Journal Home > Volume 17 , Issue 6

Renewable-energy-driven nitrate (NO3) electroreduction to ammonia (NH3) (NERA) has been an attractive technology for decarbonizing NH3 production and wastewater treatment. Improving NERA efficiency requires electrocatalysts that are earth-abundant and show fantastic performance. Here we report a semiempirical activity descriptor of eg occupancy (of surface B-site cations) for identifying inexpensive perovskite oxides with extremely high efficacy toward NERA. We establish the descriptor by systematic investigations of more than 10 perovskite oxides. These investigations demonstrate that their intrinsic NERA activities display a volcano-shaped dependence on eg occupancy and the optimized intrinsic activities are accessible at near-1 eg occupancies. This could plausibly be attributed to the favorable overlaps between surface adsorbates and vertically-oriented eg orbitals. More importantly, utilizing this descriptor, we predict a highly active, selective, and durable NERA electrocatalyst with a composition of Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF). Because of its close-to-1 eg occupancy (i.e. ~ 1.2), the BSCF features a superior NH3 production rate of 0.12 g·h−1·mgcat.−1 (Faradaic efficiency of 97.8%) that is at top of the volcano plot, and substantially outperforms most NERA electrocatalysts reported in literature.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Efficient ammonia production over eg-occupancy-optimized perovskite electrocatalysts

Show Author's information Mingfa Chen1Yu Zhang2Fulong Liu1Zhenbao Zhang3Yuming Dong1( )Yongfa Zhu4Heqing Jiang2( )Jiawei Zhu1,2( )
Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
Department of Chemistry, Tsinghua University, Beijing 100084, China

Abstract

Renewable-energy-driven nitrate (NO3) electroreduction to ammonia (NH3) (NERA) has been an attractive technology for decarbonizing NH3 production and wastewater treatment. Improving NERA efficiency requires electrocatalysts that are earth-abundant and show fantastic performance. Here we report a semiempirical activity descriptor of eg occupancy (of surface B-site cations) for identifying inexpensive perovskite oxides with extremely high efficacy toward NERA. We establish the descriptor by systematic investigations of more than 10 perovskite oxides. These investigations demonstrate that their intrinsic NERA activities display a volcano-shaped dependence on eg occupancy and the optimized intrinsic activities are accessible at near-1 eg occupancies. This could plausibly be attributed to the favorable overlaps between surface adsorbates and vertically-oriented eg orbitals. More importantly, utilizing this descriptor, we predict a highly active, selective, and durable NERA electrocatalyst with a composition of Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF). Because of its close-to-1 eg occupancy (i.e. ~ 1.2), the BSCF features a superior NH3 production rate of 0.12 g·h−1·mgcat.−1 (Faradaic efficiency of 97.8%) that is at top of the volcano plot, and substantially outperforms most NERA electrocatalysts reported in literature.

Keywords: perovskite oxide, ammonia electrosynthesis, nitrate electroreduction, eg occupancy

References(34)

[1]

MacFarlane, D. R.; Cherepanov, P. V.; Choi, J.; Suryanto, B. H. R.; Hodgetts, R. Y.; Bakker, J. M.; Vallana, F. M. F.; Simonov, A. N. A roadmap to the Ammonia economy. Joule 2020, 4, 1186–1205.

[2]

Andersen, S. Z.; Čolić, V.; Yang, S.; Schwalbe, J. A.; Nielander, A. C.; McEnaney, J. M.; Enemark-Rasmussen, K.; Baker, J. G.; Singh, A. R.; Rohr, B. A. et al. A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements. Nature 2019, 570, 504–508.

[3]

Chang, F.; Gao, W. B.; Guo, J. P.; Chen, P. Emerging materials and methods toward ammonia-based energy storage and conversion. Adv. Mater. 2021, 33, 2005721.

[4]

Gruber, N.; Galloway, J. N. An earth-system perspective of the global nitrogen cycle. Nature 2008, 451, 293–296.

[5]

Emsley, J. Going one better than nature. Nature 2001, 410, 633–634.

[6]

Duca, M.; Koper, M. T. M. Powering denitrification: The perspectives of electrocatalytic nitrate reduction. Energy Environ. Sci. 2012, 5, 9726–9742.

[7]

Van Langevelde, P. H.; Katsounaros, I.; Koper, M. T. M. Electrocatalytic nitrate reduction for sustainable ammonia production. Joule 2021, 5, 290–294.

