Journal Home > Volume 17 , Issue 6

Albumin nanoparticles (ANPs) offer unique advantages for antitumor drug delivery system, including non-immunogenicity and inherent tumor-targeting capacity. At present, only a few products, such as ABRAXANE® and FYARRO™, have been approved for clinical applications. The poor affinity of doxorubicin (DOX) for albumin, coupled with its numerous severe adverse reactions, poses challenges in the fabrication of desirable albumin nanoparticles loaded with DOX. In this study, we developed prodrugs by conjugating fatty acids of varying lengths with DOX. Our aim was to investigate the balance between efficacy and safety through the selection of appropriate modules. We synthesized five pH-sensitive doxorubicin-fatty acid prodrugs. Compared to free DOX, all DOX prodrug ANPs exhibited a uniform size distribution with desirable sizes of 150 nm. Additionally, DOX prodrugs with hydrazone bonds remained intact in blood circulation while releasing DOX within tumor cells. Significantly, the characteristics of prodrug ANPs were considerably influenced by the length of fatty acids, impacting their in vivo pharmacokinetics, antitumor effectiveness and tumor accumulation. This research offers a detailed understanding of the length of fatty acid influence on DOX-fatty acid prodrug-based ANPs, and it builds a good platform for creating ANPs which prioritize high drug loading, high efficiency, and minimal side effects.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Balancing efficacy and safety of doxorubicin-loaded albumin nanoparticles utilizing pH-sensitive doxorubicin-fatty acid prodrugs

Show Author's information Yuanhao Yu1,§Shiyi Zuo2,§Jiaxuan Song2,§Lingxiao Li2Tian Liu2Jiayu Guo2Yaqiao Li2Danping Wang1Qi Lu2Helin Wang2Dun Zhou3Zhonggui He2Xiaohong Liu1( )Bingjun Sun2,4( )Jin Sun2,4( )
School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China

§ Yuanhao Yu, Shiyi Zuo, and Jiaxuan Song contributed equally to this work.

Abstract

Albumin nanoparticles (ANPs) offer unique advantages for antitumor drug delivery system, including non-immunogenicity and inherent tumor-targeting capacity. At present, only a few products, such as ABRAXANE® and FYARRO™, have been approved for clinical applications. The poor affinity of doxorubicin (DOX) for albumin, coupled with its numerous severe adverse reactions, poses challenges in the fabrication of desirable albumin nanoparticles loaded with DOX. In this study, we developed prodrugs by conjugating fatty acids of varying lengths with DOX. Our aim was to investigate the balance between efficacy and safety through the selection of appropriate modules. We synthesized five pH-sensitive doxorubicin-fatty acid prodrugs. Compared to free DOX, all DOX prodrug ANPs exhibited a uniform size distribution with desirable sizes of 150 nm. Additionally, DOX prodrugs with hydrazone bonds remained intact in blood circulation while releasing DOX within tumor cells. Significantly, the characteristics of prodrug ANPs were considerably influenced by the length of fatty acids, impacting their in vivo pharmacokinetics, antitumor effectiveness and tumor accumulation. This research offers a detailed understanding of the length of fatty acid influence on DOX-fatty acid prodrug-based ANPs, and it builds a good platform for creating ANPs which prioritize high drug loading, high efficiency, and minimal side effects.

Keywords: albumin, doxorubicin, nanomedicines, fatty acid prodrug, pH-sensitive bond

References(34)

[1]

Li, H.; Wei, W. Y.; Xu, H. X. Drug discovery is an eternal challenge for the biomedical sciences. Acta Mater. Med. 2022, 1, 1–3.

[2]

Zhao, N.; Woodle, M. C.; Mixson, A. J. Advances in delivery systems for doxorubicin. J. Nanomed. Nanotechnol. 2018, 9, 519.

[3]

Visscher, H.; Ross, C. J. D.; Rassekh, S. R.; Barhdadi, A.; Dubé, M. P.; Al-Saloos, H.; Sandor, G. S.; Caron, H. N.; van Dalen, E. C.; Kremer, L. C. et al. Pharmacogenomic prediction of anthracycline-induced cardiotoxicity in children. J. Clin. Oncol. 2012, 30, 1422–1428.

[4]
Wojnowski, L.; Kulle, B.; Schirmer, M.; Schlüter, G.; Schmidt, A.; Rosenberger, A.; Vonhof, S.; Bickeböller, H.; Toliat, M. R.; Suk, E. K. et al. NAD(P)H oxidase and multidrug resistance protein genetic polymorphisms are associated with doxorubicin-induced cardiotoxicity. Circulation 2005 , 112, 3754–3762.
[5]

Armstrong, J.; Dass, C. R. Doxorubicin action on mitochondria: Relevance to osteosarcoma therapy. Curr. Drug Targets 2018, 19, 432–438.

