-trapping ability by fine-tuning the electron-acceptor type in the framework, and accelerate the photogenerated electron transfer from D–A type COF to PtCo2 nanocluster, which promotes the adsorption and activation of H2O and AB molecules and accelerates hydrogen release. Furthermore, PtCo2@COF also exhibited ultra-high durability due to the significantly enhanced resistance to nanocluster aggregation caused by the nanopore confinement effect of D–A type COF. We believe that this work will provide a theoretical guide for the rational design of efficient D–A COF-based catalysts for photocatalysis.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Donor–acceptor covalent organic frameworks-confined ultrafine bimetallic Pt-based nanoclusters for enhanced photocatalytic H2 generation

Show Author's information Yu Liu1,§Yawen Shi2,§Hua Wang1( )Shengbo Zhang1,2( )
Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, Tianjin 300350, China

§ Yu Liu and Yawen Shi contributed equally to this work.

Abstract

Photocatalytic hydrogen generation from hydrogen storage media is an effective and promising approach for the green hydrogen industry as well as for achieving carbon neutrality goals. However, the lower photocatalytic efficiency due to the limited light trapping capacity, low electron transfer rate, and severe aggregation of nanoparticles caused by high surface energy seriously restricts their practical application. Herein, we constructed a series of donor–acceptor (D–A) type covalent organic frameworks to confine ultrafine bimetallic Pt-based nanoclusters for photocatalytic hydrogen generation from ammonia borane (AB) hydrolysis. Under visible light irradiation at 20 °C, PtCo2@covalent organic framework (COF) showed the highest photocatalytic activity with a turnover frequency (TOF) of 486 min−1. Experiments and density functional theory (DFT) calculations reveal that the high catalytic activity is mainly attributed to the strong electronic interactions between D–A type COF and ultrafine PtCo2 nanoclusters. Specifically, the D–A type COF can significantly enhance the light-trapping ability by fine-tuning the electron-acceptor type in the framework, and accelerate the photogenerated electron transfer from D–A type COF to PtCo2 nanocluster, which promotes the adsorption and activation of H2O and AB molecules and accelerates hydrogen release. Furthermore, PtCo2@COF also exhibited ultra-high durability due to the significantly enhanced resistance to nanocluster aggregation caused by the nanopore confinement effect of D–A type COF. We believe that this work will provide a theoretical guide for the rational design of efficient D–A COF-based catalysts for photocatalysis.

Keywords: photocatalysis, electron transfer, light trapping, bimetallic nanoclusters, donor–acceptor covalent organic frameworks (D–A COFs)

References(50)

[1]

Deng, P. S.; Wang, P.; Wang, X. F.; Chen, F.; Yu, H. G. Oxygen-contained amorphous MoS x cocatalyst by one-step photodeposition to enhance H-adsorption affinity for efficient photocatalytic H2 generation. Nano Res. 2023, 16, 8977–8986.

[2]
Rueda-Navarro, C. M.; Cabrero-Antonino, M.; Escamilla, P.; Díez-Cabanes, V.; Fan, D.; Atienzar, P.; Ferrer, B.; Vayá, I.; Maurin, G.; Baldoví, H. G. et al. Solar-assisted photocatalytic water splitting using defective UiO-66 solids from modulated synthesis. Nano Res., in press, https://doi.org/10.1007/s12274-023-6351-1.
DOI
[3]

Hu, Y. M.; Chao, T. T.; Li, Y. P.; Liu, P. G.; Zhao, T. H.; Yu, G.; Chen, C.; Liang, X.; Jin, H. L.; Niu, S. W. et al. Cooperative Ni (Co)-Ru-P sites activate dehydrogenation for hydrazine oxidation assisting self-powered H2 production. Angew. Chem. 2023, 135, e202308800.

[4]

Rossin, A.; Peruzzini, M. Ammonia-borane and amine-borane dehydrogenation mediated by complex metal hydrides. Chem. Rev. 2016, 116, 8848–8872.

[5]

Guan, S. Y.; Yuan, Z. L.; Zhuang, Z. C.; Zhang, H. H.; Wen, H.; Fan, Y. P.; Li, B. J.; Wang, D. S.; Liu, B. Z. Why do single-atom alloys catalysts outperform both single-atom catalysts and nanocatalysts on MXene. Angew. Chem., Int. Ed. 2024, 63, e202316550.