[8]

Zhong, Y.; Xiong, H. L.; Low, J.; Long, R.; Xiong, Y. J. Recent progress in electrochemical C–N coupling reactions. eScience 2023, 3, 100086.

[9]

Chen, F. Y.; Wu, Z. Y.; Gupta, S.; Rivera, D. J.; Lambeets, S. V.; Pecaut, S.; Kim, J. Y. T.; Zhu, P.; Finfrock, Y. Z.; Meira, D. M. et al. Efficient conversion of low-concentration nitrate sources into ammonia on a Ru-dispersed Cu nanowire electrocatalyst. Nat. Nanotechnol. 2022, 17, 759–767.

[10]

Zou, X. Y.; Xie, J. W.; Wang, C. H.; Jiang, G. M.; Tang, K.; Chen, C. J. Electrochemical nitrate reduction to produce ammonia integrated into wastewater treatment: Investigations and challenges. Chin. Chem. Lett. 2023, 34, 107908.

[11]

Wang, Y. T.; Wang, C. H.; Li, M. Y.; Yu, Y. F.; Zhang, B. Nitrate electroreduction: Mechanism insight, in situ characterization, performance evaluation, and challenges. Chem. Soc. Rev. 2021, 50, 6720–6733.

[12]

Li, S. X.; Liang, J.; Wei, P. P.; Liu, Q.; Xie, L. S.; Luo, Y. L.; Sun, X. P. ITO@TiO2 nanoarray: An efficient and robust nitrite reduction reaction electrocatalyst toward NH3 production under ambient conditions. eScience 2022, 2, 382–388

[13]

Xu, H.; Ma, Y. Y.; Chen, J.; Zhang, W. X.; Yang, J. P. Electrocatalytic reduction of nitrate—A step towards a sustainable nitrogen cycle. Chem. Soc. Rev. 2022, 51, 2710–2758.

[14]

Li, J.; Zhan, G. M.; Yang, J. H.; Quan, F. J.; Mao, C. L.; Liu, Y.; Wang, B.; Lei, F. C.; Li, L. J.; Chan, A. W. M. et al. Efficient ammonia electrosynthesis from nitrate on strained ruthenium nanoclusters. J. Am. Chem. Soc. 2020, 142, 7036–7046.

[15]

Chen, G. F.; Yuan, Y. F.; Jiang, H. F.; Ren, S. Y.; Ding, L. X.; Ma, L.; Wu, T. P.; Lu, J.; Wang, H. H. Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper-molecular solid catalyst. Nat. Energy 2020, 5, 605–613.

[16]

Suntivich, J.; May, K. J.; Gasteiger, H. A.; Goodenough, J. B.; Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 2011, 334, 1383–1385.

[17]

Liu, K. S.; Wu, J. B.; Li, Q.; Jin, H. R.; Luo, Y. X.; Qi, B.; Dai, S. M.; Zhao, J. Q.; Huang, L.; Zhou, J. Molten metal-organic complex to synthesize versatile ultrathin non-layered oxides. Nano Res. 2024, 17, 3147–3155

[18]

Chen, D. J.; Chen, C.; Baiyee, Z. M.; Shao, Z. P.; Ciucci, F. Nonstoichiometric oxides as low-cost and highly-efficient oxygen reduction/evolution catalysts for low-temperature electrochemical devices. Chem. Rev. 2015, 115, 9869–9921.

[19]

Zhang, S.; Li, M.; Li, J. C.; Song, Q. N.; Liu, X. High-ammonia selective metal-organic framework-derived Co-doped Fe/Fe2O3 catalysts for electrochemical nitrate reduction. Proc. Natl. Acad. Sci. USA 2022, 119, e2115504119.

[20]

Su, C.; Wang, W.; Shao, Z. P. Cation-deficient perovskites for clean energy conversion. Acc. Mater. Res. 2021, 2, 477–488.

[21]
Li, Q.; Zhang, D.; Wu, J. B.; Dai, S. M.; Liu, H.; Lu, M.; Cui, R. W.; Liang, W. X.; Wang, D. S.; Xi, P. X. et al. Cation‐deficient perovskites greatly enhance the electrocatalytic activity for oxygen reduction reaction. Adv. Mater., in press, https://doi.org/10.1002/adma.202309266.
[22]

Feng, T.; Li, F. T.; Hu, X. J.; Wang, Y. Selective electroreduction of nitrate to ammonia via NbWO6 perovskite nanosheets with oxygen vacancy. Chin. Chem. Lett. 2023, 34, 107862.