[6]

Swain, S. M.; Whaley, F. S.; Ewer, M. S. Congestive heart failure in patients treated with doxorubicin: A retrospective analysis of three trials. Cancer 2003, 97, 2869–2879.

[7]

Regenold, M.; Steigenberger, J.; Siniscalchi, E.; Dunne, M.; Casettari, L.; Heerklotz, H.; Allen, C. Determining critical parameters that influence in vitro performance characteristics of a thermosensitive liposome formulation of vinorelbine. J. Control. Release 2020, 328, 551–561.

[8]

Vargason, A. M.; Anselmo, A. C.; Mitragotri, S. The evolution of commercial drug delivery technologies. Nat. Biomed. Eng. 2021, 5, 951–967.

[9]

Chatterjee, K.; Zhang, J. Q.; Honbo, N.; Karliner, J. S. Doxorubicin cardiomyopathy. Cardiology 2010, 115, 155–162.

[10]

Liu, Z. B.; Chen, X. Y. Simple bioconjugate chemistry serves great clinical advances: Albumin as a versatile platform for diagnosis and precision therapy. Chem. Soc. Rev. 2016, 45, 1432–1456.

[11]

Yang, G. B.; Phua, S. Z. F.; Lim, W. Q.; Zhang, R.; Feng, L. Z.; Liu, G. F.; Wu, H. W.; Bindra, A. K.; Jana, D.; Liu, Z. et al. A hypoxia-responsive albumin-based nanosystem for deep tumor penetration and excellent therapeutic efficacy. Adv. Mater. 2019, 31, 1901513.

[12]

Bai, S. T.; Jiang, H.; Song, Y. S.; Zhu, Y. N.; Qin, M.; He, C. T.; Du, G. S.; Sun, X. Aluminum nanoparticles deliver a dual-epitope peptide for enhanced anti-tumor immunotherapy. J. Control. Release 2022, 344, 134–146.

[13]

Fan, N.; Zhao, J.; Zhao, W.; Zhang, X. Y.; Song, Q. C.; Shen, Y. T.; Shum, H. C.; Wang, Y.; Rong, J. H. Celastrol-loaded lactosylated albumin nanoparticles attenuate hepatic steatosis in non-alcoholic fatty liver disease. J. Control. Release 2022, 347, 44–54.

[14]
Kratz, F. WITHDRAWN: A clinical update of using albumin as a drug vehicle - a commentary. J. Control. Release, in press, DOI: 10.1016/j.jconrel.2014.04.022.
[15]

Hao, L. Q.; Zhou, Q.; Piao, Y.; Zhou, Z. X.; Tang, J. B.; Shen, Y. Q. Albumin-binding prodrugs via reversible iminoboronate forming nanoparticles for cancer drug delivery. J. Control. Release 2021, 330, 362–371.

[16]

Chung, S. W.; Choi, J. U.; Lee, B. S.; Byun, J.; Jeon, O. C.; Kim, S. W.; Kim, I. S.; Kim, S. Y.; Byun, Y. Albumin-binding caspase-cleavable prodrug that is selectively activated in radiation exposed local tumor. Biomaterials 2016, 94, 1–8.

[17]

Hoogenboezem, E. N.; Duvall, C. L. Harnessing albumin as a carrier for cancer therapies. Adv. Drug Deliv. Rev. 2018, 130, 73–89.

[18]

Li, G. T.; Sun, B. J.; Li, Y. Q.; Luo, C.; He, Z. G.; Sun, J. Small-molecule prodrug nanoassemblies: An emerging nanoplatform for anticancer drug delivery. Small 2021, 17, 2101460.

[19]

Sun, B. J.; Luo, C.; Yu, H.; Zhang, X. B.; Chen, Q.; Yang, W. Q.; Wang, M. L.; Kan, Q. M.; Zhang, H. T.; Wang, Y. J. et al. Disulfide bond-driven oxidation- and reduction-responsive prodrug nanoassemblies for cancer therapy. Nano Lett. 2018, 18, 3643–3650.

[20]

Sun, B. J.; Luo, C.; Zhang, X. B.; Guo, M. R.; Sun, M. C.; Yu, H.; Chen, Q.; Yang, W. Q.; Wang, M. L.; Zuo, S. Y. et al. Probing the impact of sulfur/selenium/carbon linkages on prodrug nanoassemblies for cancer therapy. Nat. Commun. 2019, 10, 3211.