[6]

Zhu, P.; Xiong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.

[7]

Zhang, S. B.; Li, M.; Li, L. S.; Dushimimana, F.; Zhao, J. K.; Wang, S.; Han, J. Y.; Zhu, X. L.; Liu, X.; Ge, Q. F. et al. Visible-light-driven multichannel regulation of local electron density to accelerate activation of O–H and B–H bonds for ammonia borane hydrolysis. ACS Catal. 2020, 10, 14903–14915.

[8]

Wang, Y. T.; Shen, G. Q.; Zhang, Y. X.; Pan, L.; Zhang, X. W.; Zou, J. J. Visible-light-induced unbalanced charge on NiCoP/TiO2 sensitized system for rapid H2 generation from hydrolysis of ammonia borane. Appl. Catal. B: Environ. 2020, 260, 118183.

[9]

Xu, H.; Gao, J.; Jiang, D. L. Stable, crystalline, porous, covalent organic frameworks as a platform for chiral organocatalysts. Nat. Chem. 2015, 7, 905–912.

[10]

Lohse, M. S.; Bein, T. Covalent organic frameworks: Structures, synthesis, and applications. Adv. Funct. Mater. 2018, 28, 1705553.

[11]

Fan, Y.; Zhang, J.; Shen, Y.; Zheng, B.; Zhang, W. N.; Huo, F. W. Emerging porous nanosheets: From fundamental synthesis to promising applications. Nano Res. 2021, 14, 1–28.

[12]

Dey, K.; Mohata, S.; Banerjee, R. Covalent organic frameworks and supramolecular nano-synthesis. ACS Nano 2021, 15, 12723–12740.

[13]

Shang, Q. G.; Liu, Y. Y.; Ai, J.; Yan, Y.; Yang, X. F.; Wang, D. S.; Liao, G. Y. Embedding Au nanoclusters into the pores of carboxylated COF for the efficient photocatalytic production of hydrogen peroxide. J. Mater. Chem. A 2023, 11, 21109–21122.

[14]

Sun, Q. M.; Wang, N.; Xu, Q.; Yu, J. H. Nanopore-supported metal nanocatalysts for efficient hydrogen generation from liquid-phase chemical hydrogen storage materials. Adv. Mater. 2020, 32, 2001818.

[15]

Qian, Y. Y.; Han, Y. L.; Zhang, X. Y.; Yang, G.; Zhang, G. Z.; Jiang, H. L. Computation-based regulation of excitonic effects in donor–acceptor covalent organic frameworks for enhanced photocatalysis. Nat. Commun. 2023, 14, 3083.

[16]

Sun, L.; Li, L. L.; Fan, J. J.; Xu, Q. L.; Ma, D. K. Construction of highly active WO3/TpPa-1-COF S-scheme heterojunction toward photocatalytic H2 generation. J. Mater. Sci. Technol. 2022, 123, 41–48.

[17]

Liu, M. Y.; Yang, K. N.; Li, Z. Y.; Fan, E. C.; Fu, H. F.; Zhang, L. K.; Zhang, Y. G.; Zheng, Z. The O/S heteroatom effects of covalent triazine frameworks for photocatalytic hydrogen evolution. Chem. Comm. 2022, 58, 92–95.

[18]

Wu, Q.; Mao, M. J.; Wu, Q. J.; Liang, J.; Huang, Y. B.; Cao, R. Construction of donor–acceptor heterojunctions in covalent organic framework for enhanced CO2 electroreduction. Small 2021, 17, 2004933.

[19]

Xu, M.; Yu, S. S.; Li, W. R.; Li, C. Y.; Peng, Y. K.; Yu, F. T. Molecular engineering of donor–acceptor sp2-carbon-linked covalent organic frameworks for enhancing photocatalytic hydrogen production. Polym. Chem. 2023, 14, 5133–5139.

[20]

Xia, Y. Q.; Zhang, W. F.; Yang, S.; Wang, L. P.; Yu, G. Research progress in donor–acceptor type covalent organic frameworks. Adv. Mater. 2023, 35, 2301190.