[23]

Meng, F. X.; Dai, C. C.; Liu, Z.; Luo, S. Z.; Ge, J. J.; Duan, Y.; Chen, G.; Wei, C.; Chen, R. R.; Wang, J. R. et al. Methanol electro-oxidation to formate on iron-substituted lanthanum cobaltite perovskite oxides. eScience 2022, 2, 87–94.

[24]

Han, N.; Ren, R. Z.; Ma, M. J.; Xu, C. M.; Qiao, J. S.; Sun, W.; Sun, K. N.; Wang, Z. H. Sn and Y co-doped BaCo0.6Fe0.4O3− δ cathodes with enhanced oxygen reduction activity and CO2 tolerance for solid oxide fuel cells. Chin. Chem. Lett. 2022, 33, 2658–2662.

[25]

Peña, M. A.; Fierro, J. L. G. Chemical structures and performance of perovskite oxides. Chem. Rev. 2001, 101, 1981–2018.

[26]

Liang, Y.; Cui, Y.; Chao, Y.; Han, N.; Sunarso, J.; Liang, P.; He, X.; Zhang, C.; Liu, S. M. Exsolution of CoFe(Ru) nanoparticles in Ru-doped (La0.8Sr0.2)0.9Co0.1Fe0.8Ru0.1O3− δ for efficient oxygen evolution reaction. Nano Res. 2022, 15, 6977–6986.

[27]

Hwang, J.; Rao, R. R.; Giordano, L.; Katayama, Y.; Yu, Y.; Shao-Horn, Y. Perovskites in catalysis and electrocatalysis. Science 2017, 358, 751–756.

[28]

Zhang, H. Y.; Xu, Y.; Lu, M.; Xie, X. J.; Huang, L. Perovskite oxides for cathodic electrocatalysis of energy-related gases: From O2 to CO2 and N2. Adv. Funct. Mater. 2021, 31, 2101872.

[29]

Gong, Z. H.; Zhong, W. Y.; He, Z. Y.; Jia, C. H.; Zhou, D.; Zhang, N.; Kang, X. W.; Chen, Y. Improving electrochemical nitrate reduction activity of layered perovskite oxide La2CuO4 via B-site doping. Catal. Today 2022, 402, 259–265.

[30]

Zheng, H.; Zhang, Y. Z.; Wang, Y.; Wu, Z. Z.; Lai, F. L.; Chao, G. J.; Zhang, N.; Zhang, L. S.; Liu, T. X. Perovskites with enriched oxygen vacancies as a family of electrocatalysts for efficient nitrate reduction to ammonia. Small 2023, 19, 2205625.

[31]

Suntivich, J.; Gasteiger, H. A.; Yabuuchi, N.; Nakanishi, H.; Goodenough, J. B.; Shao-Horn, Y. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries. Nat. Chem. 2011, 3, 546–550.

[32]

Shao, Z. P.; Yang, W. S.; Cong, Y.; Dong, H.; Tong, J. H.; Xiong, G. X. Investigation of the permeation behavior and stability of a Ba0.5Sr0.5Co0.8Fe0.2O3− δ oxygen membrane. J. Membr. Sci. 2000, 172, 177–188.

[33]

Shao, Z. P.; Haile, S. M. A high-performance cathode for the next generation of solid-oxide fuel cells. Nature 2004, 431, 170–173.

[34]

Zhou, W.; Shao, Z. P.; Jin, W. Q. A novel route to synthesize Nano-crystalline Ba0.5Sr0.5Co0.8Fe0.2O3− δ perovskite oxide at high temperature. Chin. Chem. Lett. 2006, 17, 1353–1356.

File
12274_2024_6543_MOESM1_ESM.pdf (3.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 20 December 2023
Revised: 31 January 2024
Accepted: 02 February 2024
Published: 07 March 2024
Issue date: June 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

This research was supported by the National Natural Science Foundation of China (No. 52102258), the Taishan Scholars Program (No. tsqn202306309), Natural Science Foundation of Shandong Province (No. ZR2023YQ012), Natural Science Foundation of Jiangsu Province (No. BK20210447), and the Special Fund Project of Jiangsu Province for Scientific and Technological Innovation in Carbon Peaking and Carbon Neutrality (No. BK20220023).

Return