[21]

Yang, Y. X.; Zuo, S. Y.; Zhang, J. X.; Liu, T.; Li, X. M.; Zhang, H. T.; Cheng, M. S.; Wang, S. J.; He, Z. G.; Sun, B. J. et al. Prodrug nanoassemblies bridged by Mono-/Di-/Tri-sulfide bonds: Exploration is for going further. Nano Today 2022, 44, 101480.

[22]

Yang, Y. X.; Li, X. H.; Song, J. X.; Li, L. X.; Ye, Q.; Zuo, S. Y.; Liu, T.; Dong, F. D.; Liu, X. H.; He, Z. G. et al. Structure-activity relationship of pH-sensitive doxorubicin-fatty acid prodrug albumin nanoparticles. Nano Lett. 2023, 23, 1530–1538.

[23]

Callmann, C. E.; LeGuyader, C. L. M.; Burton, S. T.; Thompson, M. P.; Hennis, R.; Barback, C.; Henriksen, N. M.; Chan, W. C.; Jaremko, M. J.; Yang, J. et al. Antitumor activity of 1, 18-octadecanedioic acid-paclitaxel complexed with human serum albumin. J. Am. Chem. Soc. 2019, 141, 11765–11769.

[24]

Mo, R.; Gu, Z. Tumor microenvironment and intracellular signal-activated nanomaterials for anticancer drug delivery. Mater. Today 2016, 19, 274–283.

[25]

El-Sawy, H. S.; Al-Abd, A. M.; Ahmed, T. A.; El-Say, K. M.; Torchilin, V. P. Stimuli-responsive Nano-architecture drug-delivery systems to solid tumor micromilieu: Past, present, and future perspectives. ACS Nano 2018, 12, 10636–10664.

[26]

Felber, A. E.; Dufresne, M. H.; Leroux, J. C. pH-sensitive vesicles, polymeric micelles, and nanospheres prepared with polycarboxylates. Adv. Drug Deliv. Rev. 2012, 64, 979–992.

[27]

Lu, T. L.; Wang, Z.; Ma, Y. F.; Zhang, Y.; Chen, T. Influence of polymer size, liposomal composition, surface charge, and temperature on the permeability of ph-sensitive liposomes containing lipid-anchored poly(2-ethylacrylic acid). Int. J. Nanomedicine 2012, 7, 4917–4926.

[28]

Lee, E. S.; Oh, K. T.; Kim, D.; Youn, Y. S.; Bae, Y. H. Tumor pH-responsive flower-like micelles of poly(l-lactic acid)- b-poly(ethylene glycol)- b-poly(l-histidine). J. Control. Release 2007, 123, 19–26.

[29]

Bae, Y. M.; Park, Y. I.; Nam, S. H.; Kim, J. H.; Lee, K.; Kim, H. M.; Yoo, B.; Choi, J. S.; Lee, K. T.; Hyeon, T. et al. Endocytosis, intracellular transport, and exocytosis of lanthanide-doped upconverting nanoparticles in single living cells. Biomaterials 2012, 33, 9080–9086.

[30]

Karve, S.; Bandekar, A.; Ali, M. R.; Sofou, S. The pH-dependent association with cancer cells of tunable functionalized lipid vesicles with encapsulated doxorubicin for high cell-kill selectivity. Biomaterials 2010, 31, 4409–4416.

[31]

Sonawane, S. J.; Kalhapure, R. S.; Govender, T. Hydrazone linkages in pH responsive drug delivery systems. Eur. J. Pharm. Sci. 2017, 99, 45–65.

[32]

Li, L.; Dai, S.; Liu, J. Y.; Wu, W.; Zhao, Q. X.; Wang, X.; Wang, N.; Xu, Z. H. Antagonistic effect and in vitro activity of dauricine on glucagon receptor. J. Nat. Prod. 2022, 85, 2035–2043.

[33]

Macari, G.; Toti, D.; Pasquadibisceglie, A.; Polticelli, F. DockingApp RF: A state-of-the-art novel scoring function for molecular docking in a user-friendly interface to AutoDock vina. Int. J. Mol. Sci. 2020, 21, 9548.

[34]

Trott, O.; Olson, A. J. AutoDock vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461.

File
12274_2024_6533_MOESM1_ESM.pdf (2.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 10 November 2023
Revised: 30 January 2024
Accepted: 31 January 2024
Published: 29 February 2024
Issue date: June 2024

Copyright

© Tsinghua University Press, corrected publication 2024

Acknowledgements

Acknowledgements

This work was financially supported by the National Key R&D Program of China (No. 2022YFE0111600), National Natural Science Foundation of China (Nos. 82272151 and 82204318).

Return