[21]

Wang, F. D.; Yang, L. J.; Wang, X. X.; Rong, Y.; Yang, L. B.; Zhang, C. X.; Yan, F. Y.; Wang, Q. L. Pyrazine-functionalized donor-acceptor covalent organic frameworks for enhanced photocatalytic H2 evolution with high proton transport. Small 2023, 19, 2207421.

[22]

Cong, W. W.; Xu, C. Y.; Mu, Y. H.; Li, Q.; Bing, L. C.; Wang, F.; Han, D. Z.; Wang, G. J. PtCo nanoparticles supported on hierarchical SAPO-34 for hydrolysis of ammonia borane and tandem reduction of 4-nitrophenol. Catal. Today 2022, 402, 27–37.

[23]

Wang, Q.; Fu, F. Y.; Yang, S.; Martinez Moro, M.; de los Angeles Ramirez, M.; Moya, S.; Salmon, L.; Ruiz, J.; Astruc, D. Dramatic synergy in CoPt nanocatalysts stabilized by “click” dendrimers for evolution of hydrogen from hydrolysis of ammonia borane. ACS Catal. 2019, 9, 1110–1119.

[24]

Mullangi, D.; Chakraborty, D.; Pradeep, A.; Koshti, V.; Vinod, C. P.; Panja, S.; Nair, S.; Vaidhyanathan, R. Highly stable COF-supported Co/Co(OH)2 nanoparticles heterogeneous catalyst for reduction of nitrile/nitro compounds under mild conditions. Small 2018, 14, 1801233.

[25]

Zhu, Y. F.; Zhu, D. Y.; Yan, Q. Q.; Gao, G. H.; Xu, J. N.; Liu, Y. F.; Alahakoon, S. B.; Rahman, M. M.; Ajayan, P. M.; Egap, E. et al. Metal oxide catalysts for the synthesis of covalent organic frameworks and one-step preparation of covalent organic framework-based composites. Chem. Mater. 2021, 33, 6158–6165.

[26]

Liang, Y.; Xia, T.; Chang, Z. S.; Xie, W. Y.; Li, Y. P.; Li, C. K.; Fan, R. M.; Wang, W. X.; Sui, Z. Y.; Chen, Q. Boric acid functionalized triazine-based covalent organic frameworks with dual-function for selective adsorption and lithium-sulfur battery cathode. Chem. Eng. J. 2022, 437, 135314.

[27]

Tian, X. X.; Qiu, J. K.; Wang, Z. Z.; Chen, Y. K.; Li, Z. Y.; Wang, H. Y.; Zhao, Y. L.; Wang, J. J. A record ammonia adsorption by calcium chloride confined in covalent organic frameworks. Chem. Comm. 2022, 58, 1151–1154.

[28]

Meng, Y. L.; Sun, Q. H.; Zhang, T. J.; Zhang, J. C.; Dong, Z. Y.; Ma, Y. H.; Wu, Z. X.; Wang, H. F.; Bao, X. G.; Sun, Q. M. et al. Cobalt-promoted noble-metal catalysts for efficient hydrogen generation from ammonia borane hydrolysis. J. Am. Chem. Soc. 2023, 145, 5486–5495.

[29]

Shirman, R.; Sasson, Y. Hydrogen generation from sodium hypophosphite catalyzed by metallic nanoparticles supported on graphitic carbon nitride. Int. J. Hydrog. Energy 2023, 48, 27611–27618.

[30]

Li, R. Z.; Wang, D. S. Understanding the structure–performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

[31]

Wang, L. G.; Wu, J. B.; Wang, S. W.; Liu, H.; Wang, Y.; Wang, D. S. The reformation of catalyst: From a trial-and-error synthesis to rational design. Nano Res. 2024, 17, 3261–3301.

[32]

Asim, M.; Maryam, B.; Liu, X. H.; Pan, L.; Shi, C. X.; Zou, J. J. Self-supported Pt@Ni2P for controllable hydrogen release from ammonia-borane hydrolysis. Ind. Eng. Chem. Res. 2023, 62, 10951–10960.

[33]

Kang, N. X.; Wei, X. R.; Shen, R. F.; Li, B. J.; Cal, E. G.; Moya, S.; Salmon, L.; Wang, C. L.; Coy, E.; Berlande, M. et al. Fast Au-Ni@ZIF-8-catalyzed ammonia borane hydrolysis boosted by dramatic volcano-type synergy and plasmonic acceleration. Appl. Catal. B: Environ. 2023, 320, 121957.

[34]

Li, M.; Zhang, S. B.; Zhao, J. K.; Wang, H. Maximizing metal–support interactions in Pt/Co3O4 nanocages to simultaneously boost hydrogen production activity and durability. ACS Appl. Mater. Interfaces 2021, 13, 57362–57371.

[35]

Xu, H. Q.; Hu, J. H.; Wang, D. K.; Li, Z. H.; Zhang, Q.; Luo, Y.; Yu, S. H.; Jiang, H. L. Visible-light photoreduction of CO2 in a metal-organic framework: Boosting electron–hole separation via electron trap states. J. Am. Chem. Soc. 2015, 137, 13440–13443.

[36]

Liang, H. P.; Acharjya, A.; Anito, D. A.; Vogl, S.; Wang, T. X.; Thomas, A.; Han, B. H. Rhenium-metalated polypyridine-based porous polycarbazoles for visible-light CO2 photoreduction. ACS Catal. 2019, 9, 3959–3968.

[37]

Ahmad, I.; Shukrullah, S.; Naz, M. Y.; Bhatti, H. N.; Khalid, N. R.; Ullah, S. Rational design of ZnO-CuO-Au S-scheme heterojunctions for photocatalytic hydrogen production under visible light. Int. J. Hydrog. Energy 2023, 48, 12683–12698.

[38]

Reyes-Vallejo, O.; Sánchez-Albores, R.; Fernández-Madrigal, A.; Torres-Arellano, S.; Sebastian, P. J. Evaluation of hydrogen evolution reaction on chemical bath deposited Cu2O thin films: Effect of copper source and triethanolamine content. Int. J. Hydrog. Energy 2022, 47, 22775–22786.

[39]

Zhou, Z. M.; Bie, C. B.; Li, P. Z.; Tan, B. E.; Shen, Y. A thioether-functionalized pyrene-based covalent organic framework anchoring ultrafine Au nanoparticles for efficient photocatalytic hydrogen generation. Chin. J. Catal. 2022, 43, 2699–2707.

[40]

Gan, T.; Wang, D. S. Atomically dispersed materials: Ideal catalysts in atomic era. Nano Res. 2024, 17, 18–38.

[41]

Chen, J.; Tao, X. P.; Tao, L.; Li, H.; Li, C. Z.; Wang, X. L.; Li, C.; Li, R. G.; Yang, Q. H. Novel conjugated organic polymers as candidates for visible-light-driven photocatalytic hydrogen production. Appl. Catal. B: Environ. 2019, 241, 461–470.

[42]

Ren, X. M.; Li, C. Z.; Liu, J. L.; Li, H.; Bing, L. J.; Bai, S. Y.; Xue, G. Y.; Shen, Y. B.; Yang, Q. H. The fabrication of Pd single atoms/clusters on COF layers as Co-catalysts for photocatalytic H2 evolution. ACS Appl. Mater. Interfaces 2022, 14, 6885–6893.

[43]

Aijaz, A.; Karkamkar, A.; Choi, Y. J.; Tsumori, N.; Rönnebro, E.; Autrey, T.; Shioyama, H.; Xu, Q. Immobilizing highly catalytically active Pt nanoparticles inside the pores of metal-organic framework: A double solvents approach. J. Am. Chem. Soc. 2012, 134, 13926–13929.

[44]

Meng, X. B.; Sheng, J. L.; Tang, H. L.; Sun, X. J.; Dong, H.; Zhang, F. M. Metal-organic framework as nanoreactors to co-incorporate carbon nanodots and CdS quantum dots into the pores for improved H2 evolution without noble-metal cocatalyst. Appl. Catal. B: Environ. 2019, 244, 340–346.

[45]

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

[46]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[47]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

[48]

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

[49]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[50]

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 2010, 132, 154104.

File
6544_ESM.pdf (616 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 22 December 2023
Revised: 27 January 2024
Accepted: 02 February 2024
Published: 07 March 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 22178266), the Fundamental Research Funds for the Central Universities, and China Postdoctoral Science Foundation (Nos. 2021M691754 and 2023T160369). We acknowledge the Tianjin University for their help in sample characterization.

Return